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1. INTRODUCTION

Let I ⊆ R be an interval of the real axis and f : I → R a function. Consider
the equation:

(1.1) f (x) = 0,

supposed to have a solution x̄ ∈ I. Also get g : I → I be a function whose
fixed points from I coincide with the root of (1.1).

For solving (1.1) one can usually use an iterative method of the form:

(1.2) xs+1 = g (xs) , x0 ∈ I, s = 0, 1, . . .

More generally, if G : Ik → I is a function depending on k variables, whose
restriction to the diagonal of the set Ik coincides with g, i.e.

(1.3) g (x) = G (x, x, . . . , x) , for all x ∈ I

then one can consider the following iterative method for solving equation (1.1):

(1.4) xk+s = G (xs, xs+1, . . . , xs+k−1) , x0, x1, . . . , xk−1 ∈ I, s = 0, 1, . . . ,

The convergence of the sequences (xn)n≥0 generated by (1.2) or (1.4) to a

solution of equation (1.1) depends obviously on the properties of the functions
f, g respectively G, and the amount of time necessary to obtain a suitable
approximation for the solution x̄ is influenced both by the convergence order of
the methods (1.2), resp. (1.4) and by the amount of elementary operations that
must be performed at each iteration step. This last aspect belongs to a chapter
of the calculus theory and practice, chapter concerning the computational
complexity.

Many authors ([1], [2], [3], [5], [6], [9], [10], [11]), who studied the compu-
tational complexity of the iteration processes, have defined different notions,
as: the efficiency of a method, the efficiency index of a method or the cost of

a method, which they have quantitatively expressed by different scalar mag-
nitudes.
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Throughout this paper we shall adopt the following definition for the con-
vergence order of an iteration method:

Definition 1.1. The real number p ≥ 1 is called the convergence order of

the sequence (xn)n≥0 generated by an iterative method if the following limit

exists and is not zero:

(1.5) lim
n→∞

|xn+1−x̄|
|xn−x̄|p

= a 6= 0.

where x̄ is the solution of equation (1.1).

Concerning the calculus complexity, using the convergence order we can
define now the following notion:

Definition 1.2. [6]. The number I is called the efficiency index of the

method (1.2) or (1.4), if the following limit exists and is finite:

(1.6) lim
n→∞

(

ln|xn+1−x̄|
ln|xn−x̄|p

)1/mn

= I,

where mn represents the number of function evaluations that must be performed

when passing from the step n to the step n+ 1.

If we suppose that mn is the same for all n, and take into account that (1.6)
has an asymptotical character, then there results for I the following expression:

(1.7) I = I (p,m) = p
1
m .

In the following we shall study certain classes of iteration methods,namely
the methods obtained by interpolation, among which we shall select those for
which the efficiency index given by (1.7) is optimal, i.e. the greatest. For this
purpose in the next section we shall briefly recall the classes of methods that
we want to study.

2. INTERPOLATION ITERATIVE METHODS

2.1. Lagrange’s inverse interpolation polynomial. Let I ⊆ R be an in-
terval and f : I → R a function. Denote by F = f (I) the set of all values of f
for x ∈ I. Suppose that f is one-to-one, i.e. there exists the inverse function
f−1;F → I. Consider in I, n+ 1 interpolation nodes:

(2.1) x1, x2, . . . , xn+1, with xi 6= xj ; for i 6= j; i, j = 1, n+ 1.
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Suppose that equation (1.1) has the unique solution x̄ ∈ I.
Obviously,

(2.2) x̄ = f−1 (0) ,

and so the problem of approximation the solution x̄ reduces to the approxi-
mation of f−1 (0).

A simple and efficient approximation method for the functions is given by
the interpolating approximation.

Denote by:

(2.3) y1, y2, . . . , yn+1, yi = f (xi) , i = 1, n+ 1,

the values of the f on the nodes xi from (2.1).
The Lagrange interpolation polynomial corresponding to the function f−1

on the nodes from (2.3) (taking into account that yi 6= yj, i 6= j; i, j = 1, n + 1)
has the form:

(2.4) L
(

y1, y2, . . . , yn+1; f
−1|y

)

=

n+1
∑

i=1

xiω1(y)
(y−yi)ω1(yi)

,

where ω1 (y) =
n+1
∏

i=1
(y − yi).

If we suppose that the function f has derivatives up to the order k, k ∈ N

and f ′ (x) 6= 0 for all x ∈ I, then we have the following formula for the
computation of the k-th derivative of f−1 at the point y = f (x) , x ∈ I ([7],
[12]):

(2.5)
[

f−1 (y)
](k)

=
∑

(2k−i1−2)(−1)k+i1−1

i2!i3!...ik !f ′(x)2k−1

( f ′(x)
1!

)i1
. . .

(f(x)(k)

k!

)ik ,

where the above sum extends to all nonnegative integer numbers, solutions of
the system:

i2 + 2i3 + . . . + (k − 1) ik = k − 1;(2.6)

i1 + i2 + . . .+ ik = k − 1.

If we suppose that f admits derivatives up to the order n+ 1 on the interval
I and the n+ 1-th derivative is bounded on I, then by (2.5) we obtain,

(2.7) x̄ = f−1 (0) = L
(

y1, y2, . . . , yn+1; f
−1|0

)

+
[f−1(c)]

(n+1)

(n+1)! ω1 (0) ,
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where c is a point belonging to the smallest interval containing 0, y1, y2, . . . , yn+1

and ω1 (0) = (−1)n+1
f (x1) f (x2) . . . f (xn+1) .

Denote by xn+2 the number:

(2.8) xn+2 = L
(

y1, y2, . . . , yn+1; f
−1|0

)

,

and by (2.7) we get:

(2.9) |x̄− xn+2| ≤ Mn+1

(n+1)! |f (x1)| |f (x2)| . . . |f (xn+1)| ,

from which we see that if x1, x2, . . . , xn+1 are chosen in a neighbourhood
of x̄ such that |f (xi)| < 1, i = 1, n + 1, then xn+1 can be considered as
a new approximation for x̄. We have denoted in inequality (2.9), Mn+1 =

sup
y∈F

∣

∣

∣

[

f−1 (y)
](n+1)

∣

∣

∣
.

Let now xk, xk+1, . . . , xk+n ∈ I be n + 1 approximations for x̄. Then the
Lagrange polynomial corresponding to the function f−1 on the nodes yi =
f (xi) , i = k, n+ k has the form:

(2.10) L
(

yk, yk+1, . . . , yk+n; f
−1|y

)

=

k+n
∑

i=k

xiωk(y)
(y−yi)ωk(yi)

where ωk (y) =
n+k
∏

i=k

(y − yi). From this relation, for y = 0, we obtain a new

approximation for x̄, namely

(2.11) xn+k+1 = L
(

yk, yk+1, . . . , yk+n; f
−1|0

)

, k = 1, 2, . . .

which satisfies the delimitation

(2.12) |x̄− xn+k+1| ≤ Mn+1

(n+1)! |f (xk)| |f (xk+1)| . . . |f (xk+n)| .

It is well known that the iterative method given by (2.11) has the convergence
order θn+1, which is the unique positive root of the equation, [6]:

(2.13) tn+1 − tn − tn−1 − . . .− t− 1 = 0.

It is also known (see [6]) that θn+1 verifies:

(2.14) 2(n+1)
n+2 < θn+1 < 2

and
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(2.15) θn < θn+1; lim
n→∞

θn = 2, for all n ≥ 1.

Remark 2.1. In the successive computation of the elements of the sequence
(xn)n≥0 generated by (2.11) it is necessary to compute at each step k the values

ωk (0) and ω
′
k (yi) , i = k, k + 1, . . . , k + n.

We observe that practically there exists a connection both between ωk (0)
and ωk+1 (0) and between ω′

k (yi) and ω
′
k+1 (yi).

Indeed:

ωk (y) =
n+k
∏

i=k

(y − yi)

and

ωk+1 (y) =
n+k+1
∏

i=k+1

(y − yi)

hence we get

(2.16) ωk+1 (y) =
ωk(y)(y−yn+k+1)

y−yk
,

which for y = 0 yields

(2.17) ωk+1 (0) =
ωk(0)yn+k+1

yk

From (2.16) we obtain:

(2.18) ω′
k+1 (y) =

[ω′

k
(y)(y−yn+k+1)+ωk(y)](y−yk)−ωk(y)(y−yn+k+1)

(y−yk)
2 ,

which gives us the following recurrence formula:

(2.19) ω′
k+1 (yi) =

{

ω′

k
(yi)(yi−yn+k+1)

yi−yk
, i = k + 1, k + 2, . . . , k + n

ωk(yi)
yi−yk

, i = k + n+ 1

Recurrence formulae (2.17) and (2.19) hold for all k = 1, 2, . . . , �
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2.2. Hermite Inverse Interpolating Polynomial. We consider, besides the
interpolatory nodes (2.1), the natural numbers a1, a2, . . . , an+1 with ai ≥ 1 i =
1, n + 1 and

(2.20) a1 + a2 + . . .+ an+1 = m+ 1, m ∈ N.

Suppose that f admits derivatives up to the orderm+1 on the interval I and
f ′ 6= 0. Then, by (2.5) it follows that the function f−1 also admits derivatives
up to the order m+1. The Hermite polynomial of degree m associated to the
function f−1 on the nodes yi = f (xi) , i = 1, n + 1, assuming that f ′ (x) 6= 0
for all x ∈ I, is:

H
(

y1; a1, y2; a2, . . . , yn+1; an+1; f
−1|y

)

=(2.21)

=
n+1
∑

i=1

ai−1
∑

j=0

ai−j−1
∑

k=0

[

f−1 (yi)
](j) 1

k!j!

[

(y−yi)
ai

ω1(y)

](k)

y=yi

ω1(y)

(y−yi)
ai−j−k .

where

(2.22) ω1 (y) =
n+1
∏

i=1
(y − yi)

ai

This polynomial satisfies:

(2.23) H(j)
(

y1; a1, y2; a2, . . . , yn+1; an+1; f
−1|yi

)

=
[

f−1 (yi)
](j)

for all j = 0, 1, . . . , ai − 1; i = 1, 2, . . . , n+ 1.
As in 2.1 we obtain from (2.21) the following iterative method for solving

equation (2.1):
(2.24)

xn+k+1 = H
(

yk; a1, yK+1; a2, . . . , yk+n; an+1; f
−1|0

)

, k = 1, 2, . . . ,

where in the polynomial H,ωk =
n+k
∏

i=k

(y − yi)
ai .

Using the differentiability assumptions for f , we obtain:

(2.25) |xn+k+n − x̄| ≤ Mm+1

(m+1)! |f (yk)|
a1 |f (yk+1)|a2 . . . |f (yk+n)|an+1

where Mm+1 = sup
y∈F

∣

∣

∣

[

f−1 (y)
](m+1)

∣

∣

∣
.

It is well known that the convergence order of (2.24) is given by the positive
root ωn+1 of the equation:
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(2.26) tn+1 − an+1t
n − ant

n−1 − . . .− a2t− a1 = 0.

In the particular cases when a1 = a2 = . . . = an+1 we have iterative method:

(2.27) xn+k+1 = H
(

yk; q, yk+1; q, . . . , yk+n; q; f
−1|0

)

,

and when n = 0 we get the Chebyshev iterative method of order m+ 1:
(2.28)

xk+1 = xk − [f−1(y)]
′

1! f (xk) + . . .+ (−1)m
[f−1(yk)]

m!

(m)

fm (xk) , k = 1, 2, . . .

which has the convergence order p = m+ 1.
For the method (2.27), by (2.26) it follows that the convergence order is

given by the positive root ωn+1 of the equation:

(2.29) tn+1 − qtn − qtn−1 − . . . − qt− q = 0.

which satisfies:

(2.30) ωn < ωn+1, n = 1, 2, . . . ,

(2.31) max
{

q, n+1
n+2 (q + 1)

}

< ωn+1 < q + 1; n = 1, 2, . . . ,

(2.32) lim
n→∞

ωn+1 = q + 1.

3. THE EFFICIENCY INDEX OF THE CHEBYSHEV METHOD OF ORDER m+ 1

In the following we shall make the assumptions:

a) Consider as a function evaluation, the evaluation of the derivatives
[

f−1 (y)
](k)

, assuming f (k) (x) , k = 1,m as having been computed.
b) Consider as a function evaluation, the evaluation of the right hand

side of expression (2.28) assuming f (x) and
[

f (−1) (y)
](k)

, k = 1,m
as having been computed.

c) Consider as a function evaluation the evaluation of the function f or
of any of its derivatives.

In this hypothesis, it is necessary for an iteration step with method (2.28)
to compute firstly the values of the functions: f, f ′, . . . , f (m) at the point xk,
altogether m + 1 function for the calculus of the values of the successive
derivatives of f−1, by (2.5). If we take into account that for evaluating the
right hand side expression from relation (2.28) is computed another function
value, we have altogether 2 (m+ 1) function evaluations at each iteration step.
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Using definition (1.7) for the efficiency index, method (2.28) has the follow-
ing index:

(3.1) I (m+ 1, 2 (m+ 1)) = (m+ 1)
1

2(m+1)

(We have taken into account that the convergence order is m+ 1).
We are searching for the maximum value of the index I from (3.1), for

m ∈ N.
For this purpose we consider the auxiliary function ϕ : (0,∞) → R+ϕ (t) =

t
1
2t and we note that: lim

t→0
ϕ (t) = 0, lim

t→∞
ϕ (t) = 1, ϕ is increasing for t ∈ (0, e)

and decreasing for t ∈ (e,∞) ; t = e is a maximum point for the function ϕ.
For t ∈ N, the function ϕ attains its maximum for t = 3, so I (m+ 1, 2 (m+ 1))

attains its maximum form m = 2.
So, the following holds:

Theorem 3.1. In the above assumptions a)–c) among all the Chebyshev

iterative methods of the form (2.28) the method with the greatest efficiency

index is the one of 3rd order, namely

(3.2) xk+1 = xk − f(xk)
f ′(xk)

− 1
2
f ′′(xk)f

2(xk)

[f ′(xk)]
3 , k = 0, 1, . . . , x0 ∈ I.

In the following table are shown the approximations of the efficiency index of

Chebyshev methods for some values of m.

m 2 3 4 5 6
I (m+ 1, 2 (m+ 1)) 1.1892 1.2009 1.1892 1.1746 1.1610

We see that I (3, 6) ∼= 1.2009.

4. THE EFFICIENCY INDEX FOR THE LAGRANGE-HERMITE METHODS

In the following we shall study the case when n ≥ 1, i.e. when number of
nodes is greater than one. In the beginning we shall take the method given by
(2.11) for which, if we take into account the assumptions a) - c) and neglect
the first step, we get that at each iteration step we have first one function
evaluation, namely the value of the function f at xn+k, and then we have
another function evaluation, for the right hand side of relation (2.11), hence
altogether two function evaluations. Recalling that the convergence order for
(2.11) is θn+1, which satisfies (2.14) and (2.15) we get for the efficiency index
the relation

(4.1) I (θn+1, 2) =
√

θn+1.
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By (2.15) we have that I (θn, 2) < I (θn+1, 2) for all n ≥ 1.
So we conclude:

Theorem 4.1. If the assumptions a)–c) hold, for the Lagrange methods

given by (2.10) the efficiency index is increasing with respect to the number of

interpolation nodes and

lim
n→∞

I (θn, 2) =
√
2.

Now we study the efficiency index for the methods given by (2.27), for which
the convergence order ωn+1 verifies (2.29)–(2.32). Obviously, we suppose that
q > 1, q = 1 in (2.27) giving (2.11).

There are two aspects that must be considered: the efficiency with respect
to the number of interpolation nodes, when their multiplicity order q is kept
fixed and, on the second hand, the efficiency with respect to the multiplicity
order q for fixed n, n ≥ 1.

We again suppose that assumptions a)–c) hold. So from the right hand side
of (2.27), at each iteration step, excepting the first one, we have the follow-

ing function evaluations: we compute f (xn+k) , f
′ (xn+k) , . . . , f

(q−1) (xn+k) ,

i.e. q function evaluations, and then by (2.5) we compute
[

f−1 (yn+k)
]′
,

[

f−1 (yn+k)
]′′
, . . . ,

[

f−1 (yn+k)
](q−1)

i.e., q − 1 function evaluations, and fi-
nally we compute the right hand side of (2.27). so altogether, 2q function
evaluations.

Using (2.30)–(2.32) we get:

(4.2) I (ωn+1, 2q) > I (ωn, 2q) , for all n ≥ 1, q > 1,

and

(4.3)
(

max
{

q, n+1
n+2 (q + 1)

})
1
2q
< I (ωn+1, 2q) < (q + 1)

1
2q .

for all n ≥ 1, q > 1.
For a fixed q by (4.2) we get that the efficiency index is increasing as a

function of n, and by (4.3)

lim
n→∞

I (ωn+1, 2q) = (1 + q)
1
2q .

From (4.3) we also obtain:

(4.4) q
1
2q < I (ωn+1, 2q) < (q + 1)

1
2q , for q ≥ n+ 1

and

(4.5)
[

n+1
n+2 (q + 1)

]
1
2q
< I (ωn+1, 2q) < (q + 1)

1
2q , ,for q < n+ 1.
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A. For the first case, when q ≥ n + 1 we consider the auxiliary functions
ϕ,ψ; (0,∞) → R+ given by

ϕ (t) = t
1
2t

and

ψ (t) = (1 + t)
1
2t .

As we have seen before, ϕ satisfies:

lim
t→0
t>0

ϕ (t) = 0, lim
t→∞

ϕ (t) = 1,

is increasing on (0, e) and decreasing on (e,+∞) , so at t = e attains its
maximum.

One can establish the following relations for ψ:

lim
t→0

ψ (t) =
√
e; lim

t→∞
ψ (t) = 1

and ψ is decreasing on (0,+∞).
Recalling that ϕ attains its maximum value at t = e, let t̄ be the solution

of the equation

(4.6) (t+ 1)
1
2t − e

1
2e = 0.

then for t > t̄ we have (t+ 1)
1
2t < e

1
2e , hence, by (4.4), we obtain that the

values of q for which I (ωn+1, 2q) attains its maximum lie in the set {q ∈
N; 1 < q ≤ t̄}. One can easily prove that t̄ ∈ (4.5) so we shall study the
cases q = 2, q = 3, and q = 4. Since q ≥ n we study 1) q = 2, n = 1; 2)
q = 3, n = 1; q = 3, n = 2 and 3) q = 4, n = 1; n = 2, n = 3.

1) The corresponding equation from (2.29) for q = 2, n = 1, is t2−2t−2 = 0,

with the positive solution ω2 = 1 +
√
3. So I (ω2, 4) =

4
√

1 +
√
3 ∼= 1, 2856 . . .

2) The convergence orders corresponding for this case are the solutions of
the equations t2− 3t− 3 = 0 for n = 1, q = 3 respectively t3− 3t2− 3t− 3 = 0
for n = 2, q = 3.

We obtain I (ω2, 6) ∼= 1.2487 . . ., respectively I (ω3, 6) ∼= 1.2573 . . .
3) The corresponding equations give us:
I (ω2,8) ∼= 1, 2175 . . . ; I (ω3, 8) ∼= 1, 2218 . . . and I (ω4, 8) ∼= 1, 2226 . . .
So the greatest efficiency index when q ≥ n+1 is obtained for n = 1, q = 2

i.e I (ω2, 4) =
4
√

1 +
√
3.

B. Let q < n + 1, so (4.5) holds. We shall again consider two auxiliary
functions

ϕ,ψ : (0,+∞) → R+,

ϕ (t) =
[

n+1
n+2 (t+ 1)

]
1
2t
, ψ (t) = (t+ 1)

1
2t
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which possess the following properties: lim
t→0

ϕ (t) = 0; lim
t→∞

ϕ (t) = 1;

ϕ′ (t) = 1
2

[

n+1
n+2 (t+ 1)

]
1
2t ·

t
t+1

−ln n+1
n+2

(t+1)

t2
,

and one can easily prove that: the equation ϕ′ (t) = 0 has a unique positive
solution, denoted by τn, ϕ

′ (t) < 0 for t > τn and ϕ′ (t) > 0 for t ∈ (0, τn) ,
i.e.ϕ attains its maximum value at t = τn.

Taking into account the properties of ψ one can see that the equations

(4.7) (t+ 1)
1
2t − e

1
2(τn+1) = 0, n = 2, 3, . . .

have a unique positive solution µn for each n ≥ 2.
In the table below we give the approximative values µn and τn for n ∈ [2, 10].

n τn µn
2 1.3816 . . . 3.6711 . . .
3 1.1201 . . . 2.8679 . . .
4 0.9566 . . . 2.3871 . . .
5 0.8436 . . . 2.0649 . . .
6 0.7601 . . . 1.8327 . . .
7 0.6955 . . . 1.6566 . . .
8 0.6438 . . . 1.5180 . . .
9 0.6013 . . . 1.4056 . . .
10 0.5656 . . . 1.3125 . . .

An elementary reasoning proves that τn and µn are decreasing functions of
n, n ≥ 2, as we can see in the above table.

If t > µn then ϕ (τn) > ϕ (t) so the optimal values for q must lie in the set
{q ∈ N; 2 ≤ q < max{n+ 1, µn}}.

It can be shown that for n ≥ 6, µn < 2 and for n ∈ [2, 5], 2 < µn < 4. It
follows that the only suitable value for q is q = 2. In this case we get that
I (ωn, 4) < I (ωn+1, 4), n ≥ 2, i.e. the efficiency index increases with n, but
anyway the best results hold for q = 2.

5. MARGINS FOR THE EFFICIENCY INDEX IN THE CASE OF

LAGRANGE-HERMITE METHODS

We end this note by indicating, in the above assumptions, left and right
margins of the efficiency index of the Lagrange-Hermite methods.

In this respect we shall first establish an inequality that will give left margins
for the positive roots of equations (2.26).
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Let

(5.1) P (t) = tn+1 − an+1t
n − ant

n−1 − . . .− a1 = 0,

where a1 + a2 + . . .+ an+1 = m+ 1, ai ≥for i = 1, n + 1.
The following Lemma holds.

Lemma 5.1. The positive root ωn+1 of (5.1) satisfies:

(5.2) ωn+1 ≥ [m+ 1]

m+1

(n+1)(m+1)−

m+1
∑

i=1
(i−1)ai

Proof. Let

α = [m+ 1]

m+1

(n+1)(m+1)−

m+1
∑

i=1
(i−1)ai

It will suffice to show P (α) ≤ 0, using the inequality between the weighted
arithmetic and geometric mean, i.e.

(5.3)

n+1∑

i=1
αipi

n+1∑

i=1
pi

≥
(

n+1
∏

i=1
a
pi
i

)

1
n+1∑

i=1
pi

We get

P (α) = αn+1 −
n+1
∑

i=1
aiα

i−1 = αn+1 −
n+1∑

i=1
aiα

i−1

n+1∑

i=1
ai

n+1
∑

i=1
ai

≤ αn+1 −
(

n+1
∑

i=1
ai

)[

n+1
∏

i=1
α(i−1)ai

]

1
n+1∑

i=1
ai

= αn+1 − (m+ 1)α

n+1∑

i=1
(i−1)ai

m+1

= α

n+1∑

i=1
(i−1)ai

m+1



αn+1 −
n+1∑

i=1
(i−1)ai

m+1 − (m+ 1)



 = 0,

i.e. P (α) ≤ 0.
We also get ωn+1 ≤ a+ 1, where a = max

1≤i≤n+1
{ai}.
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In the hypotheses of 3., using (2.24) in generating the sequence (xn)n≥0

then the number of function evaluations at each step is 2 (m+ 1)− n.
The efficiency index (2.24) then satisfies

α
1

2(m+1)−n ≤ I (ωn+1, 2 (m+ 1)− n) ≤ (a+ 1)
1

2(m+1)−n ,

with α and a specified above. �
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