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1. INTRODUCTION

In this paper we shall specify and go deeply into some problems presented in
[1], concerning the Heron’s method for approximating the cubic root of a positive
number.

The authors of [I] construct a method based on the Heron’s algorithm for
computing the cubic root of 100.

The method works as follows: Given two real numbers a and b satisfying a® <
N < b3, the Heron’s method for approximating ¥/N is

(L1) ¢ (N,a,b) = a+ g8 (b—a),

where d; = N —a® and dy = b3 — N. We shall show that the approximation (II)) of
{/N follows from the regula falsi applied to the equation % — % =0 [2]. This will
given a rigorous interpretation of (III), and the results from [I] will be reached
again.

Using results from [4], we shall give other error bounds than those in [I]. On the
other hand, the method is generalized to the case ¥/N,p € N, p > 2, the method
also offering bilateral approximations. Some remarks on applying the results in
[] for the error bounds will lead us to the generalization of the Heron’s method.

2. HERONS’S METHOD AND REGULA FALSI

A. In order to approximate the cubic root of N > 0 by (LI]), consider the
function f : [a,b] = R, f(z) = 23> — N,0 < a < b and the function g : [a,b] — R,

g(x) =12,
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It is well known that regula falsi applied to the equation g () = 0 leads to the
following approximation of its root

(2.1) c=a—

[u,v; g] denoting the first-order divided difference of g on the nodes u and v. It
can be easily verified that ¢ = ¢ (N, a,b) .

Taking into account that ¢ € (a,b) and denoting by [u, v, w; g] the second-order
divided difference of g on the points u, v, w, we get

(2.2) g9(x) = g(a) +la,b;g] (x = a) + [a, b, 25 ] (x — a) (x = b)

for all x € (a,b).
For z = /N in (Z2)) we obtain

g (a) + [a,b; g] ({Q’/N—a)+ [a,b,e/ﬁ;g](\S/N—a)(W—b) =0,

from which, by dividing [a, b; g] it follows

(2.3) c— YN = [2YNal (% o) (YN - b).

[a,b;9]

: b, YN
An elementary calculation on % shows that

c— VYN _ Y N4+ab 3 3 3
(2.4) T = T (VN —a) (VN =b) (VN — Vab),

which gives Theorem 3, [1J.

Taking into account the above remarks and using the evaluations obtained by
T. Popoviciu in [4], (Z3]) gives the following error bounds

(25) (VN -a)(b—VN) < e~ VN| < [ 2(VN —a) (b VW),

where
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my =3a
< [N N
77122111111{11—3—1,1—b—3
3 3
M, :maX{Qaa—Qi-N7 2bb—21-N}

Mgzmax{%—l,l—b%}.

Note that (23] leads to a very good error evalutation; since a and b are close to
N, then mo and My are close to zero. This is implied by the fact that the function

g and its second derivative vanish at the same point = v/N.

B. It can be easily seen that the method presented at A can be generalized.
For the approximation of the root of order p of the real number N,p € N, p > 2,

consider the function fi : [a1,b1] = R,
fl(a;):xp—N, 0<ay <by, a’f<N<b1f
and the function g; : [a1,b1] — R,

o J1 () _ p—1
g1 (x) = e where ¢ = 5=
The function g; satisfies g1 (¥ N) = ¢/ (Y/N).
Applying regula falsi to the equation g; (z) = 0, we obtain

(2.6) ¢ = a1 — 2

Similarly to A, we obtain
P ai,b ,W; P D
(2.7) o1 = YN = Vo N ) (YN - ),

which gives

(28) o (VN —ar)(br = YN) < |er = YN| < 32 (YN = a1) (b = VN),

where
p—1
t1 =pa,®
- N—a?) (p— BP—N
s — min {@ D@+ D(N—ab) . (p- 1)+ )}
4a; 2 46,2
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p+1 ’ p+1
2a, 2 2b, 2

T, = max { (p+1)af +(p—1)N (p+1)b’1’+(b—1)N}
1

—1)(p+1)(N—a} —1)(p+1) (¥ —N
T = max { ® )(p+pig 1)§ (v )(p+p+)§ ! )}
da; 7 4b, 7

3. STEFFENSEN’S METHOD FOR APPROXIMATING THE pTH-ORDER ROOT

Let I = [a, 5], < B be an interval of the real axis.
Consider the equation

(3.1) F(x) =0,

where F' : I — R. Suppose that equation [BI)has a root € (a,3). Consider
also a function h : I — R such that equation

(3.2) x—h(z)=0

is equivalent to (BI).

The Steffensen’s method consists in the generation of two sequences (z,) and
(h (x,)) by the relations

F(zn

(33) xn_‘_l:xn—m, Tl:O,l,...,.TOEI.
As we shall see, this method offers the possibility to obtain better both upper and
lower approximations, by starting with a lower approximation of ¥/ N. Then, by
applying only once the regula falsi ([2.6]), the precision can be increased.

As concerns the convergence of (z,,) and (h(z,)) in B3), in [3] the following
theorem is proved.

THEOREM 3.1. [3]. If the functions F : I — R and h : I — R are continuous
and satisfy the following conditions:

i) the function h is decreasing on I,

ii) the function F is increasing and convex on I,
iii) there exists xg € I such that F (x9) < 0 and h(x) € I,
iv) the equations (B1)) and B2) are equivalent,
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then the following properties hold:

j) the sequence (xy,) is increasing,

jj) the sequence (h(xy,)) is decreasing,

jjj) lima,, =limh (z,) =2

jv) the relations x, < X1 < T < h(xzy) hold for alln =0,1,...,
V) T — Tpy1 < h(zy) — Tpta-

Applying this Theorem for F': [a, 5] = R, F'(z) = 2P — N,h : [o, 8] = R,

where 0 < oo < f and p € N, p > 2, we obtain

(pozpfl)pfl(xn—]\/)2

pa?lzn—ah+N )" —(par—1z,)P’

xn+1:xn+( n=0,1,...,20 = a;aP < N.
Since F is increasing and convex [a, (], it follows that h is decreasing on [«, (],
and the equations F'(x) = 0 and h (z) — z = 0 are equivalent. So the conclusion
of Theorem [3.1] follows.

The sequences (z,,) and (h (x,)) being convergent, it follows that for all ¢ > 0
there exists ng € N such that for n > ng we have

h(zy) — xy < €,

which implies ¥/ N — z,, < ¢ and h(x,) — /N < ¢.

If we use ([Z6) for a; = =, and by = h(z,) and g (z) = Fp(fz , and we denote
x 2

the approximation obtained by ¢, then by (28] we have

Tl
¢, — {VN‘ < ghe?,

where

7! = max { (=) (1) (Nt (p—l)(p-i-l)(hp(:cn)—N)}

I p+3
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4. A NUMERICAL EXAMPLE

We intend to apply the method described in Section 3 for the approximation
of the number v/100, i.e., for solving the equation 2 — 100 = 0. In this case we
have

F(z) =2 —100
and, taking o = 2, for the function A we have
h(z)=2—&F ().

Considering g = o = 2 and using ([B3]), with F' and h given above, we obtain for
the sequences (25),,5q and (h (zy,)),,>q the following values:

n| x, h(zy) en =h(zy) —zp
0 | 2.0000000000 | 2.8500000000 | 8.5000000000 - 10~01
1]2.3704445072 | 2.6849117966 | 3.1446728941 - 10~
2 |2.4927536892 | 2.5396394928 | 4.688 5803578 - 1092
3 2.5114651493 | 2.5125130194 | 1.0478700715 - 10793
4125118862213 | 2.5118867443 | 5.2291215979 - 1097
5125118864315 | 2.5118864315 | 3.6379788071 - 1012
Table 4.1.
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