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1. INTRODUCTION

In this paper we shall specify and go deeply into some problems presented in
[1], concerning the Heron’s method for approximating the cubic root of a positive
number.

The authors of [1] construct a method based on the Heron’s algorithm for
computing the cubic root of 100.

The method works as follows: Given two real numbers a and b satisfying a3 <

N < b3, the Heron’s method for approximating 3
√
N is

(1.1) φ (N, a, b) = a+ bd1
bd1+ad2

(b− a) ,

where d1 = N−a3 and d2 = b3−N. We shall show that the approximation (1.1) of
3
√
N follows from the regula falsi applied to the equation x2− N

x
= 0 [2]. This will

given a rigorous interpretation of (1.1), and the results from [1] will be reached
again.

Using results from [4], we shall give other error bounds than those in [1]. On the

other hand, the method is generalized to the case p
√
N, p ∈ N, p ≥ 2, the method

also offering bilateral approximations. Some remarks on applying the results in
[4] for the error bounds will lead us to the generalization of the Heron’s method.

2. HERONS’S METHOD AND REGULA FALSI

A. In order to approximate the cubic root of N > 0 by (1.1), consider the
function f : [a, b] → R, f (x) = x3 −N, 0 < a < b and the function g : [a, b] → R,

g (x) = f(x)
x

.
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It is well known that regula falsi applied to the equation g (x) = 0 leads to the
following approximation of its root

(2.1) c = a−
g (a)

[a, b; g]
,

[u, v; g] denoting the first-order divided difference of g on the nodes u and v. It
can be easily verified that c = φ (N, a, b) .

Taking into account that c ∈ (a, b) and denoting by [u, v, w; g] the second-order
divided difference of g on the points u, v, w, we get

(2.2) g (x) = g (a) + [a, b; g] (x− a) + [a, b, x; g] (x− a) (x− b)

for all x ∈ (a, b) .

For x = 3
√
N in (2.2) we obtain

g (a) + [a, b; g]
(

3
√
N − a

)

+
[

a, b,
3
√
N ; g

](

3
√
N − a

)(

3
√
N − b

)

= 0,

from which, by dividing [a, b; g] it follows

(2.3) c− 3
√
N =

[a,b, 3
√
N ;g]

[a,b;g]

(

3
√
N − a

)(

3
√
N − b

)

.

An elementary calculation on
[a,b, 3

√
N ;g]

[a,b;g] shows that

(2.4) c− 3
√
N

3
√
N

=
3
√
N+

√
ab

3
√
N [ab(a+b)+N ]

(

3
√
N − a

)(

3
√
N − b

)(

3
√
N −

√
ab
)

,

which gives Theorem 3, [1].
Taking into account the above remarks and using the evaluations obtained by

T. Popoviciu in [4], (2.3) gives the following error bounds

(2.5) m2

M1

(

3
√
N − a

)(

b− 3
√
N
)

≤
∣

∣c− 3
√
N
∣

∣ ≤
√

M2

m1

(

3
√
N − a

)(

b− 3
√
N
)

,

where
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m1 =3a

m2 =min
{

N
a3

− 1, 1− N
b3

}

M1 =max
{

2a3+N
a2

, 2b
3+N
b2

}

M2 =max
{

N
a3

− 1, 1− N
b3

}

.

Note that (2.5) leads to a very good error evalutation; since a and b are close to
N, then m2 and M2 are close to zero. This is implied by the fact that the function
g and its second derivative vanish at the same point x = 3

√
N.

B. It can be easily seen that the method presented at A can be generalized.
For the approximation of the root of order p of the real number N, p ∈ N, p ≥ 2,
consider the function f1 : [a1, b1] → R,

f1 (x) = xp −N, 0 < a1 < b1, a
p
1 < N < b

p
1

and the function g1 : [a1, b1] → R,

g1 (x) =
f1 (x)

xq
, where q = p−1

2 .

The function g1 satisfies g1(
p
√
N) = g′′1 (

p
√
N).

Applying regula falsi to the equation g1 (x) = 0, we obtain

(2.6) c1 = a1 −
g1(a1)

[a1,b1;g1]

Similarly to A, we obtain

(2.7) c1 −
p
√
N =

[a1,b1, p
√
N ;g1]

[a1,b1;g1]
(

p
√
N − b1)(

p
√
N − a1),

which gives

(2.8) t2
2T1

(

p
√
N − a1

)(

b1 −
p
√
N
)

≤
∣

∣c1 −
p
√
N
∣

∣ ≤ T2

2t1

(

p
√
N − a1

)(

b1 −
p
√
N
)

,

where

t1 =pa
p−1

2

1

t2 =min

{

(p−1)(p+1)(N−a
p

1)

4a
p+3
2

1

;
(p−1)(p+1)(bp1−N)

4b
p+3
2

1

}
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T1 = max

{

(p+1)ap
1
+(p−1)N

2a
p+1
2

1

;
(p+1)bp

1
+(b−1)N

2b
p+1
2

1

}

T2 = max

{

(p−1)(p+1)(N−a
p

1)

4a
p+3
2

1

;
(p−1)(p+1)(bp1−N)

4b
p+3
2

1

}

.

3. STEFFENSEN’S METHOD FOR APPROXIMATING THE pTH-ORDER ROOT

Let I = [α, β] , α < β be an interval of the real axis.
Consider the equation

(3.1) F (x) = 0,

where F : I → R. Suppose that equation (3.1)has a root x̄ ∈ (α, β) . Consider
also a function h : I → R such that equation

(3.2) x− h (x) = 0

is equivalent to (3.1).
The Steffensen’s method consists in the generation of two sequences (xn) and

(h (xn)) by the relations

(3.3) xn+1 = xn − F (xn)
[xn,h(xn);F ] , n = 0, 1, . . . , x0 ∈ I.

As we shall see, this method offers the possibility to obtain better both upper and
lower approximations, by starting with a lower approximation of p

√
N. Then, by

applying only once the regula falsi (2.6), the precision can be increased.
As concerns the convergence of (xn) and (h (xn)) in (3.3), in [3] the following

theorem is proved.

Theorem 3.1. [3]. If the functions F : I → R and h : I → R are continuous

and satisfy the following conditions:

i) the function h is decreasing on I,

ii) the function F is increasing and convex on I,

iii) there exists x0 ∈ I such that F (x0) < 0 and h (x0) ∈ I,

iv) the equations (3.1) and (3.2) are equivalent,
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then the following properties hold:

j) the sequence (xn) is increasing,

jj) the sequence (h (xn)) is decreasing,

jjj) limxn = lim h (xn) = x̄

jv) the relations xn ≤ xn+1 ≤ x̄ ≤ h (xn) hold for all n = 0, 1, . . . ,
v) x̄− xn+1 < h (xn)− xn+1.

Applying this Theorem for F : [α, β] → R, F (x) = xp −N,h : [α, β] → R,

h (x) = x−
F (x)

pαp−1
,

where 0 < α < β and p ∈ N, p ≥ 2, we obtain

xn+1 = xn +
(pαp−1)

p−1
(xn−N)2

(pαp−1xn−x
p

n+N)
p−(pαp−1xn)

p
, n = 0, 1, . . . , x0 = α;αp < N.

Since F is increasing and convex [α, β] , it follows that h is decreasing on [α, β] ,
and the equations F (x) = 0 and h (x)− x = 0 are equivalent. So the conclusion
of Theorem 3.1 follows.

The sequences (xn) and (h (xn)) being convergent, it follows that for all ε > 0
there exists n0 ∈ N such that for n ≥ n0 we have

h (xn)− xn < ε,

which implies p
√
N − xn < ε and h (xn)−

p
√
N < ε.

If we use (2.6) for a1 = xn and b1 = h (xn) and g1 (x) =
F (x)

x
p−1
2

, and we denote

the approximation obtained by cn, then by (2.8) we have

∣

∣

∣
cn − p

√
N

∣

∣

∣
≤ T ′

2

2t′
1

ε2,

where










T ′
2 = max

{

(p−1)(p+1)(N−x
p

n)

4x
p+3
2

n

; (p−1)(p+1)(hp(xn)−N)

4h(xn)
p+3
2

}

t′1 = px
p−1

2
n

.
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4. A NUMERICAL EXAMPLE

We intend to apply the method described in Section 3 for the approximation
of the number 5

√
100, i.e., for solving the equation x3 − 100 = 0. In this case we

have
F (x) = x5 − 100

and, taking α = 2, for the function h we have

h (x) = x− 1
80F (x) .

Considering x0 = α = 2 and using (3.3), with F and h given above, we obtain for
the sequences (xn)n≥0 and (h (xn))n≥0 the following values:

n xn h (xn) εn = h (xn)− xn
0 2.000 000 000 0 2.850 000 000 0 8.500 000 000 0 · 10−01

1 2.370 444 507 2 2.684 911 796 6 3.144 672 894 1 · 10−01

2 2.492 753 689 2 2.539 639 492 8 4.688 580 357 8 · 10−02

3 2.511 465 149 3 2.512 513 019 4 1.047 870 071 5 · 10−03

4 2.511 886 221 3 2.511 886 744 3 5.229 121 597 9 · 10−07

5 2.511 886 431 5 2.511 886 431 5 3.637 978 807 1 · 10−12.

Table 4.1.
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