ON THE HERON'S METHOD FOR APPROXIMATING THE CUBIC ROOT OF A REAL NUMBER DAN LUCA, ION PĂVĂLOIU 1991 AMS Subject Classification. 65G05, 65B05. ## 1. INTRODUCTION In this paper we shall specify and go deeply into some problems presented in [1], concerning the Heron's method for approximating the cubic root of a positive number. The authors of [1] construct a method based on the Heron's algorithm for computing the cubic root of 100. The method works as follows: Given two real numbers a and b satisfying $a^3 < N < b^3$, the Heron's method for approximating $\sqrt[3]{N}$ is (1.1) $$\phi(N, a, b) = a + \frac{bd_1}{bd_1 + ad_2} (b - a),$$ where $d_1 = N - a^3$ and $d_2 = b^3 - N$. We shall show that the approximation (1.1) of $\sqrt[3]{N}$ follows from the *regula falsi* applied to the equation $x^2 - \frac{N}{x} = 0$ [2]. This will given a rigorous interpretation of (1.1), and the results from [1] will be reached again. Using results from [4], we shall give other error bounds than those in [1]. On the other hand, the method is generalized to the case $\sqrt[p]{N}$, $p \in \mathbb{N}$, $p \geq 2$, the method also offering bilateral approximations. Some remarks on applying the results in [4] for the error bounds will lead us to the generalization of the Heron's method. ## 2. HERONS'S METHOD AND REGULA FALSI **A.** In order to approximate the cubic root of N > 0 by (1.1), consider the function $f: [a,b] \to \mathbb{R}, \ f(x) = x^3 - N, 0 < a < b \text{ and the function } g: [a,b] \to \mathbb{R}, \ g(x) = \frac{f(x)}{x}.$ It is well known that regula falsi applied to the equation g(x) = 0 leads to the following approximation of its root (2.1) $$c = a - \frac{g(a)}{[a, b; g]},$$ [u, v; g] denoting the first-order divided difference of g on the nodes u and v. It can be easily verified that $c = \phi(N, a, b)$. Taking into account that $c \in (a, b)$ and denoting by [u, v, w; g] the second-order divided difference of g on the points u, v, w, we get $$(2.2) g(x) = g(a) + [a, b; g](x - a) + [a, b, x; g](x - a)(x - b)$$ for all $x \in (a, b)$. For $x = \sqrt[3]{N}$ in (2.2) we obtain $$g(a) + [a, b; g] \left(\sqrt[3]{N} - a\right) + \left[a, b, \sqrt[3]{N}; g\right] \left(\sqrt[3]{N} - a\right) \left(\sqrt[3]{N} - b\right) = 0,$$ from which, by dividing [a, b; g] it follows (2.3) $$c - \sqrt[3]{N} = \frac{[a,b,\sqrt[3]{N};g]}{[a,b;g]} (\sqrt[3]{N} - a) (\sqrt[3]{N} - b).$$ An elementary calculation on $\frac{\left[a,b,\sqrt[3]{N};g\right]}{\left[a,b;g\right]}$ shows that $$(2.4) \qquad \frac{c-\sqrt[3]{N}}{\sqrt[3]{N}} = \frac{\sqrt[3]{N} + \sqrt{ab}}{\sqrt[3]{N} [ab(a+b) + N]} (\sqrt[3]{N} - a) (\sqrt[3]{N} - b) (\sqrt[3]{N} - \sqrt{ab}),$$ which gives Theorem 3, [1]. Taking into account the above remarks and using the evaluations obtained by T. Popoviciu in [4], (2.3) gives the following error bounds $$(2.5) \frac{m_2}{M_1} (\sqrt[3]{N} - a) (b - \sqrt[3]{N}) \le |c - \sqrt[3]{N}| \le \sqrt{\frac{M_2}{m_1}} (\sqrt[3]{N} - a) (b - \sqrt[3]{N}),$$ where $$m_1 = 3a$$ $$m_2 = \min\left\{\frac{N}{a^3} - 1, 1 - \frac{N}{b^3}\right\}$$ $$M_1 = \max\left\{\frac{2a^3 + N}{a^2}, \frac{2b^3 + N}{b^2}\right\}$$ $$M_2 = \max\left\{\frac{N}{a^3} - 1, 1 - \frac{N}{b^3}\right\}.$$ Note that (2.5) leads to a very good error evalutation; since a and b are close to N, then m_2 and M_2 are close to zero. This is implied by the fact that the function g and its second derivative vanish at the same point $x = \sqrt[3]{N}$. **B.** It can be easily seen that the method presented at **A** can be generalized. For the approximation of the root of order p of the real number $N, p \in \mathbb{N}, p \geq 2$, consider the function $f_1: [a_1, b_1] \to \mathbb{R}$, $$f_1(x) = x^p - N, \qquad 0 < a_1 < b_1, \ a_1^p < N < b_1^p$$ and the function $g_1:[a_1,b_1]\to\mathbb{R}$, $$g_1(x) = \frac{f_1(x)}{x^q}$$, where $q = \frac{p-1}{2}$. The function g_1 satisfies $g_1(\sqrt[p]{N}) = g_1''(\sqrt[p]{N})$. Applying regula falsi to the equation $g_1(x) = 0$, we obtain $$(2.6) c_1 = a_1 - \frac{g_1(a_1)}{[a_1, b_1; g_1]}$$ Similarly to **A**, we obtain (2.7) $$c_1 - \sqrt[p]{N} = \frac{\left[a_1, b_1, \sqrt[p]{N}; g_1\right]}{\left[a_1, b_1; g_1\right]} (\sqrt[p]{N} - b_1) (\sqrt[p]{N} - a_1),$$ which gives $$(2.8) \qquad \frac{t_2}{2T_1} \left(\sqrt[p]{N} - a_1 \right) \left(b_1 - \sqrt[p]{N} \right) \le \left| c_1 - \sqrt[p]{N} \right| \le \frac{T_2}{2t_1} \left(\sqrt[p]{N} - a_1 \right) \left(b_1 - \sqrt[p]{N} \right),$$ where $$\begin{split} t_1 = & p a_1^{\frac{p-1}{2}} \\ t_2 = & \min \left\{ \frac{(p-1)(p+1)\left(N - a_1^p\right)}{4a_1^{\frac{p+3}{2}}}; \frac{(p-1)(p+1)\left(b_1^p - N\right)}{4b_1^{\frac{p+3}{2}}} \right\} \end{split}$$ $$T_{1} = \max \left\{ \frac{(p+1)a_{1}^{p} + (p-1)N}{2a_{1}^{\frac{p+1}{2}}}; \frac{(p+1)b_{1}^{p} + (b-1)N}{2b_{1}^{\frac{p+1}{2}}} \right\}$$ $$T_{2} = \max \left\{ \frac{(p-1)(p+1)(N-a_{1}^{p})}{4a_{1}^{\frac{p+3}{2}}}; \frac{(p-1)(p+1)(b_{1}^{p} - N)}{4b_{1}^{\frac{p+3}{2}}} \right\}.$$ ## 3. STEFFENSEN'S METHOD FOR APPROXIMATING THE pTH-ORDER ROOT Let $I = [\alpha, \beta]$, $\alpha < \beta$ be an interval of the real axis. Consider the equation $$(3.1) F(x) = 0,$$ where $F: I \to \mathbb{R}$. Suppose that equation (3.1)has a root $\bar{x} \in (\alpha, \beta)$. Consider also a function $h: I \to \mathbb{R}$ such that equation $$(3.2) x - h(x) = 0$$ is equivalent to (3.1). The Steffensen's method consists in the generation of two sequences (x_n) and $(h(x_n))$ by the relations (3.3) $$x_{n+1} = x_n - \frac{F(x_n)}{[x_n, h(x_n); F]}, \qquad n = 0, 1, \dots, \ x_0 \in I.$$ As we shall see, this method offers the possibility to obtain better both upper and lower approximations, by starting with a lower approximation of $\sqrt[p]{N}$. Then, by applying only once the regula falsi (2.6), the precision can be increased. As concerns the convergence of (x_n) and $(h(x_n))$ in (3.3), in [3] the following theorem is proved. THEOREM 3.1. [3]. If the functions $F: I \to \mathbb{R}$ and $h: I \to \mathbb{R}$ are continuous and satisfy the following conditions: - i) the function h is decreasing on I, - ii) the function F is increasing and convex on I, - iii) there exists $x_0 \in I$ such that $F(x_0) < 0$ and $h(x_0) \in I$, - iv) the equations (3.1) and (3.2) are equivalent, then the following properties hold: - j) the sequence (x_n) is increasing, - jj) the sequence $(h(x_n))$ is decreasing, - $jjj) \lim x_n = \lim h(x_n) = \bar{x}$ - jv) the relations $x_n \leq x_{n+1} \leq \bar{x} \leq h(x_n)$ hold for all n = 0, 1, ..., - v) $\bar{x} x_{n+1} < h(x_n) x_{n+1}$. Applying this Theorem for $F: [\alpha, \beta] \to \mathbb{R}, F(x) = x^p - N, h: [\alpha, \beta] \to \mathbb{R},$ $$h(x) = x - \frac{F(x)}{p\alpha^{p-1}},$$ where $0 < \alpha < \beta$ and $p \in \mathbb{N}$, $p \ge 2$, we obtain $$x_{n+1} = x_n + \frac{(p\alpha^{p-1})^{p-1}(x_n - N)^2}{(p\alpha^{p-1}x_n - x_n^p + N)^p - (p\alpha^{p-1}x_n)^p}, \qquad n = 0, 1, \dots, x_0 = \alpha; \alpha^p < N.$$ Since F is increasing and convex $[\alpha, \beta]$, it follows that h is decreasing on $[\alpha, \beta]$, and the equations F(x) = 0 and h(x) - x = 0 are equivalent. So the conclusion of Theorem 3.1 follows. The sequences (x_n) and $(h(x_n))$ being convergent, it follows that for all $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for $n \geq n_0$ we have $$h(x_n) - x_n < \varepsilon$$, which implies $\sqrt[p]{N} - x_n < \varepsilon$ and $h(x_n) - \sqrt[p]{N} < \varepsilon$. If we use (2.6) for $a_1 = x_n$ and $b_1 = h(x_n)$ and $g_1(x) = \frac{F(x)}{x^{\frac{p-1}{2}}}$, and we denote the approximation obtained by c_n , then by (2.8) we have $$\left| c_n - \sqrt[p]{N} \right| \le \frac{T_2'}{2t_1'} \varepsilon^2,$$ where $$\begin{cases} T_2' = \max \left\{ \frac{(p-1)(p+1)(N-x_n^p)}{\frac{p+3}{4x_n^2}}; \frac{(p-1)(p+1)(h^p(x_n)-N)}{4h(x_n)^{\frac{p+3}{2}}} \right\} \\ t_1' = px_n^{\frac{p-1}{2}} \end{cases}$$ ### 4. A NUMERICAL EXAMPLE We intend to apply the method described in Section 3 for the approximation of the number $\sqrt[5]{100}$, i.e., for solving the equation $x^3 - 100 = 0$. In this case we have $$F\left(x\right) = x^5 - 100$$ and, taking $\alpha = 2$, for the function h we have $$h\left(x\right) = x - \frac{1}{80}F\left(x\right).$$ Considering $x_0 = \alpha = 2$ and using (3.3), with F and h given above, we obtain for the sequences $(x_n)_{n>0}$ and $(h(x_n))_{n>0}$ the following values: | n | x_n | (/ | $\varepsilon_n = h\left(x_n\right) - x_n$ | |---|-----------------|--------------|---| | 0 | 2.0000000000 | | $8.5000000000 \cdot 10^{-01}$ | | 1 | 2.3704445072 | 2.6849117966 | $3.1446728941\cdot 10^{-01}$ | | 2 | 2.4927536892 | 2.5396394928 | $4.6885803578\cdot 10^{-02}$ | | 3 | 2.5114651493 | 2.5125130194 | $1.0478700715\cdot 10^{-03}$ | | 4 | 2.5118862213 | 2.5118867443 | $5.2291215979\cdot 10^{-07}$ | | 5 | 2.511 886 431 5 | 2.5118864315 | $3.6379788071 \cdot 10^{-12}$. | Table 4.1. ### REFERENCES - [1] G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon Héron, Elemente der Mathematik **51**, (1996) 1, 28–34. - [2] M. Ostrowski, The solution of Equations and Systems of Equations, Academic Press, New York-London, 1960. - [3] I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen's method, Mathematica (Cluj) **35** (58), (1993) 1, 71–76. - [4] T. Popoviciu, Sur la délimitation de l'erreur dans l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl. XIII, (1968) 1, 75–78. clickable \rightarrow available soon, refresh and click here \rightarrow