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1. INTRODUCTION

The purpose of this paper is to give some completions to some results,
recently appeared in the literature, concerning the convergence and the error
bounds of some methods for solving operatorial equations, when the Fréchet
derivatives or the divided differences of the operators are Hölder continuous.

Let f : X → Y be an application, where X and Y are Banach spaces. We
shall define the divided difference of a certain order in the following way:
let ui ∈ X i = 1, n+ 1, where ui 6= uj for i 6= j.

Definition 1.1. [8]. The divided difference of the first order of the ap-
plication f at uk, us ∈ X is an application [uk, us; f ] ∈ L (X,Y ) which
verifies:

a) [uk, us; f ] (us − uk) = f (us)− f (uk)
b) if f is Fréchet differentiable, at us, then

[us, us; f ] = f ′ (us) .

We suppose that there have been defined the applications

[uk, uk+1, . . . , uk+m−1; f ] ∈ L
(

Xm−1, Y
)

and

[uk+1, uk+2, . . . , uk+m; f ] ∈ L
(

Xm−1, Y
)

,

called the divided differences of the order m− 1, where k +m ≤ n.

Definition 1.2. [8]. The divided difference of the order m of the appli-
cation f in uk, uk+1, . . . , uk+m ∈ X, is an application

[uk, uk+1, . . . uk+m; f ] ∈ L (Xm, Y )

which verifies:

[uk, uk+1, . . . , uk+m; f ] (uk+m − uk) = [uk+1, uk+2, . . . , uk+m; f ](a’)

− [uk, uk+1, . . . , uk+m−1; f ]

b’) if f is m time Fréchet differentiable at uk, then

[uk, uk, . . . , uk; f ] =
1
m!f

(m) (uk) .
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2. CONSIDERATIONS ON THE SECANT METHOD

For the approximation of the solution of the operator equation

(2.1) f (x) = 0

consider the iteration

xn+1 = xn − [xn−1, xn; f ]
−1

f (xn) , n = 1, 2, . . . , x0, x1 ∈ X,(2.2)

It is known that if f satisfies certain conditions, then the sequence (xn)n≥0

given by (2.2) is well defined (there exists [xn−1, xn; f ]
−1 for n = 1, 2, . . .)

and converges to a solution x∗ of equation (2.1) (see for example [2], [5], [8],
[10].

In the following we shall give some specifications concerning the results
obtained in [2]. Then we shall try to obtain conditions that ensure the
convergence of the sequence (xn)n≥0 to a solution of (2.1), and, moreover,
we shall determine a subset E ⊂ X that contains this solution.

In paper [2], where the results obtained in [3] are generalized, the con-
vergence of process (2.2) is studied under the assumptions that f is Fréchet
differentiable on a set D ⊂ X and the Fréchet derivative f ′ (·) satisfies a
Hölder type condition on D : there exist c ∈ R, c > 0 and p ∈ (0, 1] such
that:

(2.3)
∥

∥f ′ (x)− f ′ (y)
∥

∥ ≤ c ‖x− y‖p , for every x, y ∈ D.

Let HD (c, p) denote the set of all applications f ′ for which (2.3) holds.
In [2], in addition to the conditions from Definition 1.1, it is assumed that

the divided differences of the first order of f satisfy a Hölder type condition,
namely there exist l1, l2,l3 ≥ 0, p = (0, 1) such that for every x, y, z ∈ D,
the inequality:

(2.4) ‖[x, y; f ]− [y, z; f ]‖ ≤ l1 ‖x− z‖p + l2 ‖x− y‖p + l3 ‖y − z‖p

holds.
This condition is useful when divided differences of the second order of f

are unbounded on D.
Let l′2 = max{l2, l3}. If x∗ is a simple zero of equation (2.1), then the

application f ′ (x∗) ∈ L (X,Y ) has a bounded inverse.

From (2.4) and from the existence and boundness of [f ′ (x∗)]−1 there ex-
ists ε > 0 such that [x, y; f ] has a bounded inverse for every x, y ∈ Ū (x∗, ε) ,
where Ū (x∗, ε) = {x ∈ X| ‖x− x∗‖ ≤ ε}, namely the application B (x, y) =

[x, y; f ]−1 is uniformly bounded on Ū (x∗, ε).
In [2] the following theorem was proved:

Theorem 2.1. Let D ⊂ X be an open set and f : X → Y . If:

i) x∗ ∈ D is a simple solution of equation (2.1).
ii) there exists ε > 0 and b > 0 such that:

∥

∥ [x, y; f ]−1
∥

∥ ≤ b, for every x, y ∈ Ū (x∗, ε) ;
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iii) there exists a convex set D0 and a real number ε1, 0 < ε1 < ε, such
that:

f ′ (·) ∈ Hr0 (c, p) , for every x ∈ D0 and U (x∗, ε1) ⊂ D0;

iv) x0, x1 ∈ Ū (x∗, r), where 0 < r < min{ε1, [q (p)]
− 1

p }
and

(2.5) q (p) = b
1−p

[

2p
(

l1 + l′2
)

(1 + p) + c
]

,

then the sequence given by (2.2) is well defined, and its elements belong
to Ū (x∗, r). The sequence converges to the unique solution x∗ of (2.1).
Moreover, the following estimation holds

(2.6) ‖xn+1 − x∗‖ ≤ γ1 ‖xn−1 − x∗‖p · ‖xn − x∗‖+ γ2 ‖xn − x∗‖1+p

for n large enough where γ1 and γ2 are given by

(2.7) γ1 = b
(

l1 + l′2
)

2p

(2.8) γ2 =
bc
1+p

The proof is based on the following two lemmas [2]

Lemma 2.1. Let f : X → Y and D ⊂ X be an open set. If f is Fréchet
differentiable on D and there exists a convex set D0 ⊂ D such that f ′ (·) ∈
HD0 (c, p), then for any x, y ∈ D0 the following inequality holds:

(2.9)
∥

∥f (x)− f (y)− f ′ (x) (x− y)
∥

∥ ≤ c
1+p

‖x− y‖p+1
.

Lemma 2.2. If there exists divided differences [x, y; f ] and inequality (2.4)
is verified for all x, y, z ∈ D0, then the equality b) from Definition 1.1 holds
for every x ∈ D0 and the derivative f ′ of f verifies the relation f ′ (·) ∈
HD0 [2 (l1 + l2) , p].

In the proof of Theorem 2.1 the following inequality is obtained first

(2.10) ‖xn+1 − x∗‖ ≤ [M (r)]n+1 ‖x0 − x∗‖ , where 0 < M (r) < 1.

from which it follows that the sequence (xn)n≥0 is convergent. In the fol-

lowing, by use of inequality (2.6) obtained in [2], we shall prove that the

order of convergence of the sequence given by (2.2) is t1 = 1+(1+4p)1/2

2 , i.e.
it is the positive root of the equation:

(2.11) t2 − t− p = 0.

For this, besides the hypothesis of Theorem 2.1 we shall suppose that x0
and x1 verify

a’) ‖x∗ − x0‖ ≤ αd0;
b’) ‖x∗ − x1‖ ≤ min{αdt10 , ‖x∗ − x0‖},

where 0 < d0 < 1 and α = [q (p)]
− 1

p .
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Using Lemmas 2.1 and 2.2 and hypotheses of Theorem 2.1, from (2.2) we
obtain

(2.12) ‖x2 − x∗‖ ≤ γ1 ‖x0 − x∗‖p ‖x1 − x∗‖+ γ2 ‖x1 − x∗‖p+1

from which, taking into account a’), b’) it follows

‖x2 − x∗‖ ≤ αd
t21
0

(

γ1 + γ2d
p(t1−1)
0

)

αp,

where
(

γ1 + γ2d
p(t1−1)
0

)

αp =
γ1+γ2d

p(t1−1)
0

γ1+γ2
< 1

that is,

(2.13) ‖x2 − x∗‖ ≤ d
t21
0

Relations (2.12) and (2.13) imply ‖x2 − x∗‖ < ‖x1 − x∗‖.
Suppose that there exists n ∈ N, n ≥ 2, such that

‖xn−1 − x∗‖ ≤ αd
tn−1
1
0(a”)

‖xn − x∗‖ ≤ min
{

αd
tn1
0 , ‖xn−1 − x∗‖

}

.(b”)

If we repeat the above reasoning and take into account (a”) and (b”) we
obtain

‖xn+1 − x∗‖ ≤ α1+p · d
tn+1
1
0

(

γ1 + γ2d
pt

n
1 (t1−1)

0

)

≤ αd
tn+1
1
0 ,

because

αp
(

γ1 + γ2d
pt

n
1 (t1−1)

0

)

< 1.

Moreover, it can be easily seen that

‖xn+1 − x∗‖ < ‖xn − x∗‖ .

So far, we have proved the following theorem.

Theorem 2.2. Under the hypotheses of Theorem 2.1 and if x0 and x1

verify a’) and b’), where α = (q (p))
− 1

p and 0 < d0 < 1, then for every
n ∈ N, xn ∈ U (x∗, α) and

(2.13’) ‖xn+1 − x∗‖ ≤ d
tn+1
1
0 , n = 0, 1, . . .

One must notice that inequality (2.13’) gives a sharper error bound than
(2.10).

In the following we shall establish a result which ensures not only the
convergence of the sequences (xn)n≥0 but also the existence of the solution

of equation (2.1) in a determined subset of X.

In this respect, we observe that if [xn−1, xn; f ]
−1 exists for every n =

1, 2, . . . then:

(2.14) xn − [xn−1, xn; f ]
−1

f (xn) = xn−1 − [xn−1, xn; f ]
−1

f (xn−1)
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and

f (xn+1) =f (xn) + [xn−1, xn; f ] (xn+1 − xn)+
(2.15)

+ ([xn, xn+1; f ]− [xn−1, xn; f ]) (xn+1 − xn) , n = 1, 2, . . .

hold.
Let α,B, d0 ∈ R, α > 0, B > 0, d0 ∈ (0, 1) and

S =
{

x ∈ X : ‖x− x0‖ ≤ Bαd0

1−d
t1−1
0

}

,

where t1 is the positive root of equation (2.11).

Theorem 2.3. If the divided differences of the first order of the appli-
caiton f verify condition (2.4) for every x, y, z ∈ S and

i) for every x, y ∈ S, [x, y; f ]−1 exists and
∥

∥ [x, y, f ]−1
∥

∥ ≤ B

ii) the initial data x0, x1 ∈ X and f verify the inequalities

‖x1 − x0‖ < B αd0, ‖f (x0)‖ ≤ αd0 and ‖f (x1)‖ ≤ αdt10(2.16)

where

(2.17) α = 1

B
1+p
p (l1+l2+l3)

1
p

the equation (2.1) has at least one solution x∗ ∈ S which is the limit
of the sequence (xn)n≥0 given by (2.2) the order of the convergence
of this sequence and the error bound are given by

(2.18) ‖x∗ − xn‖ ≤
Bαd

tn1
0

1−d
tn
1
(t1−1)

0

, n = 1, 2, . . .

Proof. From (2.2), for n = 2 we have

‖x2 − x1‖ ≤ B ‖f (x1)‖ ≤ Bαdt10

This inequality, together with the first inequality from (2.16), implies.

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ Bαd0
(

1 + dt1−1
0

)

≤ Bαd0

1−d
t1−1
0

,

and so x2 ∈ S.
Because x2 ∈ S, from (2.14), (2.15) and using (2.4) we obtain:

(2.19) ‖f (x2)‖ ≤ Bp+1αp+1
(

l1 + l2 + l3d
t21−p

0

)

d
t21−p

0 ≤ αd
t21
0 ,

since
αpBp+1

(

l1 + l2 + l3d
p(t1−1)
0

)

≤ αpBp+1 (l1 +2 +l3) ≤ 1.

Suppose

xi ∈ S;(2.20)

‖f (xi)‖ ≤ αd
ti1
0 , hold for i = 1, k.(2.21)

Then

‖xn+1 − xk‖ ≤ Bαd0
(

1 + dt1−1
0 + d

t21−1
0 + . . .+ d

tk1−1
0

)

≤ Bαd0
(

1 + d
(t1−1)
0 + d

2(t1−1)
0 + . . .+ d

k(t1−1)
0

)

≤ Bαd0

1−d
t1−1
0

,
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that is, xk+1 ∈ S.
By the use of the same reasoning as for (2.19) we obtain

(2.22) ‖f (xk+1)‖ ≤ Bp+1αp+1
(

l1 + l2 + l
ptk−1

1 (t1−1)
3

)

d
tk−1
1 (t1+p)
0 ≤ α0d

tk+1
1
0 .

The above relations imply that (2.20) and (2.21) hold for every k ∈ N.
Now notice that (xn)n≥0 is a Cauchy sequence, because

(2.23) ‖xn+s − xn‖ ≤

n+s−1
∑

k=n

‖xk+1 − xk‖ ≤ Bα

n+s−1
∑

k=n

d
tk1
0 ≤

Bαd
tn1
0

1−d
tn
1
(t1−1)

0

,

for any n, s ∈ N, t1 > 1 and d0 ∈ (0, 1).
Let x∗ = lim

n→∞
xn. Then, taking s → ∞ in (2.23) we obtain

(2.24) ‖x∗ − xn‖ ≤
Bαd

tn1
0

1−d
tn
1
(t1−1)

0

,

n = 0, 1, . . . , that is, the inequality (2.18).
For n = 0 we obtain x∗ ∈ S.
If k → ∞ in (2.22) then ‖f (x∗)‖ = 0, that is x∗, is the solution of

equation (2.1). �

3. CONSIDERATIONS ON STEFFENSEN METHOD

It is well known that the order of convergence of the secant method
can be improved if the elements xn−1 and xn form (2.2) are related by an
application g : X → X, described in the following.

Consider the sequence (xn)n ≥ 0 generated by

(3.1) xn+1 − xn − [xn, g (xn) ; f ]
−1

f (xn) , x0 ∈ X,

where g is an operator whose fixed points coincide with solutions of equa-
tions (2.1).

Consider x0 ∈ X, the nonnegative real numbers B, ε0, ρ0, α, β and q ≥ 1,
where

(3.2) ρ0 = Bα (l1B
p + l2β

p + l3B
p · αp) ‖f (x0)‖

p(q−1)

(3.3) ε0 = ρ0
1

(p+q−1) ‖f (x0)‖ ,

the numbers l1, l2, l3 being given by condition (2.4).

(3.4) S =

{

x ∈ X : ‖x− x0‖ ≤ rε0

ρ
1

p+q−1
0 (1−ε

p+q−1
0 )

}

,

where r = max{B, β}
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Concerning the convergence of method (3.1), the following theorem holds:

Theorem 3.1. If the real numbers B, ε0, ρ0, p0, p, α, β, q, l1, l2, l3
the applications f and g, and the element x0 satisfy the conditions:

(i) for every x, y ∈ S there exist [x, y; f ]−1 and
∥

∥[x, y; f ]−1
∥

∥ ≤ B;
(ii) for every x ∈ S, ‖f(g (x))‖ ≤ α ‖f (x)‖q;
(iii) for every x ∈ S, ‖x− g (x)‖ ≤ β ‖f (x)‖;
(iv) the divided differences of the first order of the applications f verify

condition (2.4) for every x, y, z ∈ S;
(v) ε0 < 1,

then the sequence (xn) , n ≥ 0 given by (3.1) is convergent and if x∗ =
lim xn, then f (x∗) = 0. Moreover, we have

(3.5) ‖x∗ − xn‖
rε

(p+q)n

0

ρ
1

p+q−1
0 (1−ε

p+q−1
0 )

.

Proof. Let x0 ∈ X be such that ε0 verifies condition (v). Using similar
relations to (2.14) and (2.15) and condition (2.4), we obtain from (3.1)

‖x1 − x0‖ ≤ B · ‖f (x0)‖ ≤
Bρ

1
p+q−1
0

ρ
1

p+q−1
0

‖f (x0)‖ ≤ rε0

ρ
1

p+q−1
0 (1−ε

p+q−1
0 )

,

which means that x1 ∈ S.
In the above inequality we have admitted the relation g (x0) ∈ S, which

is implied by (iii).
From (2.14), (2.15), (3.1), (i) , (ii) and (iii) we obtain:

‖f (x1)‖ ≤ ‖[g (x0) , x1; f ]− [x0, g (x0) ; f ]‖ ‖x1 − g (x0)‖

≤ Bα
(

l1B
p + l2β

p + l3B
pαp ‖f (x0)‖

p(q−1)
)

‖f (x0)‖
p+q

= ρ0 ‖f (x0)‖
p+q .

From the above inequality there follows

ρ
1

p+q−1

0 ‖f (x1)‖ ≤
(

ρ
1

p+q−1

0 ‖f (x0)‖
)p+q

and if ε1 = ρ
1

p+q−1

0 ‖f (x1)‖ then,

ε1 ≤ ε
p+q
0 .

It can be easily seen that ‖f (x1)‖ ≤ ‖f (x0)‖ and ρ1 ≤ ρ0, where ρ1 =

Bα
[

l1B
p + l2β

p + l3B
pαp ‖f (x1)‖

p(q−1)
]

. Suppose now that, for s = 1, k,

the following relations hold xs ∈ S, ‖f (xs)‖ ≤ ‖f (xs−1)‖ , εs < ε
(p+q)s

0 ,

where εs = ρ
1

p+q−1 ‖f (xs)‖.
Using these assumptions and proceeding as above we get

(3.6) ‖xk+1 − xk‖ ≤ B ‖f (xk)‖ ≤
rε

(p+q)k

0

ρ
1

p+q−1
0
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(3.7) ‖xn+1 − x0‖ ≤ rε0

ρ
1

p+q−1
0 (1−ε

p+q−1
0 )

,

showing that xk+1 ∈ S.
It is also easy to see that

(3.8) ‖g (xk)− xk‖ ≤
rε

(p+q)k

0

ρ
1

p+q−1
0

whence

(3.9) ‖g (xk)− x0‖ ≤ rε0

ρ
1

p+q−1
0 (1−ε

p+q−1
0 )

,

that is, g (xk) ∈ S.
We obtain further

(3.10) ‖f (xk+1)‖ ≤ ρ0 ‖f (xk)‖
p+q

,

whence

(3.11) εk+1 ≤ ε
(p+q)k+1

0 , when εk+1 = ρ
1

p+q−1

0 ‖f (xk+1)‖ .

From (3.6) it follows that, for every s, n ∈ N,

(3.12) ‖xn+s − xn‖ ≤
Bε

(p+q)n

0

ρ
1

p+q−1

0

(

1− ε
p+q−1
0

)

and by (v) the sequence (xn)n≥0 is fundamental, hence convergent. If x∗ =

lim
n→∞

xn, from (3.12), for s → ∞, we get (3.5) and from (3.11) it follows that

x∗ is a solution of (2.1).
From (3.5), for n = 0 we have that x∗ ∈ S. �

4. CONSIDERATIONS CONCERNING NEWTON’S METHOD

Consider the sequence given by Newton’s method,

(4.1) xn+1 = xn −
[

f ′ (xn)
]−1

f (xn) , n = 0, 1, . . . , x0 ∈ X

let S (x0, r) = {x ∈ X| ‖x− x0‖ ≤ r}, where r ∈ R, r > 0.
Concerning the convergence of this sequence we have the following theo-

rem.

Theorem 4.1. If the application f is Fréchet differentiable on S (x0, r) ,
the Fréchet derivative f ′ satisfies (2.3) for every x, y ∈ S (x0, r) and the
following conditions hold:

(i) [f ′ (x0)]
−1 exists and

∥

∥ [f ′ (x0)]
−1

∥

∥ ≤ d;
(ii) crpd < 1;

(iii) ρ0 = α
1
p ‖f (x0)‖ < 1, where α = cβ1+p

1+p
and β = d

1−cdrp
,

(iv)
β‖f(x0)‖

1−α‖f(x0)‖
p ≤ r,

then,
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(j) xn ∈ S (x0, r) , for every n ∈ N,

(jj) there exists Γn = [f ′ (xn)]
−1 for every n∈ N and ‖Γn‖ < d

1−dcrp
,

(jjj) ‖xn+1 − xn‖ ≤ βα
− 1

pρ
(1+p)n

0 ;
(jv) the sequence (xn)n≥0 is convergent, and if x∗ = lim

n→∞
xn then f (x∗) =

0 and

(4.2) ‖x∗ − xn‖ ≤
βα

−

1
p ρ

(1+p)n

0

1−ρ
(1+p)n

0

, n ∈ N.

Proof. By (4.1), for n = 1 we get x1 = x0 − [f ′ (x0)]
−1

f (x0), and from
(i) ‖x1 − x0‖ ≤ d ‖f (x0)‖ ≤ β ‖f (x0)‖ ≤ r, that is, x1 ∈ S (x0, r).

By (2.3) and ii) it follows

∥

∥[f ′ (x0)]
−1

[

f ′ (x0)− f ′ (x1)
]
∥

∥ ≤ dc ‖x1 − x0‖
p ≤ dcrp < 1,

whence [f ′ (x1)]
−1 exists and

∥

∥

[

f ′ (x1)
]−1 ∥

∥ ≤
d

1− dcrp
= β.

From (2.3) it follows

‖f (x1)‖ =
∥

∥f (x1)− f (x0)− f ′ (x0) (x1 − x0)
∥

∥

≤ c
p+1 ‖x1 − x0‖

p+1 ≤ cβp+1

p+1 ‖f (x0)‖
p+1

and if

ρ1 = α
1
p ‖f (x1)‖

then

ρ1 ≤ ρ
1+p
0 , ‖x2 − x1‖ ≤ βα

− 1
pρ

1+p
0 .

If ρi = α
1
p ‖f (xi)‖ and

xi ∈ S (x0, r) , i = 1, k,(a)

‖xi+1 − xi‖ ≤ βα
− 1

pρ
(1+p)i

0 , i = 1, k − 1,(b)

ρi ≤ ρ
(1+p)i

0 , i = 1, k,(c)

then we get by (a) , (2.3) and (i)

∥

∥

[

f ′ (x0)
]−1 [

f ′ (xk)− f ′ (x0)
] ∥

∥ ≤ dc ‖xk − x0‖
p ≤ cdrp < 1.

It follows that
∥

∥

[

f ′ (xk)
]−1 ∥

∥ ≤ d
1−dcrp

= β.



194 Ion Păvăloiu 10

From (4.1) and from the above inequality we get that:

‖xk+1 − xk‖ ≤ β ‖f (xk)‖ ≤ βα
− 1

pρk ≤ βα
− 1

pρ
(1+p)k

0 ,

which by (b) implies

‖xk+1 − x0‖ ≤ β‖f(x0)‖
1−α‖f(x0)‖

p ≤ r,

that is, xk+1 ∈ S (x0, r).
Using the assumptions of the theorem we get that

‖f (xk+1)‖ =
∥

∥f (xk+1)− f (xk)− f ′ (xk) (xk+1 − xk)
∥

∥

≤ c
p+1 ‖xk+1 − xk‖

p+1 ≤ α
− 1

pρ
p+1
k ,

whence

ρk+1 ≤ ρ
(1+p)k+1

0 .

For every m,n ∈ N

‖xm+n − xn‖ ≤
βα

−

1
p ρ

(1+p)n

0

1−ρ
p(1+p)n

0

which, together with ρ0 < 1, show that (xn)n≥0 is a Cauchy sequence. If

x∗ = lim
n→∞

xn then for m → ∞ in the above inequality, we get (4.2), and

from

‖f (xn)‖ ≤ α
− 1

pρ
(1+p)n

0 ,

for n → ∞, we get f (x∗) = 0. �
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