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Optimal efficiency indexes for iterative methods
of interpolatory type*

1.Pavaloiu

Abstract

The paper is concerned with the order of convergence and
the efficiency index of iterative methods of interpolatory type
for solving scalar equations. Some classes of such methods are
presented and then, using well defined criteria, the methods hav-
ing the optimal efficiency index (i.e. those which practically are
most efficient) are determined. For these methods the efficiency
indexes are effectively determined.

1 Introduction

In this paper we propose a unitary approach concerning the computa-
tional comlexity for the numerical solving of scalar equations by itera-
tive methods of interpolatory type. We shall consider some classes of
such methods from which, using well defined criteria, we shall choose
the optimal ones.

As a measure for the complexity of a method we shall adopt the
efficiency index (see [4]).

For this purpose we shall start by presenting some general con-
siderations concerning the convergence and the efficiency index of an
iterative method. Then we shall specify the interpolatory methods to
be studied. Finally, we shall select from the interpolatory classes those
having the highest efficiency index, and for the classes for which the
selection method can’t be applied, we shall give delimitations for the
efficiency index.
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2 The convergence order and the efficiency in-
dex

Denote by I = [a,b], a,b € R, a < b and consider the equation

flz) =0 (1)

where f : I — R. In the following we shall suppose, for simplicity,
that the equation (1) has a unique solution z € I. Let g: I — I be a
function having a unique fixed point in the interval I, which coincides
with z.

For the approximation of the root Z of equation (1), under cer-
tain conditions, we may consider the elements of the sequence ()

p>0
generated by the following iterative process

x5+1=g($s) zo€l, s=0,1,... (2)

More generally, if G : I¥ — I is a function of k variables whose
restriction to the diagonal of the set I* coincides with g, i.e.

G(z,z,...,x) =g(z), forallzel,
then we may consider the following iterative process:

LTs+k = G(x57x5+17 e ,.T5+k_1),
s=0,1,..., xo,T1,...,Tk_1 € 1. (3)

The convergence of the sequence (x,),>0 generated by (2) or (3)
depends on certain properties of the functions f and g, respectively
G. The amount of time needed by a computer to obtain a suitable
approximation of Z, depends both on the convergence order of the
sequence (zp)p>0 and on the number of elementary operations that
must be performed at each iteration step in (2) or (3). Concerning
the convergence order, it can be exactly computed in almost all the
cases. Hence it remains to solve the difficult problem of determining
the number of elementary operations that must be performed at each
iteration step. A general approach to this problem of course can’t be
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successful. That’s why A.M. Ostrowski proposed in [4] a simplification
of this problem, by considering the number of function evaluations at
each iteration step. At first sight this approach seems to be strange,
taking into account that some functions may be more complicated and
others may be simpler from the computational standpoint. But our
purpose is to compare different methods applied to the same equation,
and such an approach can give results.

We consider an arbitrary sequence (x,),>0, satisfying together with
f and g the following properties:

a) zs € I and g(zs) € I for s =0,1,..;

b) the sequences (z,)p>0 and (g(zp))p>0 are convergent and lim z,, =
limg(z,) = z, where z is the solution of (1);

c) for all z,y € I, 0 < |[z,y; f]] < m, m € R, m > 0, where we
have denoted by [z, y; f] the first order divided difference of f on
the nodes z and y;

d) f is derivable at Z

Definition 1 The sequence (xp)p>0 has the convergence order w €
R,w > 1, in respect to the function g, if there exists the limit:

| =
p—oo In|z, — Z|

and o = w.

Remark 1. If the sequence (,),>0 is generated by the iterative
method (2), then the Definition 1 reduces to the known one [4].

For a unitary treatment of the determination of the convergence
order of the studied methods, we shall use the following lemmas.

Lemma 1 If the sequence (xp)p>0 and the functions f and g satisfy
the properties a)-d) then the necessary and sufficient condition for the
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sequence (Tp)p>0 to have the convergence order w € R, w > 1, with
respect to the function g is that the following limit exists:

i 1S
0= T ey )

and B = w.

Proof.  Supposing that one of the equalities (4) or (5) is true and
taking into account the properties a)-d), we obtain:

g 2 lo(@) =2l Il f(9(zp))] — o lg(zp), 3 £
|7 — 2 In [ ()| = In [z, 7: /]
~In | [g(zp), 2 f] |
i 2L F (@) | In | f(g(zp)) |
Wl flop) |l
In | f(xp) |

I o) |
In | f(zp) |
Lemma is proved.

Lemma 2 If (up)p>0 is a sequence of real positive numbers satisfying:
i. The sequence (up)p>o is convergent and limu, = 0;

1. There exist the nonnegative real numbers oy, ...,an+1 and a
bounded sequence (cp)p>0 with ¢ > 0 for all s = 0,1,..., and
0 <inf{cy} such that the elements of (up)p>0 satisfy

_ « a2 Qn+41 _ .
Usintl = CslUy Ugr i Ugtn , §=0,1,...; (6)

Inupyr _ Inupq
1. The sequence T, 18 convergent and w = 2= wy 0.

Then w 1is the positive solution of the equation:

tn—}-l t'ﬂ,—l _

— a1t — ay co.—agt—ap = 0.
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Proof. From (6) we obtain

. Inu ) Inc Inwugy;
lim —5 L — iy 4 ZO‘H—I lim st
s—=00  Inupyqg 5—00 In Up 4 = —00 In Ug 4y
But it can be easily seen that
) Inc . Inwugy 1 .
lim * =0 and lim R - 1 =0,n
5—00 In Uy 4 s=oo Inugyy, — wh?

whence it follows that w = i ai+1#, ie W't — > aipw' = 0.
Lemma is proved. = =

We shall denote in the following by m, the number of function
evaluations that must be performed at each iteration step p in (2),
respectively (3), for p=0,1,....

In the hypotheses of Lemma 1 and taking into account the definition
given in [4], we have:

Definition 2 The real number E is called the efficiency index of the
iterative method (2) or (3) if there exists

NI
=lim| ———~—
L=t <ln|f(xp)|>
and L = F.

Remark 2. If for the methods (2) and (3) there exists a natural
number sg such that mg = r for all s > sg and w is the convergence
order of these methods, then the efficiency index E is given by the
following expression:

E =w%. (7)

3 Iterative methods of interpolatory type

In the following we shall briefly present the Lagrange - Hermite - type
inverse interpolatory polynomial. It is well known that this leads us
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to general classes of iterative methods from which, by suitable par-
ticularizations we obtain usual methods as Newton’s method, chord’s
method, Chebyshev’s method, etc.

For the sake of simplicity we prefer to treat separately the Her-
mite polynomial and the Lagrange polynomial, though the last is a
particular case of the first.

As we shall see, a suitable choice of the nodes enables us to improve
the convergence orders of Lagrange-Hermite-type methods. We shall
call such methods Steffensen-type methods.

3.1 Lagrange-type inverse interpolation

Denote by F' = f(I) the range for z € I. Suppose f is n + 1 times
differentiable and f’(z) # 0 for all z € I. It follows that f is invertible
and there exists f~!: F — I. Consider n + 1 interpolation nodes in I :

1,22, ..., Tpyl, T #xj, fori,j=1,n+1,1#j. (8)

In the above hypotheses it follows that the solution Z of equation
(1) is given by

z = f~40).
Using the Lagrange interpolatory polynomial for the function f~!
at the nodes f(z1),..., f(x,41) we shall determine an approximation

for £71(0), i.e. for z.
Denote y; = f(z;), i = 1,n+1 and let L(y1,%2,---Ynst1; f |v)
be the mentioned polynomial, which is known to have the form

n
_ ziwi (y)
L(y,yo, oy f 7 y) =) ————F—,
( e ) Z{(y—yi)wl(yi)

n+1
where w; (y) = ~H1 (y — vi)-
1=
The following equality holds

@) =L (s £ y) +R(F ) 9)

25
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where
B f—l §,)1(n+1)
R(r )= (qi i)]n!

and min{y, f(x1)7 e 7f(xn+1)} < 01 < max{y, f(x1)7 e 7f(xn+1)}'
It is also known that in the mentioned hypotheses concerning the

derivability of f on I, the function f~! admits derivatives of any order
k, 1 <k <n+1forall ye F and the following equality holds [4], [8]:

IRTCI SlCiet e iy Gy il

12'13'1k'[f’(.’13)]2k_1 1! 2!

X ee X <f(2!(x)>2k, (10)

w1(y)

k=1n+1

where y = f(z) and the above sum extends over all nonnegative integer
solutions of the system

iy + 25+ ..+ (k= 1)y, = k—1
i1+t +...+% = k—1.

From (9), neglecting R(f~!,0) we obtain the following approxima-
tion for z

T~ L(y1, Y2, Ynt1: f] 0).

Denoting
Lp+2 = L(y17y27 <oy Ynt1; fil | 0)7
we obtain gl Y1t D)
I P () N
|$"+2_J;|_ (n+1)| |w1(0) |7
where min{0, f(z1),..., f(zni1)} < 0; < max{0, f(z1), ..., f(zni1)}-
It is clear that if x5, 2511, ..., Zstn are n+1 distinct approximations

of the solution Z of equation (1) then a new approximation zs,y1 can
be obtained as above, i.e.

Lstn+1 = L(?JSayH—la e ays—l—n;f_l | 0) s=12,... (11)
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with the error estimate given by

—1¢g" \1(n+1) g
| [f (759_5;)]1)! |H | f(zss) ], s=1,2,... (12)

=0

| Ts4n+1 — T |:

where 9; belongs to the smallest open interval containing 0, f(zs), ...,
f(xs—f—n)-

If we replace in (12) |zsyny1 — Z| = %, we obtain for the
sequence (f(zp))p>0 the relations:

—1(g')(nt1) |
1 (759i)]1)! I fen . (3)

1=0

| f(@ssnt) =] £ () |

where a; belongs to the open interval determined by = and xgyyn41.

Suppose that cg :| f’(as) | W, s € N, satisfies the
hypotheses of Lemma 1 and that the sequence (f(zp))p>0, converges to
zero, where (z,),>0 is generated by (11). Then the convergence order

of this sequence is equal to the positive solution of the equation:
gl - 1=0

Considering the set of all equations of the above form for n > 1,
n € N, and denoting by w1 its corresponding positive solution it is
known that the following relations hold [4]:

7) 2(7‘1,—}-1)

s <wn41 <2 n=1,2..;

b)) wy, <wpy1 n=12...
¢’) limw, = 2.
3.2 Hermite-type inverse interpolation

Cousider in the following, besides the interpolation nodes (8), n + 1
natural numbers a1, a9,...,ap41, where a; > 1, i=1,n+1 and

a1 +ax+...+ap1 =m+1.
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We shall suppose here too, for simplicity, that f is m + 1 times
differentiable on I. From this and from f/(z) # 0 for all z € I, it
follows, by (10), that f~! is also m -+ 1 times differentiable on F.
Denoting y; = f(z;), ¢ = 1,n+ 1, the Hermite polynomial for the
nodes v;, ¢ = 1,n + 1, with multiplicity orders a;, ¢ = 1,n + 1, has
the following form:

H (y1,a1392,a2; 1 Ynt1: ani1; f 1 y) =

_mgdagteg Lo g (—w)\ Y )
=> X > (f 1(@/1))]L<7> v

i=1 j=0 k=0 I wily) ey, et
where
n+1
wiy) = [y — i)™ (14)
i=1
Hzg,x5q1,..., %54y are n+1 distinct approximations of the solution

T of the equation (1), then the next approximation Zs;,+1 can be
obtained as before in the following way:

~Ts+n+1:H(y&al;---;ys—f—nuan—f—l;fil |y)7 s=1,2,... (15)
where, as in (14),
s+n
ws(y) = [[ (v —wi)®
i=$

It can be easily seen that the following equality holds:

11y (m+1)
asmenl = 17 B 'H|f DI,

(m
s=1,2,... (16)

where 0 belongs to the smallest open interval containing 0, ys, Ys1, - - - ,

Ys+n and Bs belongs to the open interval determined by Z and Zsyn41.
7)](m+1) :
If we the suppose that ¢; = |f/(5 )|%, s € N, verifies

the hypotheses of Lemma 1 and, moreover, ll)m f(zs) = 0, then it is
S o«
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clear that the convergence order of the method (15) is given by the
positive solution of the equation

" — Gt —ant™ ™ — . —agt —ay = 0. (17)
In the following we shall consider the following particular cases of

(15):
For a1 = as = ... = apy1 = q, from (15) we obtain

Toini1 = HYs, GYst1,G -3 Ysans G 1] 0), (18)

method having the convergence order given by the positive solution of
the equation

gt — gt — L —gt—q =0 (19)

Let v,+1(q) denote the positive solution of equation (19). It is easy
to prove that the following properties hold (see [7]):

a”) m(q) <ymt1(g) n=12,..4
b”) max{q, Z—E(q—l— D} <ynt1(@) <g+1 n=1,2,..;
¢”) lim yn(q) =g+ 1.

Taking n = 0 in (15) we obtain again Chebyshev’s method, i.e.

1 l -1 1
Pern = @ — %f(xs) + %ﬂ(%) ¥
+(—1)mmf(m)(xs), s=1,2,..., (20)

m!

where ys = f(xy), the convergence order being m + 1.

Concerning the positive solution of equation (17) we state the fol-
lowing lemma.
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Lemma 3 The positive solution 6,41 of equation (17) verifies the re-
lations:

m-+1

n+1
(n+1)(m+1)= ) 7 (i=D)ay
i=1 < < )
(m+1) < 1 <1+ 1§r%1§a73<+1{a,},
n=12,... (21)
Proof. Let
m—+41
n+1
(nt+1)(m+1)= Y (i-1ey
a=(m+1) i=1 . (22)

It is sufficient to prove that P, () < 0, where P, 1(t) = t"t1 —
an4+1t" — ... —agt —a;. We shall use for this the inequality between the
arithmetic mean and the geometric mean, i.e.

n+1 nl
> P /ntl S
=1 pi | =1
n+1 2 H a; ’ ’
> Di =1
=1
n+1

>0, p;>0, i=Tn+1, > pi>0.
=1

Using this inequality we obtain

n+1

n+1 > oaid™
1 i1 1 =1
Poii(a) = ot —Zaiaz =a"t _ZnT'ZaiS
i=1 S a4 i=1
i=1

n+1

n+1 n+1 ] Z a;
ot <Z ai) (H a(1—1)0i> i=1 =
=1 =1

30
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nt+l ﬁ
_ an+1_(m+1)<na<zl>ai) _

i=1
1
n+1 FrEsy

> (i—1)as

= an+1 — (m + ].) Qi=t —

n+1 n+1
> (i-1)ay > (i-1)ay
=1 =1
= o | T E T —(m+ )] =0,

ie. Pyyi(a) <0.
Remark 3. It can be easily seen that the number « given by (22) can
be exprimed using P, ;(1):
m+1
a=(m+ 1)m(n +1)+ P, (1) )

The second part of relations (21) follows easily from the inequality

Pyi1(a) >0, where a =1 + lgr%agiﬂ{ai}.

3.3 Steffensen-type iterative methods

The convergence orders of methods (11), (15), respetively (18) can be
improved if the interpolation nodes in the corresponding formulae are
chosen in a special way. For this purpose we consider a continious
function ¢ : I — I, whose unique fixed point in the interval I is z. We
also suppose that f and ¢ verify the equality

flo(z)) =g(z) - f(x), forallzel, (23)

where g : I - R, g(z) #0 for all z € I.
Let s € I be an approximation of the solution Z. Denote us; =

Tsy, Ust1 = @(us)u Us42 = @(us—f—l)u"- y Us+n = @(us—i—nfl) and Ys =
f(US)a Ys+1 = f(us+1), co s Ystn = f(us+n)'

31



I.Pavaloiu

Consedering now as interopolation nodes the numbers gs, §s+1, - -
Us+n by (11) we obtain

b

Ts+1 = L(gsags-l-la' .. 7g8+n;f71 | 0)
s=0,1,..., @€l (24)

and from (15) we have

Tor1 = H(Ys, 013 Us41,025 -5 Ustn, ang1; f | 0),
s=0,1,..., =€l (25)

The iterative methods (24) and (25) are generalizations of the Stef-
fensen’s method, which can be obtained from (24) for n = 1 (see [4],
5)).

From (23) one obtains the following representations for g4, i =
1,n:

gs—f—’i = f(uS—f-’i) = ps,i—lf(x5)7 Z = ]-a27 RN

where
s+i—1
psici= ][ 9(uj).
Jj=s
Considering (13) we obtain:
| ( ( n—l—l | s+1 )
|f(xs+1)| = | ( )| (n+1 H|ps’L 1| ( )|n ’
s=0,1,... 26
bl 7 bl ( )

and, analogously, from (16) we get

[ )

_ | e
| f(xs-l-l) | - | (ﬁs) | (m + 1) Zzl—Il |ps,’t—1 |

x| flzs) ™ s=0,1,.... (27)

32



Optimal efficiency indexes for iterative methods. ..

In the relations (26) and (27), a; and (3, are contained in the
open interval determined by Z and zsy; from (24) and (25) respec-
tively and pus and ,u/s belong to the smallest open interval containing
0, s, Us+1,- - - » Us+n from (24), respectively (25).

If we suppose that the sequences (us)s>0 and (vs)s>0 given by

, n+1 n+1
uy = f (@ >|”f((“s 'H|pm|

(m+1) | ntl
LAy (PR

vs =| £ (B,)

are bounded and inf{us} # 0, respectively 1nf{vs} # 0, then we clearly
have that the convergence orders of methods (24), respectively (25) are
equal to n + 1, respectively m + 1.

Remark 4. For the way of choosing the function ¢ with the mentioned
properties see for example [5].

4 Optimal efficiency

We shall analyze in the following the efficiency index of each of the
methods described and in the hypotheses adopted below we shall de-
termine the optimal methods, i.e. those having the highest efficiency
index.

As we have seen, the formulae for computing the derivatives of f !
have a complicated form and they depend on the successive derivatives
of f. Though, in the case where the orders of the derivatives of f~! are
low, the values of these derivatives are obtained by only a few elemen-
tary operations. Taking into account the generality of the problem we
shall consider each computation of the values of any derivative of f~!
by (10) as a single function evaluation. For similar reasons we shall also
consider each computation of the inverse interpolatory polynomials as
a single function evaluation.

As it will follow from our reasonings, the methods having the op-
timal efficiency index are generally the simple ones, using one or two
interpolation nodes and the derivatives of f~! up to the second order.
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Remark that in our case we can use for the efficiency index the
relation (7).

4.1 Optimal Chebyshev-type methods

Observe that for passing from the s-th iteration step to the s + 1, in
method (20) must be performed the following evaluations:

!

fxs), f ($S)7---7f(m)($8)a

i.e. m+ 1 values.
Then, by (10), we perform the following m function evaluations:

b

@] ] e [ ]

where y; = f(zs). Finally, for the right-hand expression of relation
(20) we perform another function evaluation, so that 2(m+ 1) function
evaluations must be performed.

By (7) the efficiency index of method (20) has the form

E(m) = (m+ 1), E:N-R.

Considering the function h : (0, +00) — R, h(t) = t%, we observe
that it attains its maximum at ¢ = e, so that the maximum value of E
it attained for m = 2. We have proved the following result:

Theorem 1 Among the Chebyshev-type iterative methods having the
form (20) the method with the highest efficiency index is the third order
method, 1i.e.

Y (€7 N C7) )
s+ s f’(xs) 9 [f’(xs)]?’ 3

s=0,1,..., xg€l (28)

In the following table some approximate values of E are listed:
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m 1 2 3 4 S
E(m) | 1.1892 | 1.2009 | 1.1892 | 1.1746 | 1.1610

Table 1.

We note that £(2) ~ 1.2009

4.2 The efficiency of Lagrange-type methods

We shall study the methods of the form (11), for which the convergence
order verifies a’)—¢’) from 3.1. Taking into account Remark 2, it can be
easily seen that we can use relation (7) for the efficiency index of these
methods. For each s +n + 1 step, s > 2, in (11) in order to pass to
the next step, only f(2s4n41) must be evaluated, the other values from
(11) being already computed. We have also another function evaluation
in computing the right-hand side of relation (11). So there are needed
two function evaluations. Taking into account that the convergence
order wyy1 of each method satisfies a’)—c¢’), and denoting by E, ;1 the
corresponding efficiency index, we have

1
Epnpi=wly, n=12,..;

Ep < Eps1, n=2,3,...

and
lim E,, = V2.

We have proved:

Theorem 2 For the class of iterative methods of the form (11) the
efficiency index is increasing with respect to the number of interpolation
nodes, and we have the equality

lim E,, = V2.
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4.3 Optimal Hermite-type particular methods

We shall study the class of iterative methods of the form (18) for ¢ > 1.
Taking into account the remarks from 4.2. it is clear that we can use
again relation (7) for the efficiency index.

If x,,4; is an approximation for the solution z obtained by (18) then
for passing to the following iteration step we need

!

f($n+j)a f ($n+j)7 cee 7f(q_1) ($n+j)a

i.e. ¢ function evaluations. Then, by (10) we must compute the
derivatives of the inverse function [f(y,1;)~']®,i = T,q— I, where
Yn+j = f(@ntj). Another function evaluation is needed for comput-
ing the right-hand side of relation (18). We totally have 2¢ function
evaluations, the other values in (18) being already computed.

By a”)-b”) from 3.2 and denoting by E(v,+1(q),q) the efficiency
of this method, we get:

E(vu+1(9);9) > E(ya(g),q) n=>1, ¢>1 (29)

(maX{q,Z—H(qul)})% < E(msi(q),q) < (g +1)7,

n>1, qg>1. (30)

For a fixed ¢, by (29) it follows that the efficiency index is an in-
creasing function with respect to n and

lim B(ya(q), q) = (g +1)%.

In the following we shall study E(v,(q),q) as a function of g > 1
andn > 2, ¢q,né€N.
By (30) we have

1 1
q% < E(vn41(q),q) < (¢+1)%, forg>n+1
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and

2q

@+ D] < Bow@.a) <@+ D,

[n—i—l
n+ 2

forg <n+1. (31)

For ¢ > n+1 consider the functions h : (0, +00) — R, h(t) = {2
and 1 : (0,+00) = R, I(t) = (¢t + 1)2.

Some elementary considerations show that i and [ satisfy %{% h(t) =
0, tlim h(t) =1, his increasing on (0, e) and decreasing on (e, +o00) and

00
liml(t) = e?, lim I(t) =1, [ is decreasing on (0,400). The maximum
t\0 t—o0
value of h is h(e) = el

Let t be the solution of the equation

(t+1)2 — e = 0. (32)

It can be easily seen that ¢ exists and it is the unique solution for
equation (32). For t > ¢, I(t) > e2l_e, so it is clear that the maximum
value of E(y,41(q),q) can be obtained for ¢ < ¢, ¢ € N. It is easy to
prove that ¢ € (4,5) and t ~ 4.76. Taking into account the properties
of h and [ it is clear that in order to determine the greatest value of
E(vn+1(q), q) it will be sufficient to consider only those ¢ € N verifying
1<¢g<4,andn<qg—1.

Table 2 contains the approximate values of the efficiency indexes
corresponding to these values of ¢ and n.

qg/n |1 2 3
2 1.2856
3 1.2487 | 1.2573
4 1.2175 | 1.2218 | 1.2226

Table 2.

The highest value for the efficiency index is hence obtained for ¢ =
2 and n = 1. We shall precize explicitly the method (18) for these
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values. For this purpose it is convenient to use the divided differences
on multiple nodes. The following table contains the divided differences
for the inverse function f~! on the nodes y, = f(zs), ys11 = f(Zs11)
having the multiplicity orders 2.

flz) | [w,0; f7"] [ w,0,0; f71 | fu,0,0,2 f71]
Ys T .
ys | zs | [yeyss S|
Ys+1 | Tst1 | [YUs, Us+15 | [Yss Yss Yst15
] i
Ys+1 | Ts+1 [ys+1uys+1; [ysays-l—lays-i—l; [ysuysays-i—l:ys—l—l;
] 1 1
Table 3.
Here [y, ys; f7'] = m7 [Ys+1:9s415 f 1] = f’(:c15+1) and

[Ys, yss1; fY = m, and the other divided differences are com-

puted using the well-known recurrence formula.
In this case the method has the following form:

Tsra = s — YssUsi F1Ys + [Yss Ys Ys15 f Y2

_[ysa Yss Ys+1:Ys+13 fﬁl]yzys-l-la
s=1,2,..., z,z90€1. (33)

The following theorem holds:

Theorem 3 Among the methods given by relation (18) for n > 1 and
q > n+1, the method with the highest efficiency indez is given by (33),
and corresponds to the case n =1 and q = 2.

We shall analyze the case ¢ < n+1. In this case the efficiency index
verifies (31). We also consider, besides the function [/ already defined,

1
the functions p,, : (0,4+00) = R, py,(t) = [Z—ié(t + 1)] *", which satisfy

the following properties }g%pn(t) =0, tllglopn(t) =1 and
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,(t)zl[n+1(t 1)}% o —In 2 (t 4 1)
Pol®) =9 [n+2 2 '

It can be easily shown that the equation p/ () = 0 has a unique
positive solution, denoted by 7,. We also have p/,(t) > 0 for ¢ < 7,
and p! (t) <0 for t > 7,, i.e. p, attains its maximum value at t = 7,,.

We also have that p,yi1(7,) < 0, showing that 7,41 < 7, for all
n > 2. But since 1 < ¢ < n + 1 it follows that we must examine only
the cases when n > 2. Taking into account that 7, is the solution of
the equation p),(t) = 0 we get that the maximum value of the function

1

pn is equal to e2Cn+1) )

Let v, : (0,400) — R, v,(t) = (¢t + l)zlt — e*nt1) . An elemen-
tary reasoning leads us to the following conclusions: v, is decreasing
on (0,+400); the equation v,(z) = 0 has a unique solution y, on the
interval (0, +00) and g1 < fin.

Since for ¢ > p,, we have p,(1,) > pn(t), it follows that the values
of n and ¢ for which E attains maximum must be searched in the set

{ge N2 < g <min{n+1,pu,}}. (34)

Table 4 below contains the approximate values of the solutions 7,
and fi,,, the error being smaller than 1072,

Tn, Hn

1.3816 | 3.6711
1.1201 | 2.8679
0.9566 | 2.3871
0.8436 | 2.0649
0.7601 | 1.8327

Table 4.

S U o NS

Since ¢ € N, we shall be interested only in the integer parts of the
solutions fiy,.

From the above table and by (34) we can see that E(y,+1(q),q)
attains its maximum at ¢ = 2. Taking into account that E(y,(2),2) <
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E(vn+1(2),2) for n > 2 then we observe that E is increasing with
respect to n.
Hence the following theorem holds:

Theorem 4 Taking g < n+ 1 in (18), the greatest values of the ef-
ficiency indexes E(yn+1(q),q), n > 2, are obtained for q = 2. It this
case the efficiency index is increasing with respect to n, and we have

lim E(y,(2),2) = v/3.

4.4 Bounds for the efficiency index of the general Her-
mite-type methods

As it was shown in [6], the method (15) have the highest convergence
order when the natural numbers a1, as, ..., ap41 verify the inequalities
a1 <ag < ... < apy1- More exactly consider the equations:

" — a1t —ant™ Tt — L —agt — ay = 0; (35)
" — gt — apt™ T — L —apt — apgy = 0; (36)
gt — ailt" — ai2t"_1 — ... —at— iy = 0, (37)
n+1
where a; > 0, i = Ln+1, > a; > 1 and (i1,92,...,%p41) i an
arbitrary permutation of the nuzr;sbers 1,2,....,n+ 1.

If a, b, ¢ are the corresponding positive solutions for equations (35)—
(37) then the following Lemma holds:

Lemma 4 Ifa; <as <...<aps thenl <b<c<a, ie., among all
equations of the form (37), equation (35) has the greatest positive root.

In the following we shall assume that the multiplicity orders of
the interpolation nodes of the Hermite polynomial which leads to the
method (15) satisfy

a; <ag < ... < Apii-

From the above assumptions, at each iteratioin step there must
be performed 2a,;; function evaluations. Denoting by E(d,41) the
efficiency index of (15) and taking into account Lemma 3 we get:
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Theorem 5 Ifa; < ag < ... < apy1 and dpy1 s the positive solution
of (17) then the efficiency index of the method (15) satisfies

m—+41
7 1
(m + 1)2[m("+1)+Pn+1(1)]an+1 < E(bps1) < (1 + angy)@nt. (38)

Taking into account the proprieties of the function ! given in 4.3
1

and that a,y; > 1, it follows that the expresion (1+ap41)?*»+1 attains
its maximum value for a,; = 2. Taking account the inequalities from
1

(38) the fact that (14ay41) ?*n+1 attains its maximum value at a, 11 = 2
do not imply the maximality of E(d,41).

4.5 Optimal Steffensen-type methods

In the following we shall determine the optimal efficiency index for
the class of iterative methods given by (25). First, we observe that at
each iteration step s in (25), we must compute n values of the function
0, usti = o(usi1), © = 1,n,us = x5 being an already computed
approximation of the solution Z.

We then compute ys1; = f(usyi), ¢ = 0,n, i.e. n+ 1 function
evaluations. In order to compute the successive values of f and f~! at
the nodes us;, 4 = 0,n we need 2(m—n) function evaluations. Finally,
there is another function evaluation in computing the right-hand side
of (25). Totally there are 2(m + 1) function evaluations.

If we denote by E(m) the efficiency index of (25). then

E(m) = (m + 1) %7,

which, taking into account the rezults from 4.1, attains its maximum

at m = 2.

Remark 5. If we take a; > 1 in (25), then method (24) is a particular

case of (25), since for a; = as = ... = ap41 =1 in (25) we get (24).
By the above remark, if m = 2 then from a1 + a2+ ...+ ap41 = 3,

it follows n < 2. Hence we have to analyze the following cases:

i) a1 +ag+az=3,ie ay =as =a3 =1;
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il) a1 +ay=3,1e. a1 =1, ag=20ray =2; ay =1;
iii) a; = 3.
i) For a; = ag = a3 = 1, by (24) we get the following method:

f ()
[Tk, p(zk); f]

B [z, (i), ple(ar)); f1f (@r) f(p(2k))
[zk, o(zk); fllzr, (o(zk); flle(zr), o(e(zh)); £

k=0,1,..., zo€l (39)

Tg+1 = Tk —

ii) For a1 = 2,a2 = 1 we get method

o) ok ok, p(or); f ]f2($)
fiog)  f () [z, o(or); f12

k=0,1,..., zp€l (40)

LTk+1 = Tk —

and for a; =1, ay = 2 we get
f(zx)
[z, o(zk); f]

_ Lk plan), o(n); F1f (@) f(o(k))
[z, (n); FI 1 (0(k))

k=0,1,..., xg€l (41)

iii) For a; = 3 we get the method (28), i.e. the Chebyshev’s method
of third order.
We have proved the following theorem:

Th+1 = Tk —

bl

Theorem 6 Among Steffensen-type iterative methods given by (25),
the methods (39)-(41) have the optimal efficiency index.

Remark 6. In the particular case when a; = ag = ... = apy1 = ¢
the condition imposed to obtain an optimal method leads us to two
possibilities, namely: ¢ = 3 and n = 0, i.e. method (28) or ¢ = 1 and
n = 2, i.e. method (39).
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