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1. INTRODUCTION

Let I = [a, b] , a < b, be an interval on the real axis. Consider the
equation:

(1.1) f (x) = 0,

with f : I = R.
In paper [1], to solve equation (1.1), the author has considered the se-

quences (xn) and (g (xn)) , n = 0, 1, . . . , generated by means of Steffensen’s
method for the case when f is of the form:

(1.2) f (x) = x− g (x) ,

where g : I → R, and he has studied the conditions under which the two
above sequences are monotonous (one increasing, the other decreasing),
both converging to the solution x̄ of equation (1.1).

In paper [2] the same problem has been studied, considering Steffensen’s
method for a more general case, that is, when f and g do not satisfy equality
(1.2), but it is supposed that equation (1.1) is equivalent to the equation:

(1.3) x− g (x) = 0

Paper [2] points out the advantages of Steffensen’s method in the mentioned
case (f and g fulfill the above condition, hence (1.2) does not hold).

As known, Steffensen’s method, studied in [1] and [2]), consists in gener-
ating the sequences (xn) and (g (xn)) , n = 0, 1, . . . , through:

(1.4) xn+1 = xn −
f (xn)

[xn, g (xn) ; f ]
, x0 ∈ I.

where [xn, g (xn) ; f ] stands for the first order divided differences of f on the
points xn and g (xn), [3].

In the present note we shall study the problem of [1] and [2] for the
Aitken-Steffensen method. For this purpose, consider the following three
equations:

(1.5)







f (x) = 0;
x− g1 (x) = 0;
x− g2 (x) = 0,
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where g1, g2 : I → R.
Assuming that equations (1.5) are equivalent, in order to approximate the

root x̄ of equation (1.1) we shall consider the sequences (xn) , g1 (xn)), and
(g2 (g1 (xn))) , n = 0, 1, . . . , generated by the Aitken-Steffensen method,
namely:

(1.6) xn+1 = g1 (xn)−
f (g1 (xn))

[g1 (xn) , g2 (g1 (xn)) ; f ]
, x0 ∈ I

It is well known that the convergence order of Steffensen’s method for
sequence (1.4) is 2 if the functions f and g verify equality (1.2).

In the case of the more general studied in [2], the convergence order is
p+1 if the sequence (yn) , n = 0, 1, . . . , generated by yn+1 = g (yn) , y0 ∈ I,
has the convergence order p (p ∈ R) , p ≥ 1).

The convergence order of the method (1.6) is p (q + 1) if the sequence (yn)
and (zn) , n = 0, 1, . . . , generated by yn+1 = g1 (yn) , zn+1 = g2 (yn) , y0, z0 ∈

I, have the convergence orders p and q, respectively.
From this viewpoint the results of [2] and those of this paper can present

certain advantages; more concretely, given the function f , the functions g
and g1, g2, respectively, may be chosen in infinitely various ways. These will
be classified at the end of this note.

We shall adopt the notation [x, y; f ] and [x, y, z; f ] , with x, y, z ∈ I, for
the first and second order divided differences of the function f , respectively.
We shall also use in proofs the following obvious identities:

g1 (x)−
f (g1 (x))

[g1 (x) , g2 (g1 (x)) ; f ]
= g2 (g1 (x))−

f (g2 (g1 (x)))

[g1 (x) , g2 (g1 (x)) ; f ]
(1.7)

(1.8) f (z) = f (x) + [x, y; f ] (z − x) + [x, y, z; f ] (z − x) (z − y)

where x, y, z ∈ I. As to the notions of monotonicity and convexity of the
function f on the interval I, we shall adopt the following definitions:

Definition 1.1. The function f : I → R is increasing (nondecreas-
ing,decreasing, nonincreasing) on I if for every x, y ∈ I the relation [x, y; f ] >
0 (≥ 0, < 0,≤ 0, respectively) holds.

Definition 1.2. The function f : I → R is convex (nonconcave, concave,
nonconvex) on I if for every x, y, z ∈ I the relation [x, y, z; f ] > 0 (≥ 0, <
0,≤ 0, respectively) holds.

2. MONOTONICITY OF THE SEQUENCES GENERATED BY THE

AITKEN-STEFFENSEN METHOD

In the sequel we shall suppose that the function f, g1, g2 fulfill the follow-
ing conditions:
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(a) the functions f, g1, g2 are continuous;
(b) the function g1 is increasing on I;
(c) the equation x− g1 (x) = 0 has only one root x̄ ∈ I;
(d) the function g2 is decreasing on I;
(e) the equations (1.5) are equivalent on I.

As to the problem stated in Section 1, some theorems are verified, as
follows:

Theorem 2.1. If the functions f, g1, g2 fulfil the conditions (a)–(e) and,
in addition,

(i1). f is increasing and convex on I;
(ii1). there exists x0 ∈ I for which f (x0) < 0, x0 − g1 (x0) < 0 and

g2 (g1 (x0)) ∈ I,

then the sequences (xn) , (g1 (xn)) and (g2 (g1 (xn))) , n = 0, 1, . . ., have the
properties:

(j1). the sequence (xn) and (g1 (xn)) are increasing and convergent;
(jj1). the sequence (g2 (g1 (xn))) is decreasing and convergent;
(jjj1). limxn = lim g1 (xn) = lim g2 (g1 (xn)) = x̄, where x̄ is the root of

equation (1.1).

Proof. Since equations (1.5) are equivalent, and x̄ is the unique root for
equation x − g1 (x) = 0, it results that x̄ is the common unique root of
equations (1.5).

Since f is increasing and f (x0) < 0, it follows that x0 < x̄. Observe now
that from the fact that x̄ is the unique root of x−g1 (x) = 0, g1 is increasing,
and x0−g1 (x0) < 0, it results that x−g1 (x) < 0 for every x < x̄. As x0 < x̄,
it results that g1 (x0) < g1 (x̄) = x̄, that is, g1 (x0) < x̄. The function g2
is decreasing, hence g2 (g1 (x0)) > g2 (x̄) = x̄, namely g2g1 (x0) > x̄. Since
g1 (x0) < x̄, it follows that f (g1 (x0)) < 0 inequality which, together with
[g1 (x0) , g2 (g1 (x0)) ; f ] > 0, and taking into account (1.6) for n = 0, leads
to the inequality x1 > g1 (x0). From identity (1.7) for x = x0 and from
the fact that f (g2 (g1 (x0))) > 0 it results that g2 (g1 (x0)) > x1, therefore
x1 ∈ I.

Substituting z = x1, x = g1 (x0) , y = g2 (g1 (x0)) in (1.8), and taking
into account (1.6) for n = 0, we get the identity:

f (x1) = [x1, g1 (x0) , g2 (g1 (x0)) ; f ] (x1 − g1 (x0))) (x1 − g2 (g1 (x0))) .

With this, and taking into account the convexity of f and the above proved
results, we obtain f (x1) < 0, from which it results x1 < x̄, hence x1 −

g1 (x1) < 0.
In this way the following relations were proved:

x0 < g1 (x0) < x1 < x̄ < g2 (g1 (x0)) .

Since x0 < x1 and g1 is increasing, it follows that g1 (x0) < g1 (x1) , from
which there results g2 (g1 (x0)) > g2 (g1 (x1)) , because we assumed that g2
is decreasing.
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Let now xn ∈ I be arbitrary element of the sequence generated by (1.6)
for which f (xn) > 0 and g2 (g1 (xn)) ∈ I. From xn < x̄ it results that
xn − g1 (xn) < 0. Repeating (for xn) the above procedure (corresponding
to x0), we obtain:

(2.1)







xn < g1 (xn) < xn+1 < x̄ < g2 (g1 (xn)) ;
g1 (xn) < g1 (xn+1) ;

g2 (g1 (xn)) > g2 (g1 (xn+1)) ,

relations which prove the monotonicity of the two sequences. These relations
also prove that both sequences are bounded.

Now we show that these sequences have a common limit, l, where l =
lim xn.

Write l1 = lim g1 (xn) , l2 = lim g2 (g1 (xn)) , and suppose that l1 6= l2.
From the continuousness of g1 and g2, and from the definition of l, we

deduce:

l1 = g1 (l) ;(2.2)

l2 = g2 (l1) .

But, by virtue of (2.1), l1 ≥ l ≤ l2, hence g1 (l1) ≤ g1 (l) ≤ g1 (l2) and
g2 (l1) ≥ g2 (l) ≥ g2 (l2), and, taking into account (2.2), it results g1 (l1) ≤ l1,
namely l1 − g1 (l1) ≥ 0, therefore l1 ≥ x̄. In other words, the following
inequalities hold:

x̄ ≤ l1 ≤ l ≤ l2,

from which, taking into account the monotonicity of g1, we get:

x̄ = g1 (x̄) ≤ g1 (l1) ≤ g1 (l) ≤ g1 (l2) ,

hence

x̄ ≤ g1 (l1) ≤ l1.

But, since l1 ≥ x̄, g1 is increasing and g2 is decreasing, there results g1 (l1) ≥
g2 (l1), from which we deduce g1 (l1) ≥ l2, which, together with l1 ≥ g1 (l1),
leads to l1 ≥ l2, and this one, together with l1 ≤ l2, implies l1 = l2, which
contradicts the hypothesis l1 6= l2.

Therefore l1 = l2; because l1 ≤ l ≤ l2, we have l1 = l2 = l.
Passing at limit in (1.6), and considering the continuousness of the func-

tions f, g1, g2, it results that l = x̄ is the root for equation (1.1).
With this, Theorem 2.1 is completely proved.

�

The following theorems can be proved in a similar manner:

Theorem 2.2. If the functions f, g1, g2 fulfil the conditions (a)–(e) and,
in addition:

(i2) f is increasing and concave on I;
(ii2) there exists x0 ∈ I for which f (x0) > 0, x0 − g1 (x0) > 0 and

g2 (g1 (x0)) ∈ I,
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then the sequences (xn) , (g1 (xn)) , (g2 (g1 (xn))) , n = 0, 1, . . . , have the
properties:

(j2) the sequences (xn) and (g1 (xn)) are decreasing and convergent;
(jj2) the sequence (g2 (g1 (xn))) is increasing and convergent;
(jjj2) limxn = lim g1 (xn) = lim g2 (g1 (xn)) = x̄, where x̄ is the root of

equation (1.1).

Theorem 2.3. If the functions f, g1, g2 fulfil the conditions (a)–(e) and,
in addition,

(i3) f is decreasing and convex in I;
(ii3) there exists x0 ∈ I for which f (x0) < 0, x0 − g1 (x0) > 0 and

g2 (g1 (x0)) ∈ I,

then the sequences (xn) , (g1 (xn)) , g2 (g1 (xn))), n = 0, 1, . . . , have the prop-
erties:

(j3) the sequences (xn) and (g1 (xn)) are decreasing and convergent;
(jj3) the sequence (g2 (g1 (xn))) is increasing and convergent;
(jjj3) limxn = lim g1 (xn) = lim g2 (g1 (xn)) = x̄, where x̄ is the root of

equation (1.1).

Theorem 2.4. If the functions f, g1, g2 fulfil the condition (a)–(e) and,
in addition,

(i4) f is decreasing and concave;
(ii4t) there exists x0 ∈ I for which f (x0) > 0, x0 − g1 (x0) < 0 and

g2 (g1 (x0)) ∈ I,

then the sequences (xn) , (g1 (xn)) , (g2 (g1 (xn))) , n = 0, 1, . . . , have the
properties:

(j4) the sequences (xn) and (g1 (xn)) are increasing and convergent;
(jj4) the sequence (g2 (g1 (xn))) is decreasing and convergent;
(jjj4) limxn = lim g1 (xn) = lim g2 (g1 (xn)) = x̄, where x̄ is the root of

equation (1.1).

Remark 2.5. If the function f ; [a, b] → R is continuous and two times
differentiable on I = [a, b] , a < b, and if f ′ (x) 6= 0, f ′′ (x) 6= 0 for every
x ∈ I, then, according to the monotonicity and convexity of f , the simple
procedures for constructing g1 and g2 are obtained as follows:

If f is increasing and convex, and equation (1.1) has a root x̄ ∈ I, then
we may consider g1 (x) = x − f (x) /f ′ (b) , g2 (x) = x − f (x) /f ′ (a). In
this case f, g1, g2 fulfil the conditions (a)–(e) and if x0 ∈ I is a point for
which f (x0) < 0, then x0 − g1 (x0) = f (x0) /f

′ (b) < 0; if, in addition,
g2 (g1 (xn)) ∈ I and the equation f (x) = 0 has the root x̄ on [a, b] , then
the hypotheses of Theorem 2.1 are verified, therefore the corresponding
sequences satisfy the conclusions of this theorem.

The same conclusions as above are also true if g1 and g2 are provided
by the relations g1 (x) = x− λ1f (x) and g2 (x) = x− λ2f (x), respectively,
where λ1, λ2 ∈ R, and λ1 ≥ f ′ (b) , 0 < λ2 ≤ f ′ (a).
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Analogous constructions can be given using Theorems 2.2, 2.3 and 2.4.
�

3. NUMERICAL EXAMPLE

Consider the equation

f (x) = x− 2 arctan x = 0

for x ∈ [3/2, 3]. According to the above remark, we construct the functions
g1, g2 for f , obtaining

g1 (x) = (10 arctan x− x) /4,

g2 (x) = (26 arctan x− 8x)/5.

It is easy to see that, putting x0 = 3/2, the functions f, g1 and g2 fulfill the
conditions of Theorem 2.1 on the interval I = [3/2, 3] .

The sequence generated by relation (1.6) for this case can be stopped
at the step n = 3, because of the fact that x3 = g1 (x3) = g2 (g1 (x3)) , as
results from the table below:

n xn g1 (xn) g2 (g1 (xn)) f (xn)
0 1.500000000000000 2.081984308118323 2.508547854696064 −4.65 · 10−01

1 2.323572652303234 2.330068291038034 2.331956675671997 −5.19 · 10−03

2 2.331122226685893 2.331122350500425 2.331122386182527 −9.90 · 10−08

3 2.331122370414423 2.331122370414423 2.331122370414423 −3.53 · 10−17
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