BILATERAL APPROXIMATIONS FOR THE SOLUTIONS OF SCALAR EQUATIONS

ION PĂVĂLOIU (Cluj-Napoca)

1. INTRODUCTION

Let I = [a, b], a < b, be an interval on the real axis. Consider the equation:

$$(1.1) f(x) = 0,$$

with $f: I = \mathbb{R}$.

In paper [1], to solve equation (1.1), the author has considered the sequences (x_n) and $(g(x_n))$, $n = 0, 1, \ldots$, generated by means of Steffensen's method for the case when f is of the form:

$$(1.2) f(x) = x - g(x),$$

where $g: I \to \mathbb{R}$, and he has studied the conditions under which the two above sequences are monotonous (one increasing, the other decreasing), both converging to the solution \bar{x} of equation (1.1).

In paper [2] the same problem has been studied, considering Steffensen's method for a more general case, that is, when f and g do not satisfy equality (1.2), but it is supposed that equation (1.1) is equivalent to the equation:

$$(1.3) x - g(x) = 0$$

Paper [2] points out the advantages of Steffensen's method in the mentioned case (f and g fulfill the above condition, hence (1.2) does not hold).

As known, Steffensen's method, studied in [1] and [2]), consists in generating the sequences (x_n) and $(g(x_n))$, $n = 0, 1, \ldots$, through:

(1.4)
$$x_{n+1} = x_n - \frac{f(x_n)}{[x_n, g(x_n); f]}, \ x_0 \in I.$$

where $[x_n, g(x_n); f]$ stands for the first order divided differences of f on the points x_n and $g(x_n)$, [3].

In the present note we shall study the problem of [1] and [2] for the Aitken-Steffensen method. For this purpose, consider the following three equations:

(1.5)
$$\begin{cases} f(x) = 0; \\ x - g_1(x) = 0; \\ x - g_2(x) = 0, \end{cases}$$

96 Ion Păvăloiu 2

where $g_1, g_2: I \to \mathbb{R}$.

Assuming that equations (1.5) are equivalent, in order to approximate the root \bar{x} of equation (1.1) we shall consider the sequences (x_n) , $g_1(x_n)$, and $(g_2(g_1(x_n)))$, $n = 0, 1, \ldots$, generated by the Aitken-Steffensen method, namely:

(1.6)
$$x_{n+1} = g_1(x_n) - \frac{f(g_1(x_n))}{[g_1(x_n), g_2(g_1(x_n)); f]}, x_0 \in I$$

It is well known that the convergence order of Steffensen's method for sequence (1.4) is 2 if the functions f and g verify equality (1.2).

In the case of the more general studied in [2], the convergence order is p+1 if the sequence (y_n) , $n=0,1,\ldots$, generated by $y_{n+1}=g(y_n)$, $y_0 \in I$, has the convergence order $p(p \in \mathbb{R})$, $p \ge 1$).

The convergence order of the method (1.6) is p(q+1) if the sequence (y_n) and (z_n) , $n=0,1,\ldots$, generated by $y_{n+1}=g_1(y_n)$, $z_{n+1}=g_2(y_n)$, $y_0,z_0\in I$, have the convergence orders p and q, respectively.

From this viewpoint the results of [2] and those of this paper can present certain advantages; more concretely, given the function f, the functions g and g_1, g_2 , respectively, may be chosen in infinitely various ways. These will be classified at the end of this note.

We shall adopt the notation [x, y; f] and [x, y, z; f], with $x, y, z \in I$, for the first and second order divided differences of the function f, respectively. We shall also use in proofs the following obvious identities:

$$(1.7) \quad g_1(x) - \frac{f(g_1(x))}{[g_1(x), g_2(g_1(x)); f]} = g_2(g_1(x)) - \frac{f(g_2(g_1(x)))}{[g_1(x), g_2(g_1(x)); f]}$$

$$(1.8) f(z) = f(x) + [x, y; f](z - x) + [x, y, z; f](z - x)(z - y)$$

where $x, y, z \in I$. As to the notions of monotonicity and convexity of the function f on the interval I, we shall adopt the following definitions:

DEFINITION 1.1. The function $f: I \to \mathbb{R}$ is increasing (nondecreasing, decreasing, nonincreasing) on I if for every $x, y \in I$ the relation [x, y; f] > 0 (≥ 0 , $< 0, \leq 0$, respectively) holds.

DEFINITION 1.2. The function $f: I \to \mathbb{R}$ is convex (nonconcave, concave, nonconvex) on I if for every $x, y, z \in I$ the relation $[x, y, z; f] > 0 \ (\geq 0, < 0, \leq 0, respectively)$ holds.

2. MONOTONICITY OF THE SEQUENCES GENERATED BY THE ${\bf AITKEN\text{-}STEFFENSEN\ METHOD}$

In the sequel we shall suppose that the function f, g_1, g_2 fulfill the following conditions:

- (a) the functions f, g_1, g_2 are continuous;
- (b) the function g_1 is increasing on I;
- (c) the equation $x g_1(x) = 0$ has only one root $\bar{x} \in I$;
- (d) the function g_2 is decreasing on I;
- (e) the equations (1.5) are equivalent on I.

As to the problem stated in Section 1, some theorems are verified, as follows:

THEOREM 2.1. If the functions f, g_1, g_2 fulfil the conditions (a)–(e) and, in addition,

- (i_1) . f is increasing and convex on I;
- (ii₁). there exists $x_0 \in I$ for which $f(x_0) < 0$, $x_0 g_1(x_0) < 0$ and $g_2(g_1(x_0)) \in I$,

then the sequences (x_n) , $(g_1(x_n))$ and $(g_2(g_1(x_n)))$, n = 0, 1, ..., have the properties:

- (j_1) . the sequence (x_n) and $(g_1(x_n))$ are increasing and convergent;
- (jj₁). the sequence $(g_2(g_1(x_n)))$ is decreasing and convergent;
- (jjj₁). $\lim x_n = \lim g_1(x_n) = \lim g_2(g_1(x_n)) = \bar{x}$, where \bar{x} is the root of equation (1.1).

Proof. Since equations (1.5) are equivalent, and \bar{x} is the unique root for equation $x - g_1(x) = 0$, it results that \bar{x} is the common unique root of equations (1.5).

Since f is increasing and $f(x_0) < 0$, it follows that $x_0 < \bar{x}$. Observe now that from the fact that \bar{x} is the unique root of $x - g_1(x) = 0$, g_1 is increasing, and $x_0 - g_1(x_0) < 0$, it results that $x - g_1(x) < 0$ for every $x < \bar{x}$. As $x_0 < \bar{x}$, it results that $g_1(x_0) < g_1(\bar{x}) = \bar{x}$, that is, $g_1(x_0) < \bar{x}$. The function g_2 is decreasing, hence $g_2(g_1(x_0)) > g_2(\bar{x}) = \bar{x}$, namely $g_2g_1(x_0) > \bar{x}$. Since $g_1(x_0) < \bar{x}$, it follows that $f(g_1(x_0)) < 0$ inequality which, together with $[g_1(x_0), g_2(g_1(x_0)); f] > 0$, and taking into account (1.6) for n = 0, leads to the inequality $x_1 > g_1(x_0)$. From identity (1.7) for $x = x_0$ and from the fact that $f(g_2(g_1(x_0))) > 0$ it results that $g_2(g_1(x_0)) > x_1$, therefore $x_1 \in I$.

Substituting $z = x_1, x = g_1(x_0), y = g_2(g_1(x_0))$ in (1.8), and taking into account (1.6) for n = 0, we get the identity:

$$f(x_1) = [x_1, g_1(x_0), g_2(g_1(x_0)); f](x_1 - g_1(x_0))) (x_1 - g_2(g_1(x_0))).$$

With this, and taking into account the convexity of f and the above proved results, we obtain $f(x_1) < 0$, from which it results $x_1 < \bar{x}$, hence $x_1 - g_1(x_1) < 0$.

In this way the following relations were proved:

$$x_0 < g_1(x_0) < x_1 < \bar{x} < g_2(g_1(x_0))$$
.

Since $x_0 < x_1$ and g_1 is increasing, it follows that $g_1(x_0) < g_1(x_1)$, from which there results $g_2(g_1(x_0)) > g_2(g_1(x_1))$, because we assumed that g_2 is decreasing.

Let now $x_n \in I$ be arbitrary element of the sequence generated by (1.6) for which $f(x_n) > 0$ and $g_2(g_1(x_n)) \in I$. From $x_n < \bar{x}$ it results that $x_n - g_1(x_n) < 0$. Repeating (for x_n) the above procedure (corresponding to x_0), we obtain:

(2.1)
$$\begin{cases} x_n < g_1(x_n) < x_{n+1} < \bar{x} < g_2(g_1(x_n)); \\ g_1(x_n) < g_1(x_{n+1}); \\ g_2(g_1(x_n)) > g_2(g_1(x_{n+1})), \end{cases}$$

relations which prove the monotonicity of the two sequences. These relations also prove that both sequences are bounded.

Now we show that these sequences have a common limit, l, where $l = \lim x_n$.

Write $l_1 = \lim g_1(x_n)$, $l_2 = \lim g_2(g_1(x_n))$, and suppose that $l_1 \neq l_2$.

From the continuousness of g_1 and g_2 , and from the definition of l, we deduce:

(2.2)
$$l_{1} = g_{1}(l);$$
$$l_{2} = g_{2}(l_{1}).$$

But, by virtue of (2.1), $l_1 \geq l \leq l_2$, hence $g_1(l_1) \leq g_1(l) \leq g_1(l_2)$ and $g_2(l_1) \geq g_2(l) \geq g_2(l_2)$, and, taking into account (2.2), it results $g_1(l_1) \leq l_1$, namely $l_1 - g_1(l_1) \geq 0$, therefore $l_1 \geq \bar{x}$. In other words, the following inequalities hold:

$$\bar{x} \leq l_1 \leq l \leq l_2$$
,

from which, taking into account the monotonicity of g_1 , we get:

$$\bar{x} = g_1(\bar{x}) \le g_1(l_1) \le g_1(l) \le g_1(l_2),$$

hence

98

$$\bar{x} \leq g_1(l_1) \leq l_1$$
.

But, since $l_1 \geq \bar{x}$, g_1 is increasing and g_2 is decreasing, there results $g_1(l_1) \geq g_2(l_1)$, from which we deduce $g_1(l_1) \geq l_2$, which, together with $l_1 \geq g_1(l_1)$, leads to $l_1 \geq l_2$, and this one, together with $l_1 \leq l_2$, implies $l_1 = l_2$, which contradicts the hypothesis $l_1 \neq l_2$.

Therefore $l_1 = l_2$; because $l_1 \le l \le l_2$, we have $l_1 = l_2 = l$.

Passing at limit in (1.6), and considering the continuousness of the functions f, g_1, g_2 , it results that $l = \bar{x}$ is the root for equation (1.1).

With this, Theorem 2.1 is completely proved.

The following theorems can be proved in a similar manner:

THEOREM 2.2. If the functions f, g_1, g_2 fulfil the conditions (a)–(e) and, in addition:

- (i_2) f is increasing and concave on I;
- (ii₂) there exists $x_0 \in I$ for which $f(x_0) > 0$, $x_0 g_1(x_0) > 0$ and $g_2(g_1(x_0)) \in I$,

then the sequences (x_n) , $(g_1(x_n))$, $(g_2(g_1(x_n)))$, $n = 0, 1, \ldots$, have the properties:

- (j_2) the sequences (x_n) and $(g_1(x_n))$ are decreasing and convergent;
- (jj_2) the sequence $(g_2(g_1(x_n)))$ is increasing and convergent;
- (jjj₂) $\lim x_n = \lim g_1(x_n) = \lim g_2(g_1(x_n)) = \bar{x}$, where \bar{x} is the root of equation (1.1).

THEOREM 2.3. If the functions f, g_1, g_2 fulfil the conditions (a)–(e) and, in addition,

- (i_3) f is decreasing and convex in I;
- (ii₃) there exists $x_0 \in I$ for which $f(x_0) < 0$, $x_0 g_1(x_0) > 0$ and $g_2(g_1(x_0)) \in I$,

then the sequences (x_n) , $(g_1(x_n))$, $g_2(g_1(x_n))$, n = 0, 1, ..., have the properties:

- (j_3) the sequences (x_n) and $(g_1(x_n))$ are decreasing and convergent;
- (jj₃) the sequence $(g_2(g_1(x_n)))$ is increasing and convergent;
- (jjj₃) $\lim x_n = \lim g_1(x_n) = \lim g_2(g_1(x_n)) = \bar{x}$, where \bar{x} is the root of equation (1.1).

THEOREM 2.4. If the functions f, g_1, g_2 fulfil the condition (a)–(e) and, in addition,

- (i₄) f is decreasing and concave;
- (ii₄t) there exists $x_0 \in I$ for which $f(x_0) > 0$, $x_0 g_1(x_0) < 0$ and $g_2(g_1(x_0)) \in I$,

then the sequences (x_n) , $(g_1(x_n))$, $(g_2(g_1(x_n)))$, n = 0, 1, ..., have the properties:

- (j_4) the sequences (x_n) and $(g_1(x_n))$ are increasing and convergent;
- (jj_4) the sequence $(g_2(g_1(x_n)))$ is decreasing and convergent;
- (jjj₄) $\lim x_n = \lim g_1(x_n) = \lim g_2(g_1(x_n)) = \bar{x}$, where \bar{x} is the root of equation (1.1).

REMARK 2.5. If the function $f; [a, b] \to \mathbb{R}$ is continuous and two times differentiable on I = [a, b], a < b, and if $f'(x) \neq 0$, $f''(x) \neq 0$ for every $x \in I$, then, according to the monotonicity and convexity of f, the simple procedures for constructing g_1 and g_2 are obtained as follows:

If f is increasing and convex, and equation (1.1) has a root $\bar{x} \in I$, then we may consider $g_1(x) = x - f(x)/f'(b)$, $g_2(x) = x - f(x)/f'(a)$. In this case f, g_1, g_2 fulfil the conditions (a)–(e) and if $x_0 \in I$ is a point for which $f(x_0) < 0$, then $x_0 - g_1(x_0) = f(x_0)/f'(b) < 0$; if, in addition, $g_2(g_1(x_n)) \in I$ and the equation f(x) = 0 has the root \bar{x} on [a, b], then the hypotheses of Theorem 2.1 are verified, therefore the corresponding sequences satisfy the conclusions of this theorem.

The same conclusions as above are also true if g_1 and g_2 are provided by the relations $g_1(x) = x - \lambda_1 f(x)$ and $g_2(x) = x - \lambda_2 f(x)$, respectively, where $\lambda_1, \lambda_2 \in \mathbb{R}$, and $\lambda_1 \geq f'(b)$, $0 < \lambda_2 \leq f'(a)$.

Analogous constructions can be given using Theorems 2.2, 2.3 and 2.4.

3. NUMERICAL EXAMPLE

Consider the equation

$$f(x) = x - 2\arctan x = 0$$

for $x \in [3/2,3]$. According to the above remark, we construct the functions g_1,g_2 for f, obtaining

$$g_1(x) = (10 \arctan x - x)/4,$$

 $g_2(x) = (26 \arctan x - 8x)/5.$

It is easy to see that, putting $x_0 = 3/2$, the functions f, g_1 and g_2 fulfill the conditions of Theorem 2.1 on the interval I = [3/2, 3].

The sequence generated by relation (1.6) for this case can be stopped at the step n=3, because of the fact that $x_3=g_1\left(x_3\right)=g_2\left(g_1\left(x_3\right)\right)$, as results from the table below:

n	x_n	$g_1\left(x_n\right)$	$g_2\left(g_1\left(x_n\right)\right)$	$f(x_n)$
0	1.50000000000000000	2.081984308118323	2.508547854696064	$-4.65 \cdot 10^{-01}$
1	2.323572652303234	2.330068291038034	2.331956675671997	$-5.19 \cdot 10^{-03}$
2	2.331122226685893	2.331122350500425	2.331122386182527	$-9.90 \cdot 10^{-08}$
3	2.331122370414423	2.331122370414423	2.331122370414423	$-3.53 \cdot 10^{-17}$

REFERENCES

- [1] Balázs, M., A bilateral approximating method for finding the real roots of real equations., Rev. Anal. Numér. Théor. Approx. 21, 2 (1992), pp.111-117.
- [2] Păvăloiu, I., On the monotonicity of the sequences of approximations obtained by Steffensen's method, Mathematica, **35**, **(58)**, 1 (1993), pp. 71-76.
- [3] Păvăloiu, I., Solving Equations by Interpolation. Ed. Dacia (1981) (in Romanian).

Received 8 XII 1993

Institutul de Calcul Str. Republicii, Nr.37 PO. Box 68 3400 Cluj-Napoca Romania

available soon, refresh and click here \rightarrow

 $clickable \rightarrow$

available soon, refresh and click here \rightarrow