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ON THE MONOTONICITY OF THE SEQUENCES OF

APPROXIMATIONS OBTAINED BY STEFFENSEN’S METHOD

ION PĂVĂLOIU

In a recent paper [1], M. Bálazs studied the conditions in which the
sequence (xn)n≥0 generated by Steffensen’s method is monotonic and
converges to the solution of equation

(1) f (x) = 0

where f : I → R is a given function, and I ⊂ R is an interval of the real
axis. Paper [1] considers the simple case of the sequence generated by
the recurrence relation

(2) xn+1 = xn − f(xn)
[xn,g(xn);f ]

, n = 0, 1, . . . , x0 ∈ I,

in which g : I → R is given by g (x) = x− f (x) , and [u, v; f ] is the first
order divided difference of the function f.

The following theorem is proved in [1]:

Theorem 1. [1]. Let f : I → R be a continuous function on I, and
define g (x) = x− f (x) . If the following conditions:

(i) The function g : I → R is strictly decreasing and convex on I;
(ii) there exists a point x0 ∈ I such that f (x0) < 0;
(iii) I0 = [x0 − d, x0 + d] ⊂ I, where d = max{|f (x0)| , |f (g (x0))|}

hold, then all elements of the sequence (xn)n≥0 generated by

(2) belong to I0; in addition, the following properties hold:

(j) the sequence (xn)n≥1 is increasing and convergent;

(jj) the sequence (g (xn))n≥1 is decreasing and convergent;

(jjj) lim
n→∞

xn = lim
n→∞

g (xn) = x∗, where x∗ is the unique solution of

equation (1) in I.

We shall show further down that the properties resulting from The-
orem 1 hold for more general Steffensen-type methods, while for the
method (2), if hypothesis (ii) is replaced by:

(ii1) there exists x0 ∈ I for which f (x0) > 0 and g (x0) ∈ I, then hy-
pothesis (iii) can be dropped, and the conclusions of the theorem
remain valid putting I0 = [g (x0) , x0] .
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Consider an arbitrary function g : I → R whose fixed points coincide
with the real roots of equation (1), and reciprocally.

The following theorem holds:

Theorem 2. If the functions f : I → R and g : I → R are continuous

on I, and if the following conditions:

(i2) the function g is strictly decreasing on I;
(ii2) the function f is strictly increasing and concave on I;
(iii2) there exists x0 ∈ I such that f (x0) > 0, g (x0) ∈ I and x0 −

g (x0) > 0
(iv2) the equations f (x) = 0 and g (x) = x are equivalent, are fulfilled

then equation (1) has a unique solution x∗ ∈ [g (x0) , x0] and the

following properties hold:

(j2) the sequence (xn)n≥0 is decreasing and convergent;

(jj2) the sequence (g (xn))n≥0 is increasing and convergent;

(jjj2) lim
n→∞

xn = lim
n→∞

g (xn) = x∗, where x∗ is the unique solution of

equation (1), therefore fixed point of g in the interval I.

Proof. From (2), for n = 1, we get

x1 − x0 = − f(x0)
[x0,g(x0);f ]

< 0,

that, is x1 < x0.
Writing h (x) = x−g (x) , we have h (x0) > 0 by hypothesis; moreover:

h (g (x0)) = g (x0)− g (g (x0)) = [g (x0) , x0; g] (x0 − g (x0)) < 0

hence the equation h (x) = 0 has unique solution in the interval [g (x0) , x0] ,
i.e. g has a unique fixed point x∗ in this interval. Since the fixed points
of g coincide with the roots of equation (1) and reciprocally, there fol-
lows that x∗ is unique solution for equation (1) within the same interval,
and f (g (x0)) < 0. Now we shall show that x1 > x∗. First show that
x1 > g (x0) .

It is easy to verify that the terms of the sequence (yn)n≥0 provided
by the relations

yn+1 = g (yn)− f(g(yn))
[yn,g(yn);f ]

, n = 0, 1, . . . , y0 = x0

coincide with those of the sequence (xn)n≥0 generated by (2). In other
words the equalities

xn − f(xn)
[xn,g(xn);f ]

= g (xn)− f(g(xn))
[xn,g(xn);f ]

, n = 0, 1, . . .

hold; for n = 0, it follows that:

x1 − g (x0) = − f(g(x0))
[x0,g(x0);f ]

> 0
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from which it results that x1 ∈ [g (x0) , x0] .
From Lagrange’s interpolating polynomial we get

f (x1) =f (x0) + [x0, g (x0) ; f ] (x1 − x0)

+ [x1, x0, g (x0) ; f ] (x1 − x0) (x1 − g (x0))

and, since [x1, x0, g (x0) ; f ] < 0, taking into account (2), it follows
that f (x1) > 0, that is, x1 > x∗. Since the function h is increas-
ing, it results that h (x1) > 0, i.e. x1 − g (x1) > 0. Let us show that
g (x1) ∈ [g (x0) , x0] . We have g (x1) − g (x0) = [x0, x1; g] (x1 − x0) > 0
that is, g (x0) < g (x1) < x∗ < x1 < x0.

Repeating the above argument, putting xk = x0, k ∈ N, and suppos-
ing that the hypotheses of Theorem 2 are fulfilled for xk, we obtain:

g (xk) < g (xk+1) < x∗ < xk+1 < xk.

It results subsequently that the sequences (xn)n≥0 and (g (xn))n≥0

fulfil the properties (j2) and (jj2) of Theorem 2 and, in addition, are
bounded.

Write ū = lim
n→∞

g (xn) and v̄ = lim
n→∞

xn; we obtain ū = g (v̄) and

ū ≤ x∗ ≤ v̄. Suppose that ū < v̄, therefore ū − v̄ < 0. But ū − v̄ =
g (v̄)− v̄ = −h (v̄) ≥ 0, since v̄ ≥ x∗;this shows that ū = v̄ = x∗.

At limit (for n → ∞), equalities (2) yield f (x∗) = 0, where the
continuity of f was also taken into account. �

Remark 1. If we put in Theorem 2, g (x) = x − f (x) , since g is
decreasing, it follows that f (x) = x−g (x) is increasing; since g is convex,
it follows that [x, y, z; g] > 0 for every x, y, z ∈ I, hence [x, y, z; f ] =
− [x, y, z; g] < 0, that is, f is concave. From f (x0) > 0 it follows x0 −
g (x0) > 0, i.e. x0 > g (x0) . In this case, Theorem 1 in which hypotheses
(ii) and (iii) are replaced by (ii2) is a consequence of Theorem 2.

The results of Theorem 2 are graphically illustrated in Figure 1.

Fig. 1.
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In what follows we shall present, without proof. other cases in which
properties of monotonicity analogous to those given by Theorem 2 hold.

�

Theorem 3. If the functions f : I → R and g : I → R are continuous

on I, and if the following conditions are fulfilled:

(i3) the function g is strictly decreasing on I;
(ii3) the function f is strictly increasing and convex on I;
(iii3) there exists x0 ∈ I for which f (x0) < 0, g (x0) ∈ I and x0 −

g (x0) < 0;
(iv3) the equations f (x) = 0 and x = g (x) are equivalent, then the

sequence (xn)n≥0 generated by (2) is increasing and convergent,

the sequence (g (xn))n≥0 is decreasing and convergent, and x∗ =

lim
n→∞

xn = lim
n→∞

g (xn) is the solution of equation (1).

Figures 2 plots the results of Theorem 3.

Fig. 2.

Fig. 3.
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Theorem 4. If the functions f : I → R and g : I → R are continuous

on I, and if the following conditions are fulfilled:

(i4) the function g is strictly decreasing on I;
(ii4) the function f is strictly decreasing and convex on I;
(iii4) there exists x0 ∈ I for which f (x0) < 0, g (x0) ∈ I and x0 −

g (x0) > 0;
(iv4) the equations f (x) = 0 and x = g (x) are equivalent, then the

sequence (xn)n≥0 generated by (2) is decreasing and convergent,

the sequence (g (xn))n≥0 is increasing and convergent, and x∗ =
lim
n→∞

xn = lim
n→∞

g (xn) , f (x∗) = 0.

The results of this theorem are illustrated by Figure 3.

Theorem 5. If the functions f : I → R and g : I → R are continuous

on I, and if the following conditions are fulfilled:

(i5) the functions g is strictly decreasing on I;
(ii5) the function f is strictly decreasing and concave on I;
(iii5) there exists x0 ∈ I such that f (x0) > 0, g (x0) ∈ I and x0 −

g (x0) < 0;
(iv5) the equations f (x) = o and x = g (x) are equivalent then the se-

quence (xn)n≥0 generated by (2) is increasing and convergent, the

sequence (g (xn))n≥0 is decreasing and convergent, and lim
n→∞

xn =

lim
n→∞

g (xn) = x∗, f (x∗) = 0.

Remark 2. The fact that the functions f and g from the above the-
orems are related only by the equivalence of equations f (x) = 0 and
x = g (x) offers large possibilities to choose these functions (i.e. to
choose g when f is known, and conversely).

It is clear that if f keeps the same monotonicity and convexity on I,
then we can moot the question of determining a real number λ such that
g (x) = x− λf (x) be a decreasing function. Under certain conditions λ
can be determined, as it results from the following example:

If f is strictly increasing and strictly convex on I = [a, b] , and if f
is differentiable, then f ′ is also derivable, and f ′ (x) > f ′ (a) > 0 for
every x ∈ [a, b] . Then we can put g (x) = x− f (x) /f ′ (a) , and we have
g′ (x) ≤ 0 for every x ∈ [a, b] , hence g is decreasing. It is clear that the
equations f (x) = 0 and x = g (x) have the same roots. If f (a) < 0 and

a− f(a)
f ′(a) < b, then it is obvious that a− g (a) = f(a)

f ′(a) < 0, and Theorem

3 can be applied for x0 = a. �
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Numerical example. Consider the equation:

f (x) = x− arcsin x−1√
2(x2+1)

= 0, (x ∈ −∞,−1]

and the function g given by the relation:

g (x) = arcsin x−1√
2(x2+1)

Since g′ (x) = − 1
x2+1

and g′′ (x) = 2x
(x2+1)2

it follows that g is decreasing

on (−∞,−1], and f is increasing and convex. One shows by direct
calculation that f (−2) ≃ −0.75 < 0 and g (−2) ≃ −1.25, hence f fulfils
the hypotheses of Theorem 3. The table below lists the results of the
calculations for x0 = −2.

n xn g (xn) f (xn)
0 -2.000000000000000000 -1.249045772398254430 -0.750954227601745574

1 -1.414047729532868260 -1.400933154002817630 -0.013114575530050630

2 -1.404227441155695550 -1.404222310683232820 -0.000005130472462734

3 -1.404223602392559510 -1.404223602391771120 -0.000000000000788388

4 -1.404223602391969620 -1.404223602391969620 -0.000000000000000000

Table 1.

The numerical results agree with the conclusions of Theorem 3; as
one can see, after four iteration steps a solution approximation with 18
decimals is obtained (obviously, if truncation and rounding errors are
neglected). �
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[3] Păvăloiu, I., Rezolvarea ecuaţiilor prin interpolare, Ed. Dacia, Cluj-Napocaavailable soon,
refresh and click here → (1981).

[4] Ul’m, S., Ob obobschenie metoda Steffensen dlya reshenia nelineinyh operatornyh
uravnenii, Jurnal Vicisl, mat. i. mat-fiz. 4, 6, (1964).

Received 18.VI.1992

Institutul de Calcul al Academiei

Filiala Cluj

3400 Cluj-Napoca

Romania

http://www.ictp.acad.ro/pavaloiu/papers/1968-008 Pavaloiu - Rev. Roum. Math. Pures Appl. - Sur la meth Steffensen.pdf

	References

