Mathematica, vol. 35(58), 1993, no. 1, pp. 71-76

ON THE MONOTONICITY OF THE SEQUENCES OF
APPROXIMATIONS OBTAINED BY STEFFENSEN’S METHOD

ION PAVALOIU

In a recent paper [I], M. Balazs studied the conditions in which the
sequence (a:n)nzo generated by Steffensen’s method is monotonic and
converges to the solution of equation

(1) f(x)=0
where f: I — R is a given function, and I C R is an interval of the real

axis. Paper [I] considers the simple case of the sequence generated by
the recurrence relation

(2) xn—l—l:mn_%, nzO,l,...,xoeL

in which g : I — R is given by g (x) =  — f (), and [u, v; f] is the first
order divided difference of the function f.
The following theorem is proved in [I]:

THEOREM 1. [I]. Let f : I — R be a continuous function on I, and
define g (x) = x — f(x). If the following conditions:
(i) The function g : I — R is strictly decreasing and convex on I,
(i) there exists a point xo € I such that f (xg) < 0;
(iii) Ip = [zo —d, xo +d] C I, where d = max{|f (zo)|,|f (9 (z0))|}
hold, then all elements of the sequence (xn)nzo generated by
@) belong to Iy; in addition, the following properties hold:
(j) the sequence (xn),>, is increasing and convergent;
(ij) the sequence (g (wn)), >, s decreasing and convergent;
(Gjj) lm x, = lim g (z,) = =*, where x* is the unique solution of
n—oo n—o0
equation () in I.

We shall show further down that the properties resulting from The-
orem [I] hold for more general Steffensen-type methods, while for the
method (2), if hypothesis (ii) is replaced by:

(iiy) there exists zg € I for which f (xzg) > 0 and g (o) € I, then hy-

pothesis (iii) can be dropped, and the conclusions of the theorem
remain valid putting Iy = [g (x0) , zo] .
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Consider an arbitrary function g : I — R whose fixed points coincide
with the real roots of equation (IJ), and reciprocally.
The following theorem holds:

THEOREM 2. If the functions f: I — R and g : I — R are continuous
on I, and if the following conditions:

(ia) the function g is strictly decreasing on I;
(iip) the function f is strictly increasing and concave on I;
(iilp) there exists xo € I such that f(xzg) > 0, g(xo) € I and xoy —
g (xo) >0
(ive) the equations f (x) =0 and g (x) = x are equivalent, are fulfilled
then equation (@) has a unique solution x* € [g (zo), o] and the
following properties hold:
(j2) the sequence (xy,),~q is decreasing and convergent;
(ij2) the sequence (g (), is increasing and convergent;
(jij2) lim z, = lim g(z,) = x*, where x* is the unique solution of
n—oo n—oo

equation (), therefore fized point of g in the interval I.
Proof. From (@), for n = 1, we get

xr1 — Ty = — f(zo0) }<0,

[z0,9(z0); f
that, is =1 < xg.
Writing h (z) = x—g (x) , we have h (z¢) > 0 by hypothesis; moreover:

h (g (z0)) = g (w0) — g (9 (20)) = [g (z0) , 203 ] (x0 — g (x0)) <O

hence the equation h () = 0 has unique solution in the interval [g (zo) , zo] ,
i.e. g has a unique fixed point z* in this interval. Since the fixed points
of g coincide with the roots of equation ([Il) and reciprocally, there fol-
lows that z* is unique solution for equation (II) within the same interval,
and f(g(z9)) < 0. Now we shall show that z; > z*. First show that
x1 > g (zo).

It is easy to verify that the terms of the sequence (yy),~, provided
by the relations B

f(g(yn)) n = 0’ 1’

Yn+1 =9 (yn) T Wngn )i 1 -5, Yo = Xo

coincide with those of the sequence (x,),~, generated by (). In other
words the equalities

[(zn)

_ — _ _flg(zn)) _
Tn [Zn,g(zn)if] — 9 (:L‘n) [@n,g(zn); f]’ n=0,1,...
hold; for n = 0, it follows that:
f(g(z0))

z1 =g (20) = — Gt > 0
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from which it results that z; € [g (x0),x0] .
From Lagrange’s interpolating polynomial we get

f (1) =f (z0) + [0, 9 (z0) ; f] (21 — 0)
+ [1,20, 9 (20) 5 f] (1 — w0) (21 — 9 (20))

and, since [r1,x0,9(z0);f] < 0, taking into account (@), it follows
that f(z1) > 0, that is, 1 > z*. Since the function h is increas-
ing, it results that h(z1) > 0, i.e. 21 — g(x1) > 0. Let us show that
g (21) € [g(20), 0] . We have g (z1) — g (z0) = [z, 21 9] (z1 — 20) > 0
that is, g (zo) < g (x1) < 2* < 1 < my.

Repeating the above argument, putting x, = xp, k € N, and suppos-
ing that the hypotheses of Theorem 2] are fulfilled for xj, we obtain:

g(zp) < g(wpq1) < 2" < 21 < Tp-

It results subsequently that the sequences (x,),~, and (g (zn)),>0
fulfil the properties (j2) and (jj2) of Theorem B and, in addition, are
bounded.

Write & = lim g (z,) and v = lim x,; we obtain u = ¢ (v) and

n—oo n—oo
u < z* < v. Suppose that u < v, therefore uw — v < 0. But u —v =
g(0) —v=—h(v) >0, since v > x*;this shows that u = v = z*.

At limit (for n — o00), equalities ([2) yield f(z*) = 0, where the

continuity of f was also taken into account. O

REMARK 1. If we put in Theorem 2, g (z) = =z — f (), since g is
decreasing, it follows that f (z) = x—g () is increasing; since g is convex,
it follows that [z,y,z;g] > 0 for every z,y,z € I, hence [z,y,z; f] =
—[z,y,2;9] <0, that is, f is concave. From f (zg) > 0 it follows zy —
g (xg) > 0,i.e. xg > g(xp). In this case, Theorem [Ilin which hypotheses

ii) and (iii) are replaced by (ii2) is a consequence of Theorem [2

The results of Theorem 2l are graphically illustrated in Figure [1l
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In what follows we shall present, without proof. other cases in which
properties of monotonicity analogous to those given by Theorem 2] hold.
O

THEOREM 3. If the functions f: I — R and g : I — R are continuous
on I, and if the following conditions are fulfilled:
(i3) the function g is strictly decreasing on I;

(ii3) the function f is strictly increasing and convex on I;

(iiig) there exists xo € I for which f(x9) < 0, g(xo) € I and xo —
g9 (z0) < 0;

(ivs) the equations f(x) = 0 and x = g (x) are equivalent, then the
sequence (xy),~o generated by @) is increasing and convergent,
the sequence (g_(xn))n>0 is decreasing and convergent, and x* =
lim z, = lim g (z,) is the solution of equation ().

n—oo n—o0

Figures 2 plots the results of Theorem [
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THEOREM 4. If the functions f: I — R and g : I — R are continuous
on I, and if the following conditions are fulfilled:

(i4) the function g is strictly decreasing on I;

(iig) the function f is strictly decreasing and convex on I;

(iiig) there exists xo € I for which f(xg) < 0, g(xg) € I and xo —
g (o) > 0;

(ivy) the equations f(x) = 0 and x = g(x) are equivalent, then the
sequence (xy),~o generated by @) is decreasing and convergent,
the sequence (g (zn))n>0 is increasing and convergent, and x* =
lim z, = lim g (x,),f(z*) =0.

n—oo n—o0

The results of this theorem are illustrated by Figure Bl

THEOREM 5. If the functions f: I — R and g : I — R are continuous
on I, and if the following conditions are fulfilled:

(i5) the functions g is strictly decreasing on I
(ii5) the function f is strictly decreasing and concave on I
(iiis) there exists xo € I such that f(xzg) > 0, g(xo) € I and xg —
g9 (z0) < 0;
(ivs) the equations f(x) = 0 and x = g (x) are equivalent then the se-
quence (T,),,~ generated by @) is increasing and convergent, the
sequence (g (J_?n))n>0 is decreasing and convergent, and lim x,, =

n—oo
lim g (2,) =2, f(z*) =0,
n—oo

REMARK 2. The fact that the functions f and ¢ from the above the-
orems are related only by the equivalence of equations f(x) = 0 and
x = g(x) offers large possibilities to choose these functions (i.e. to
choose g when f is known, and conversely).

It is clear that if f keeps the same monotonicity and convexity on I,
then we can moot the question of determining a real number A such that
g (x) =x — \f (z) be a decreasing function. Under certain conditions A
can be determined, as it results from the following example:

If f is strictly increasing and strictly convex on I = [a,b], and if f
is differentiable, then f’ is also derivable, and f’(z) > f'(a) > 0 for
every x € [a,b]. Then we can put g (z) =z — f (x) /f' (a), and we have
g () <0 for every x € [a,b], hence g is decreasing. It is clear that the
equations f (z) =0 and z = g (z) have the same roots. If f (a) < 0 and

a— JJ:/((Z)) < b, then it is obvious that a — g (a) = }C/((Z)) < 0, and Theorem

can be applied for z¢ = a. O
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NUMERICAL EXAMPLE. Consider the equation:

= — in —z=1 —00. —
f (z) = x — arcsin ey 0, (z € —o0,—1]
and the function g given by the relation:
g () = arcsin #1“)
Since ¢ (z) = _x++1 and ¢’ (x) = (9522%)2 it follows that g is decreasing
on (—oo,—1], and f is increasing and convex. One shows by direct

calculation that f (—2) ~ —0.75 < 0 and g (—2) ~ —1.25, hence f fulfils
the hypotheses of Theorem [Bl The table below lists the results of the

calculations for xy = —2.
n |z, g (zn) f (wn)
0 | -2.000000000000000000 | -1.249045772398254430 | -0.750954227601745574
1 | -1.414047729532868260 | -1.400933154002817630 | -0.013114575530050630
2 | -1.404227441155695550 | -1.404222310683232820 | -0.000005130472462734
3 | -1.404223602392559510 | -1.404223602391771120 | -0.000000000000788388
4 | -1.404223602391969620 | -1.404223602391969620 | -0.000000000000000000

Table 1.

The numerical results agree with the conclusions of Theorem B} as
one can see, after four iteration steps a solution approximation with 18
decimals is obtained (obviously, if truncation and rounding errors are
neglected). O
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