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Abstract. The aim of this paper is to study the conditions under which the
well-known Aitken-Steffensen method for solving equations leads to monotonic
sequences whose terms approximate (from the left and from the right) the root
of an equation. The convergence order and efficiency index of this method are
also studied in the general case and then in various particular cases.

1. Introduction

From a practical standpoint, in order to approximate the roots of equations
it is advantageous to use methods which lead to monotonic sequences. In this
paper we shall use a single iterative process to determine an increasing sequence
(xn)n≥0 and a decreasing one (yn)n≥0, both converging to a root x̄ of the equation

f (x) = 0. Such a procedure has the advantage of allowing, at each iteration step,
an approximation error checking, i.e.

max{x̄− xn, yn − x̄} ≤ yn − xn.

As it is well known, such sequences can be generated by applying simultaneously
two methods, e.g. Newton’s method and the chord method. In the sequel we
shall show that, in conditions similar to those imposed to the above mentioned
methods, the Aitken-Steffensen method generates two sequences which fulfil the
above inequality.
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70 I. Păvăloiu: Approximation of the roots of equations

In Section 2 we give sufficient conditions for the general method of Aitken-
Steffensen ((1.3) below) to generate two monotonic sequences, both converging
to the solution x̄ of equation (1.1) below. In this way some similar results obtained
in [4] are completed, and the proofs given in [5] are made simpler to a certain
extent.

In Section 3 we study some particular cases of the method (1.3), namely the
methods (3.1) and (3.3) below. In Section 4 there is indicated a way to construct
the auxiliary functions g1, g2, or g, required by (1.3) or (3.1), in relatively simple
conditions as the monotonicity and convexity of the function f. In Section 5 the
convergence orders and the efficiency indices of the methods (1.3) and (3.1) are
studied, concluding that the method (3.1) has a higher efficiency index. This
one is the same as that of Newton’s method, but is given conditions, the method
(3.1) as well as (1.3) and (3.3), provide in addition bilateral approximations for
the root of the equation (1.1).

So, let I = [a, b] , a < b, be an interval of the real axis, and consider the
equation

(1.1) f (x) = 0

where f : I → R. Besides (1.1), consider two more equations

x− g1 (x) = 0,(1.2)

x− g2 (x) = 0,

where g1, g2 : I → R.
The Aitken-Steffensen method consists in constructing the sequences

(g2 (g1(xn)))n≥0 and (g1 (xn))n≥0 by means of the following iterative process

(1.3) xn+1 = g1 (xn)− f(g1(xn))
[g1(xn);g2(g1(xn));f ]

, n = 0, 1, . . . , x0 ∈ I,

where [u, v; f ] stands for the first order divided difference of f on the points
u, v ∈ I. We shall denote by [u, v, w; f ] the second order divided difference of f
on u, v, w ∈ I.

As it is well known [6, pp. 268–269], and will also be shown in Section 5, the
convergence order of the sequence (xn)n≥0 generated by (1.3) is at least 2, but it

generally depends on the convergence orders of the sequences (yn)n≥0 and (zn)n≥0

generated by yn+1 = g1 (yn) , y0 ∈ I; zn+1 = g2 (zn) , z0 ∈ I; n = 0, 1, . . . , ;[2],
[5].
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Another advantage of the iteration method (1.3) is the following: if equation
(1.1) is given, then (as we shall see in Section 4) we have at our disposal many
possibilities to construct the functions g1 and g2 from equations (1.2). On the
other hand, hypotheses concerning the differentiability of f on the whole interval
I are not needed.

If g : I → R is a function, we shall adopt the following definitions concerning
the monotonicity and convexity of g:

Definition 1.1. The function g : I → R is said to be increasing (nondecreasing;
decreasing; nonincreasing) on I if for every x, y ∈ I the relations [x, y; f ] > 0(≥
0;< 0;≤ 0) hold respectively.

Definition 1.2. The function g : I → R is convex (nonconcave; concave; non-
convex) on I if for every x, y, z ∈ I the relations [x, y, z; f ] > 0(≥ 0;< 0;≤ 0)
hold respectively.

2. Convergence of the Aitken-Steffensen method

We shall adopt the following hypotheses concerning the functions f, g1 and
g2;

(a) f, g1, g2 are continuous on I;
(b) g1 is increasing on I;
(c) g2 is decreasing on I;
(d) equations (1.1) and (1.2) have only one common root x̄ ∈]a, b[;
(e) for every x, y ∈ I, the relation 0 < [x, y; g1] ≤ 1 holds.

Concerning the problem stated in Section 1, the following theorem holds:

Theorem 2.1. Suppose that f, g1 and g2 fulfil conditions (a)–(e) and, in addi-
tion,

(i1) f is increasing and convex on I, and there exists f ′ (x̄) ;
(ii1) there exists x0 ∈ I such that f (x0) < 0 and g2 (g1 (x0)) ∈ I.

Then the sequences (xn)n≥0, (g1 (xn))n≥0 , (g2 (g1 (xn)))n≥0 generated by (1.3),

where x0 fulfils condition (ii1), have the following properties:

(j1) the sequences (xn)n≥0 and (g1 (xn))n≥0 are increasing and bounded;

(jj1) the sequence (g2 (g1 (xn)))n≥0 is decreasing and bounded;

(jjj1) limxn = lim g1 (xn) = lim g2 (g1 (xn)) = x̄;
(jv1) xn ≤ g1 (xn) ≤ xn+1 ≤ x̄ ≤ g2 (g1 (xn)) , n = 0, 1, . . . ,

and max{x̄− xn+1, g2 (g1 (xn))− x̄} ≤ g2 (g1 (xn))− xn+1.
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Proof. Since f is increasing on I and f (x0) < 0, it follows that x0 < x̄. For x < y,
by (e) we get g1 (y) − g1 (x) ≤ y − x, which, for y = x̄, leads to x − g1 (x) ≤ 0
if x < x̄ and, analogously, x − g1 (x) ≥ 0 if x > x̄. By b) and x0 < x̄ we
obtain g1 (x0) < g1 (x̄) , i.e. g1 (x0) < x̄, while from the above inequalities it
follows x0 ≤ g1 (x0) . By (c) and g1 (x0) < x̄ we get g2 (g1 (x0)) > g2 (x̄) , that is,
g2 (g1 (x0)) > x̄. By (i1) and g1 (x0) < x̄ we obtain f (g1 (x0)) < 0 which, together
with [g1 (x0) , g2 (g1 (x0)) ; f ] > 0 and (1.3), shows that x1 > g1 (x0) .

It is easy to see that the following identities

(2.1) g1 (x)− f(g1(x))
[g1(x),g2(g1(x));f ]

= g2 (g1 (x))− f(g2(g1(x)))
[g1(x),g2(g1(x));f ]

(2.2) f (z) = f (x) + [x, y; f ] (z − x) + [x, y, z; f ] (z − x) (z − y, )

hold for every x, y, z ∈ I.
Since g2 (g1 (x0)) > x̄, it follows that f (g2 (g1 (x0))) > 0 and, using (2.1) and

(1.3), we get x1 < g2 (g1 (x0)) . If we put in (2.2) z = x1, x = g1 (x0) , y =
g2 (g1 (x0)) , and take into account (1.3), we get

f (x1) = [g1 (x0) , g2 (g1 (x0)) , x1; f ] (x1 − g1 (x0)) (x1 − g2 (g1 (x0))) ,

from which, considering the convexity of f and the inequalities x1 − g1 (x0) > 0
and x1 − g2 (g1 (x0)) < 0, one obtains f (x1) < 0, that is, x1 < x̄.

In this way we have obtained

(2.2′) x0 ≤ g1 (x0) < x1 < x̄ < g2 (g1 (x0)) .

In order that the above reasoning may be repeated we still have to show that
x1 verifies the last condition of (ii1), namely g2 (g1 (x1)) ∈ I. Indeed, from x0 <
x1 and (b) it follows g1 (x0) < g1 (x1) , which, by (c), leads to g2 (g1 (x0)) >
g2 (g1 (x1)) . It remains to show that g2 (g1 (x0)) > x̄. Suppose that g2 (g1 (x0)) ≤
x̄, that is, g2 (g1 (x0)) ≤ g2 (x̄) , implying g1 (x0) ≥ x̄, which contradicts (2.2′).

Consider xn ∈ I for which f (xn) < 0 and g2 (g1 (xn)) ∈ I, n ∈ N. Repeating
the above reasoning, we obtain the inequalities

(2.3) xn ≤ g1 (xn) < xn+1 < x̄ < g2 (g1 (xn)) , n = 0, 1, . . . ,
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In this way conclusions (j1), (jj1) and (jv1) of Theorem 2.1 are proved. To
prove (jjj1), denote l = limxn, l1 = lim g1 (xn) , l2 = lim g2 (g1 (xn)) . We shall
show that l = l1 = l2 = x̄.

By (2.3) and (a), we deduce:

l ≤ g1 (l) ≤ l ≤ x̄ ≤ g2 (g1 (l)) ;

but l1 = g1 (l) , therefore l = l1; i.e. g1 (l) = l. From this relation and (1.3), using
the fact that there exists f ′ (x̄) and f is increasing, we get f (l) = 0, that is,
l = x̄. Since l2 = g2 (l) ≥ x̄, it follows f (g2 (l)) ≥ 0, while form (2.1) it follows
that l ≥ g2 (l) , which, together with l ≤ g2 (l) , leads to l = g2 (l) = x̄. �

In can be shown analogously that the following theorems hold, too:

Theorem 2.2. Suppose that f, g1, g2 fulfil conditions (a)–(e), and in addition

(i2) f is increasing and concave on I, and there exists f ′ (x̄) ;
(ii2) there exists x0 ∈ I for which f (x0) > 0 and g2 (g1 (x0)) ∈ I.

Then the sequences (xn)n≥0 , (g1 (xn))n≥0 , g2 (g1 (xn))n≥0 generated by (1.3),
have the following properties:

(j2) (xn)n≤0 , (g1 (xn))n≥0 are decreasing and bounded;

(jj2) (g2 (g1 (xn)))n≥0 is increasing and bounded;

(jjj2) limxn = lim g1 (xn) = lim g2 (g1 (xn)) = x̄, and the following relations
hold

g2 (g1 (xn)) < x̄ < xn+1 < g1 (xn) ≤ xn, n = 0, 1, . . . ,

max{x̄− g2 (g1 (xn)) , xn+1 − x̄} ≤ xn+1 − g2 (g1 (xn)) .

Theorem 2.3. Suppose that f, g1, g2 fulfil conditions (a)–(e) and in addition

(i3) f is decreasing and convex on I, and there exists f ′ (x̄) ;
(ii3) there exists x0 ∈ I for which f (x0) < 0 and g2 (g1 (x0)) ∈ I.

Then the sequences (xn)n≥0 , (g1 (xn))n≥0 , (g2 (g1 (xn)))n≥0 generated by (1.3)
fulfil the conclusions of Theorem 2.2.

Theorem 2.4. Suppose that f, g1, g2 fulfil conditions (a)–(e) and in addition

(i4) f is decreasing and concave on I, and there exists f ′ (x̄) ;
(ii4) there exists x0 ∈ I for which f (x0) > 0 and g2 (g1 (x0)) ∈ I.
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Then the sequences (xn)n≥0 , (g1 (xn))n≥0 , (g2 (g1 (xn)))n≥0 generated by (1.3),
fulfil the conclusions of Theorem 2.1.

3. Particular cases

An interesting particular case of the procedure (1.3) is obtained taking
g1 (x) = x for every x ∈ I. In this way one obtains Steffensen’s method, namely

(3.1) xn+1 = xn − f(xn)
[xn,g(xn);f ]

, n = 0, 1, . . . , x0 ∈ I,

where g stands for g2.
One observes easily that in this case hypotheses (a), (b), (d) and (e) are auto-

matically fulfilled by g1. For the study of the convergence of the sequence (xn)n≥0

generated by (3.1), we have to adopt the following hypotheses:

(a1) the functions f and g are continuous on I;
(b1) the function g is decreasing on I;
(c1) equations (1.1) and x = g (x) have only one common root x̄ ∈]a, b[.
With these specifications, the theorems stated in Section 2 yield:

Corollary 3.1. Suppose that f and g fulfil conditions (a1)–(c1) and in addition
f is increasing and convex on I; there exists f ′ (x̄) , and the initial point x0 in
(3.1) can be chosen such that f (x0) < 0 and g (x0) ∈ I. Then the sequence
(xn)n≥0 is increasing and bounded, while the sequence (g (xn))n≥0 is decreasing

and bounded. Moreover, the relations x̄ = limxn = lim g (xn) and

xn ≤ x̄ ≤ g (xn) ;

max{x̄− xn, g (xn)− x̄} ≤ g (xn)− xn

hold.

Corollary 3.2. Suppose that f and g fulfil conditions (a1)–(c1) and in addition
f is increasing and concave on I; there exists f ′ (x̄) , and x0 from (3.1) can be
chosen such that f (x0) > 0 and g (x0) ∈ I. Then (xn)n≥0 is decreasing and

bounded, while (g (xn))n≥0 is increasing and bounded. Moreover, the following
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relations: x̄ = lim xn = lim g (xn) and

g (xn) ≤ x̄ ≤ xn;

max{x̄− g (xn) , xn − x̄} ≤ xn − g (xn)

hold.

Corollary 3.3. Suppose that f and g fulfil conditions (a1)–(c1) and in addition
f is decreasing and convex on I; there exists f ′ (x̄) , and x0 from (3.1) can be
chosen such that f (x0) < 0 and g (x0) ∈ I. Then (xn)n≥0 and (g (xn))n≥0 verify
the conclusions of Corollary 3.2.

Corollary 3.4. Suppose that f and g fulfil conditions (a1)–(c1) and in addition
f is decreasing and concave on I, there exists f ′ (x̄) and x0 from (3.1) can be
chosen such that f (x0) > 0 and g (x0) ∈ I. Then (xn)n≥0 and (g (xn))n≥0 verify
the conclusions of Corollary 3.1.

Another interesting particular case is that in which f has the form:

(3.2) f (x) = x− g (x) = 0.

In this case the iterative method (3.1) will have the form

(3.3) xn+1 = xn − (xn − g (xn))
2

g (g (xn))− 2g (xn) + xn
, n = 0, 1, . . . , x0 ∈ I,

whose convergence follows easily by Corollaries 3.1–3.4. The following results
simplify the conditions imposed to g and x0 in [1]:

Corollary 3.5. Suppose that g is continuous, decreasing and convex on I; equa-
tion (3.2) has a root x̄ ∈]a, b[, there exists g′ (x̄) , and x0 ∈ I can be chosen such
that x0 < g (x0) and g (x0) ∈ I. Then the sequences (xn)n≥0 and (g (xn))n≥0
verify the conclusions of Corollary 3.1.

Corollary 3.6. Suppose that g is continuous, decreasing and concave on I, equa-
tion (3.2) has a root x̄ ∈]a, b[, there exists g′ (x̄) , and x0 ∈ I can be chosen such
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that x0 > g (x0) and g (x0) ∈ I. Then the sequences (xn)n≥0 and (g (xn))n≥0
verify the conclusions of Corollary 3.2.

The restriction imposed to f in Corollaries 3.3 and 3.4 (f to be decreasing)
can no more be reached in this case, because in those corollaries the condition
on g to be decreasing is essential, and is easy to see that if g decreases the f is
increasing.

4. Determination of auxiliary functions

In what follows we shall show that, under reasonable hypotheses concerning the
monotonicity and convexity of f, we have at our disposal various ways to choose
g1, g2 and g such that the hypotheses of the theorems and corollaries stated above
are verified.

1. Let us admit that f : [a, b] → R is differentiable on [a, b] , and denote by
f ′ (a) the right-hand derivative in a and by f ′ (b) the left-hand derivative in b; we
also admit that f is increasing and convex on [a, b] . Suppose that the equation
f (x) = 0 has a root x̄ ∈]a, b[. Then we choose g1 (x) = x − f (x) /f ′ (b) and
g2 (x) = x− f (x) /f ′ (a) .

Since f is convex, if follows that f ′ is increasing on [a, b] , hence 0 < f ′ (a) <
f ′ (x) < f ′ (b) for every x ∈]a, b[. In this case we have g′1 (x) = 1−f ′ (x) /f ′ (b) > 0
for every x ∈]a, b[ and g′2 (x) = 1−f ′ (x) /f ′ (a) < 0 for every x ∈]a, b[. We choose
then a subinterval [α, β] ⊂]a, b[ for which x̄ ∈ [α, β] . If we suppose in addition
that there exists x0 ∈ [α, β] for which f (x0) < 0 and g2 (g1 (x0)) ∈ [α, β] then the
above constructed functions f, g1 and g2 verify the hypotheses of Theorem 2.1.
It is easy to see that if we choose g1 (x) = x− λ1f (x) and g2 (x) = x− λ2f (x) ,
with λ1, λ2 ∈ R, λ1 > f ′ (b) and 0 < λ2 < f ′ (a) , then g1 and g2 also verify the
hypotheses of Theorem 2.1.

2. If f is differentiable, decreasing and convex on [a, b] , then g1 and g2 can
be chosen as in case 1. If there exists x0 ∈ [α, β] such that f (x0) < 0 and
g2 (g1 (x0)) ∈ [α, β] , then the hypotheses of Theorem 2.3 are verified.

3. If f is differentiable, decreasing and concave on [a, b] , then we may put
g1 (x) = x− f (x) /f ′ (a) and g2 (x) = x− f (x) /f ′ (b) . If there exists x0 ∈ [α, β]
for which f (x0) > 0 and g2 (g1 (x0)) ∈ [α, β] , then f, g1 and g2 fulfil the conditions
of Theorem 2.4.

4. If f is differentiable, increasing and concave on [a, b] , then g1 and g2 can
be chosen as in case 3. If there exists x0 ∈ [α, β] such that f (x0) > 0 and
g2 (g1 (x0)) ∈ I, then f, g1 and g2 verify the hypotheses of Theorem 2.2.
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5. The function g appearing in Section 3, Procedure (3.1) can be chosen in the
following ways:

a) If f is differentiable, increasing and convex on [a, b] , then we can choose
g (x) = x−f (x) /f ′ (a) , and if x0 verifies f (x0) < 0 and g (x0) ∈ [α, β] , then the
hypotheses of Corollary 3.1 are verified; while if f is decreasing and convex and
there exists x0 ∈ [α, β] for which f (x0) < 0 and g (x0) ∈ [α, β] , the hypotheses
of Corollary 3.3 are verified.

b) If f is differentiable, decreasing and concave on [a, b] , we choose g (x) =
x−f (x) /f ′ (b) . If there exists x0 ∈ [α, β] such that f (x0) > 0 and g (x0) ∈ [α, β] ,
then the hypotheses of Corollary 3.4 are verified; while if f is increasing and
concave and there exists x0 ∈ [a, b] such that f (x0) > 0 and g (x0) ∈ [α, β] , the
hypotheses of Corollary 3.2 are verified.

5. Convergence order and efficiency index

To fix the ideas, we shall consider hereafter, besides (1.1), another equation,
equivalent to (1.1), of the form

(5.1) x− h (x) = 0

where h : I → R. We shall also consider a sequence (xn)n≥0 , xn ∈ I, which,
together with h and f, verifies the properties:

(a) h (xn) ∈ I for every n ∈ N;
(b) (xn)n≥0 and (h (xn))n≥0 are convergent and lim xn = lim h (xn) = x̄,

where x̄ is the root of equation (1.1);
(c) [x, y; f ] 6= 0 for every x, y ∈ I;
(d) f is differentiable at x = x̄.

We shall adopt the following definition of the convergence order of the sequence
(xn)n≥0 :

Definition 5.1. The sequence (xn)n≥0 is said to have the convergence order
p ∈ R with respect to h if there exists

(5.2) α = lim
ln |h (xn)− x̄|
ln |xn − x̄|

and α = p.
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If xn+1 = h (xn) , n = 0, 1, . . . , the above definition reduces to the usual one
[2], [3].

The following theorem holds:

Theorem 5.1. If h and f and (xn)n≥0 verify the properties (a)–(d), then the

necessary and sufficient condition for (xn)n≥0 to have the convergence order p ∈
R, p > 0, with respect to h is to exist

(5.3) β = lim
ln |f (h (xn))|
ln |f (x0)|

and β = p.

Proof. Supposing (5.2) or (5.3) to be true and taking into account (a)–(d), it
follows

lim
ln |h (xn)− x̄|
ln |xn − x̄| = lim

ln |f (h (xn))| − ln |[h (xn) , x̄; f ]|
ln |f (xn)| − ln |xn, x̄; f |

= lim
ln |f (h (xn))|
ln |f (xn)|

·
1− ln|[h(xn),x̄;f ]|

ln|f(h(xn))|

1− ln|[xn,x̄;f ]|
ln|f(xn)|

= lim
ln |f (h (xn))|
ln |f (xn)|

.

The equality of these two limits proves the validity of the theorem. �

Consider now the functions g1, g2 appearing in equations (1.2) and let the
function h be given by

(5.4) h (x) = g1 (x)− f(g1(x))
[g1(x),g2(g1(x));f ]

.

Concerning the convergence order of the sequence (xn)n≥0 generated by (1.3),
the following theorem holds:

Theorem 5.2. Suppose that the functions f, g1 and g2 and the initial point x0
fulfil the conditions of Theorem 2.1. If there exists f ′′ (x̄) and in addition the se-
quence (xn)n≥0 has the convergence order p1 with respect to g1, while (g1 (xn))n≥0

has the convergence order p2 with respect to g2, then the sequence (xn)n≥0 has
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the convergence order p1 (p2 + 1) with respect to the function h given by (5.4).

Proof. At first observe that, under the stated hypotheses, we may use (5.3) to
determine the convergence order. The same hypotheses also lead to

(5.5) lim
ln |f (g1 (xn))|
ln |f (xn)|

= p1;

(5.6) lim
ln |f (g2 (g1 (xn)))|
ln |f (g1 (xn))|

= p2.

Using (2.1), (2.2) and the procedure (1.3), we obtain

f (xn+1) = [g1 (xn) , g2 (g1 (xn)) , xn+1; f ]
f(g1(xn))·f(g2(g1(xn)))

[g1(xn),g2(g1(xn));f ]
2 ,

from which, by (5.5) and (5.6), it follows easily the equality

lim ln|f(h(xn))|
ln|f(xn)|

= p1 (1 + p2) .

�

Remark 5.1. Theorem 5.2 remains valid if the hypotheses of Theorem 2.1 are
replaced by those of Theorems 2.2, 2.3, or 2.4.

An analogous theorem holds in the case of the procedure (1.3), too.

Theorem 5.3. If f and g verify the hypotheses of Corollary 3.1, if there exists
f ′′ (x̄) , and in addition the sequence (xn)n≥0 generated by (3.1) has the conver-
gence order p with respect to g, then this sequence has the convergence order p+1
with respect to the function h given by

h (x) = x− f(x)
[x,g(x);f ] .

Remark 5.2. Theorem 5.3 remains valid if the hypotheses of Corollary 3.1 are
replaced by those of Corollaries 3.2, 3.3, or 3.4.

Remark 5.3. Returning to the functions g1 and g2 determined in Section 4,
(g1 = x − f (x) /A, g2 = x − f (x) /B, where A = f ′ (b) , B = f ′ (a) , or A =
f ′ (a) , B = f ′ (b), according to the case under consideration), it is easy to see
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that the convergence order of the sequence generated by (1.3) is equal to 2.
In the case of the procedure (3.1), for g (x) = x−f (x) /A or g (x) = x−f (x) /B

(according to the considered situation), the convergence order is also equal to 2.
In the sequel we shall deal with the efficiency index of the iterative procedures

studied along the previous sections.
According to A. M. Ostrowski’s [3] definition for the efficiency index of an

iterative procedure, and taking into account Theorems 5.1, 5.2 or 5.3 for the
iterative procedures (1.3), (3.1), or (3.3), the efficiency index is expressed as

E = p1/m

Here p is the convergence order of the sequence generated by one of these proce-
dures, while m stands for the number of values of functions to be computed at
each iteration step.

Taking into consideration Remark 5.3, it follows that, choosing g1, g2, or g as
in Section 4, the efficiency index of the procedure (3.1) is E = 3

√
2, while that of

(3.3) is E =
√
2.

From this standpoint, the procedure (3.1) has the efficiency index equal to that
of Newton’s method.

In the conditions of Theorem 5.2 for the generalized procedure of Aitken-
Steffensen (1.3), the efficiency index is given by E = 4

√

p1 (p2 + 1). Analogously,
in the conditions of Theorem 5.3, the efficiency index of the method (3.1) is
E = 3

√
p+ 1.

6. Numerical examples

1. Consider the equation

f (x) := x− 2 arctan x = 0,

for x ∈
[

3
2 , 3

]

. Since f is increasing and convex on
[

3
2 , 3

]

, we can choose g1 and
g2 as in the case 1 (Section 4). We obtain

g1 (x) =
1
4 (10 arctan x− x) ;

g2 (x) =
1
5 (26 arctan x− 8x) .
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Taking x0 =
3
2 , the functions f, g1 and g2 verify the hypotheses of Theorem 2.1

on the interval
[

3
2 , 3

]

. Applying the procedure (1.3), we get the following results:

n xn g1 (xn) g2 (g1 (xn)) f (xn)
0 1.50000000000000 2.08198430811832 2.50854785469606 −4.6 · 10−01

1 2.32357265230323 2.33006829103803 2.33195667567199 −5.1 · 10−03

2 2.33112222668589 2.33112235050042 2.33112238618252 −9.9 · 10−08

3 2.33112237041442 2.33112237041442 2.33112238041442 −3.5 · 10−17

2. Consider the equation

f (x) := x− arcsin x−1√
2(x2+1)

= 0,

for x ∈ [−2,−1] . Observe that f is differentiable on [−2,−1] , and the derivative
of f from the left on x = −1 is 3

2 . The function f is increasing and convex

on [−2,−1] , and we may take g (x) = 1
6

(

x + 5arcsin x−1√
2(x2+1)

)

. An elementary

calculation shows that f (−2) < 0 and g (−2) ∈ [−2,−1]; and therefore the
hypotheses of Corollary 3.1 are verified. The procedure (3.1) leads to the following
results:

n xn g (xn) f (xn)
0 -2.000000000000000 -1.37420481033188 −7.853 981 633 974 48 · 10−01

1 -1.406051288716128 -1.40401615840899 −7.509 542 276 017 46 · 10−01

2 -1.404223647476550 -1.40422359726392 −2.442 156 368 565 04 · 10−03

3 -1.404223602391970 -1.40422360239197 −6.025 515 505 460 58 · 10−08

4 -1.404223602391970 -1.40422360239197 −3.718 813 451 625 28 · 10−17
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