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CONVERGENCE ANALYSIS
OF ITERATIVE COMPOSITIONS IN NONLINEAR MODELING:

EXPLORING SEMILOCAL AND LOCAL CONVERGENCE
PHENOMENA
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Abstract. In this work, a comprehensive analysis of a multi-step iterative com-
position for nonlinear equations is performed, providing insights into both local
and semilocal convergence properties. At each step three linear systems are
solved in the method, but with the same linear operator. The analysis covers a
wide range of applications, elucidating the parameters affecting both local and
semilocal convergence and offering insightful information for optimizing iterative
approaches in nonlinear model-solving tasks. Moreover, we assert the solution’s
uniqueness by supplying the necessary standards inside the designated field.
Lastly, we apply our theoretical deductions to real-world problems and show the
related test results to validate our findings.
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1. INTRODUCTION

The challenges inherent in exploring systems of nonlinear equations within
the field of applied mathematics exhibit a remarkable diversity. While the spe-
cific methods for attaining analytical solutions vary depending on the problem,
iterative approaches [3,11–13,18] commonly find utility in approximating solu-
tions across a wide spectrum of problems. Under some standard assumptions,
a typical representation for a nonlinear system takes the mathematical form:

(1) F (x) = 0,

where F : B0 ⊂ B → B1, B, B1 are Banach spaces, and B0 is an open convex
set.
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One of the fundamental one-point methods is Newton’s method, which has
quadratic convergence and is stated as

yn = xn − F ′(xn)−1F (xn), n = 0, 1, 2, . . . ,

where x0 ∈ B0 is the starting point and F ′ : B0 → L(B,B1) is the first Fŕechet
derivative of F . Here, L(B,B1) denotes the set of bounded linear operators
from B to B1. Many improved iterative methods have been presented and
their convergence properties tested in Banach spaces (see, e.g., [1,3,4,6,9,10,
13–17,19,20] and related references).

A method established in [7] that is defined for each n = 0, 1, 2, . . . by

wn = xn − F ′(xn)−1F (xn),(2)
yn = wn − F ′(xn)−1F (wn),
zn = 2wn − yn

and xn+1 = wn − F ′(xn)−1(
− 3F (wn) + 3F (yn) + 2F (zn)

)
,

has received significant attention in this paper. Notice that at each step in
method (2) three linear systems are solved, but with the same linear operator.
A favorable comparison of this method with several competing methods can
be found in [7]. Its convergence order has been shown to be five by establishing
the error equation

(3) en+1 =
(
6A2A3A2 − 8A3A

2
2 + 6A2

2A3 + 14A4
2
)
e5

n + O(e6
n),

where en = xn − x∗ and Ai = 1
i!F

′(x∗)−1F (i)(x∗), i = 2, 3, . . ., using the
approach of Taylor series expansion. But there are notable restrictions with
this approach which limit the applicability of the method. The convergence
order five is achieved in [7] for B = B1 = Rm, (m is a natural number), and
by assuming the existence of derivatives up to order five which are not used
in (2). These conditions restrict the utilization of (2) to operators that are
many times differentiable. Thus, there are even scalar equations for which the
convergence of (2) cannot be assured. But the method (2) converges. Let
us look at an example. Define the function F : [−1.2, 1.2] → R by F (t) =
θ1t

2 log t + θ2t
5 + θ3t

4 if t ̸= 0, and F (t) = 0, if t = 0, where θ1 ̸= 0, and
θ2 + θ3 = 0. It follows by these definitions that the numbers 0 and 1 belong
to domain of F , and F (1) = 0. But the function F (3) is not continuous at
t = 0. Hence, the results in [7] cannot assure that limn→∞ xn = 1. But (2)
converges to x∗ if, e.g., θ1 = θ2, θ3 = −1, and x0 = 1.15. This motivational
example indicates that the conditions in [7] can be weakened. Moreover, there
exist other limitations under with the usage of Taylor series.

In view of above discussion, the main motivation is to achieve the goal
with weaker hypotheses rather than relying on earlier strong conditions. In
the pursuit of enhancing the convergence characteristics, the present study
investigates comprehensively the local and semilocal convergence analyses of
(2).
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Local convergence: Local convergence specifically addresses the behavior
of an iterative method in the immediate vicinity of a solution. It explores
the convergence properties within a small neighborhood around a solution
point, providing a detailed analysis of how rapidly the iterative process refines
its approximations when starting from nearby initial guesses. Understanding
local convergence is important for assessing the robustness and effectiveness
of an iterative algorithm in practical applications, where solutions are often
sought in proximity to known or expected values.

Semilocal convergence: Semilocal convergence, on the other hand, refers
to the behavior of an iterative method in a specific region of the solution space.
Unlike global convergence, which considers convergence over the entire solution
space, semilocal convergence focuses on the behavior of the iterative process
within a limited neighborhood of a solution. It provides insights into how
quickly the iterative scheme approaches a solution in a local region, offering
valuable information about the convergence rate and efficiency near a specific
point.

The rest of this article is organized as follows: the local convergence anal-
ysis is studied in Section 2, and the semilocal convergence analysis is studied
in Section 3. Some special cases and applied problems are presented in Sec-
tion 4 in order to further certify the theoretical deductions. In the end, the
concluding remarks are added in Section 5.

2. CONVERGENCE 1: LOCAL

We introduce some scalar functions that play an important role in the local
analysis of convergence for the method (2). Set A = [0,+∞).

Suppose :
(T1) There exists a function φ0 : A → A which is continuous as well as

nondecreasing (FCND) on the interval A such that the equation φ0(t)−
1 = 0 admits a smallest positive solution (SPS) denoted by s0. Set
A0 = [0, s).

(T2) There exists a FCND φ : A0 → A. Moreover, define functions with
domain A0 and range R+ in turn by

h1(t) =
∫ 1

0 φ((1 − θ)t)dθ
1 − φ0(t) ,

α(t) =
{
φ((1 + h1(t))t)
φ0(t) + φ0(h1(t)t),

h2(t) =
[∫ 1

0 φ((1 − θ)h1(t)t)dθ
1 − φ0(h1(t)t) + α(t)(1 +

∫ 1
0 φ0(θh1(t)t)dθ)

(1 − φ0(t))(1 − φ0(h1(t)t))

]
h1(t),

h3(t) =
[∫ 1

0 φ((1 − θ)h1(t)t)dθ
1 − φ0(h1(t)t) + α(t)(1 +

∫ 1
0 φ0(θh1(t)t)dθ)

(1 − φ0(t))(1 − φ0(h1(t)t))
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+ 2(1 +
∫ 1

0 φ0(θh1(t)t)dθ)
(1 − φ0(t))

]
h1(t),

β(t) = 5
(

1 +
∫ 1

0
φ0(θh1(t)t)dθ

)
h1(t) + 3

(
1 +

∫ 1

0
φ0(θh2(t)t)dθ)

)
h2(t)

+ 2
(

1 +
∫ 1

0
φ0(θh3(t)t)dθ)

)
h3(t),

and

h4(t) =
∫ 1

0 φ((1−θ)h1(t)t)dθh1(t)
1−φ0(h1(t)t) + α(t)(1+

∫ 1
0 φ0(θh1(t)t)dθ)h1(t)

(1−φ0(t))(1−φ0(h1(t)t)) + β(t)
(1−φ0(t)) .

(T3) The equation hj(t) − 1 = 0 admits SPS in the interval A0 denoted by
δj , respectively. Define the parameter δ as

(4) δ = min{δj}.
This parameter is shown to be a possible radius of convergence for the
method (2) in Theorem 2.

The functions φ0 and φ relate to the operators on the method.
(T4) There exist an invertible operator E and a solution x∗ ∈ Ω such that

∥E−1(F ′(x) − E)∥ ≤ φ0(∥x− x∗∥) for each x ∈ Ω.
Define the domain in D = Ω

⋂
M(x∗, s).

(T5) ∥E−1(F ′(y) − F ′(x))∥ ≤ φ(∥y − x∥) for each x, y ∈ D and
(T6) M [x∗, δ] ⊂ Ω.

The conditions (T1) − (T6) are employed to show the local analysis of conver-
gence for the method (2).

Remark 1. A usual choice for E = I the identity operator or E = F ′(x̄)
for x ∈ Ω an auxiliary point other than x∗ or E = F ′(x∗). In the latter case
according to the condition (T3) the solution x∗ is simple. However, this is not
necessary the most flexible choice. Our approach proves the convergence of the
method (2) to x∗ even if the solution x∗ is not simple provided that E ̸= F ′(x∗)
and the equation has only one solution in Ω.

Next, the local analysis of convergence is established under the conditions
(T1) − (T6).

Theorem 2. Suppose that the conditions (T1) − (T6) hold and pick x0 ∈
M(x∗, δ) − {x∗}. Then, the sequence {xn} generated by the method (2) is well
defined in the ball M(x∗, δ), remains in M(x∗, δ) for each n = 0, 1, 2, . . . , and
is convergent to x∗. Moreover, the following error estimates hold for each
n = 0, 1, 2, . . . ,

∥wn − x∗∥ ≤ h1(∥ωn∥)∥ωn∥ ≤ ∥ωn∥ < δ,(5)
∥yn − x∗∥ ≤ h2(∥ωn∥)∥ωn∥ ≤ ∥ωn∥,(6)
∥zn − x∗∥ ≤ h3(∥ωn∥)∥ωn∥ ≤ ∥ωn∥,(7)
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∥xn+1 − x∗∥ ≤ h4(∥ωn∥)∥ωn∥ ≤ ∥ωn∥,(8)
where, ωn = xn −x∗, the functions hj are as previously defined and the radius
δ is given by the formula (4).

Proof. Assertions (5)–(8) are shown by induction. Pick v ∈ M(x∗, δ)−{x∗}.
The application of the conditions (T4) and (4) gives in turn
(9) ∥E−1(F ′(v) − E)∥ ≤ φ0(∥v − x∗∥) ≤ φ(δ) < 1.

It follows by (9), and the Banach standard Lemma on linear operators [2]
having inverses that F ′(v) ∈ L(B,B0)) as well as

(10) ∥F ′(v)−1E∥ ≤ 1
1 − φ0(∥v − x∗∥) .

If v = x0, the iterates w0, y0, z0, and x1 are well defined by the four substeps
of the method (2), respectively. We shall also show that they belong in the
ball M(x∗, δ) in turn as follows:

w0 − x∗ = ω0 − F ′(x0)−1F (x0)(11)

=
∫ 1

0
F ′(x0)−1(F ′(x∗ + θ(ω0)) − F ′(x0))dθ(ω0).

Using (4), (10), estimate (10) (for v = x0), and the definition of the function
h1, we have in turn

∥w0 − x∗∥ ≤
∫ 1

0 φ((1 − θ)∥ω0∥)dθ∥ω0∥
1 − φ0(∥ω0∥)(12)

≤ h1(∥ω0∥)∥ω0∥ ≤ ∥ω0∥ < δ,

so the iterate w0 ∈ M(x∗, δ), and the assertion (5) holds if n = 0.
We need the estimates

(13) F (w0) = F (w0) − F (x∗) =
∫ 1

0
F ′(x∗ + θ(w0 − x∗))dθ(w0 − x∗).

Hence, by the condition (T4)

∥E−1F (w0)∥ = ∥E−1
( ∫ 1

0
F ′(x∗ + θ(w0 − x∗))dθ − E + E

)
(w0 − x∗)∥(14)

≤
(
1 +

∫ 1

0
φ0(θ∥w0 − x∗∥)dθ

)
∥w0 − x∗∥,

F ′(w0) − F ′(x0) = (F ′(w0) − F ′(x∗)) + (F ′(x∗) − F ′(x0)),
so

∥E−1(F ′(w0) − F ′(x0))∥ ≤∥E−1(F ′(w0) − F ′(x∗))∥ + ∥E−1(F ′(x0) − F ′(x∗))∥
(15)

≤φ0(∥w0 − x∗∥) + φ0(∥ω0∥)
≤φ0(h1(∥ω0∥)∥ω0∥) + φ0(∥ω0∥)
≤α(∥ω0∥) = α0
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or

∥E−1(F ′(w0) − F ′(x0))∥ ≤φ(∥w0 − x0∥)(16)
≤φ(∥w0 − x∗∥ + ∥ω0∥)
≤φ((1 + h1(∥ω0∥))∥ω0∥) ≤ α(∥ω0∥).

Then, we can write from the second substep of the method (2) in turn that
(17)
y0−x∗ = w0−x∗−F ′(w0)−1F (w0)+F ′(w0)−1(F ′(x0)−F ′(w0))F ′(x0)−1F (w0).

By using (10) (for v = x0), (12)–(17), the condition (T5) and (4), we get in
turn that

∥y0 − x∗∥ ≤

≤
[∫ 1

0 φ((1 − θ)∥w0 − x∗∥)dθ
1 − φ0(∥w0 − x∗∥) + α0(1 +

∫ 1
0 φ0(θ∥w0 − x∗∥)dθ)

(1 − φ0(∥ω0∥))(1 − φ0(∥w0 − x∗∥))
]
∥w0 − x∗∥

≤ h2(∥ω0∥)∥ω0∥ ≤ ∥ω0∥.

Thus, the iterate y0 ∈ M(x∗, δ) and the assertion (6) holds if n = 0. Simi-
larly, by the third substep of the method (2)

z0 − x∗ = w0 − x∗ − F ′(w0)−1F (w0) + (F ′(w0)−1 + F ′(x0)−1)F (w0)
(18)

= w0 − x∗ − F ′(w0)−1F (w0) + F ′(w0)−1(F ′(x0) − F ′(w0))F ′(x0)−1F (w0)
+ 2F ′(x0)−1F (w0),

leading to

∥z0 − x∗∥ ≤
[∫ 1

0 φ((1 − θ)∥w0 − x∗∥)dθ
1 − φ0(∥w0 − x∗∥) + α0(1 +

∫ 1
0 φ0(θ∥w0 − x∗∥)dθ)

(1 − φ0(∥ω0∥))(1 − φ0(∥w0 − x∗∥))

(19)

+ 2(1 +
∫ 1

0 φ0(θ∥w0 − x∗∥)dθ)
(1 − φ0(∥ω0∥))

]
∥w0 − x∗∥

≤ h3(∥ω0∥)∥ω0∥ ≤ ∥ω0∥.

Hence, the iterate z0 ∈ M(x∗, δ), and the assertion (7) holds if n = 0.
Moreover, by the last substep of the method (2), we have

x1 − x∗ = w0 − x∗ − F ′(w0)−1F (w0) + F ′(w0)−1(F ′(x0) − F ′(w0))F ′(x0)−1F (w0)
(20)

+ 5F ′(x0)−1F (w0) − 3F ′(x0)−1F (y0) − 2F ′(x0)−1F (w0),

therefore

∥x1 − x∗∥ ≤
∫ 1

0 φ((1 − θ)∥w0 − x∗∥)dθ∥w0 − x∗∥
1 − φ0(∥w0 − x∗∥)(21)
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+ α0(1 +
∫ 1

0 φ0(θ∥w0 − x∗∥)dθ)∥w0 − x∗∥
(1 − φ0(∥ω0∥))(1 − φ0(∥w0 − x∗∥))

+ β0
(1 − φ0(∥ω0∥)) ≤ h4(∥ω0∥)∥ω0∥ ≤ ∥ω0∥,

which shows the assertions (5)–(8) for n = 0, and x0, w0, y0, z0, x1 ∈ M(x∗, δ).
But these calculations can be repeated provided we replace x0, w0, y0, z0, x1 by
xm, wm, ym, zm, xm+1 (m a natural number), respectively. Thus, the induction
is completed, and xm, wm, ym, zm, xm+1 ∈ M(x∗, δ) for each m = 0, 1, 2, . . . .

Furthermore, it follows from the estimation

(22) ∥ωm+1∥ ≤ c∥ωm∥ < δ,

where c = h4(∥ω0∥) ∈ [0, 1), that limm→∞ xm = x∗ as well as xm+1 ∈ M(x∗, δ).
□

In the next result we determine a domain that contains only x∗ as a solution.

Proposition 3. Suppose: the condition (T4) holds on the ball M(x∗, s1)
for some s1 > 0, and there exists s2 > s1 such that

(23)
∫ 1

0
φ0(θs2)dθ < 1.

Define the domain D1 = Ω∩M [x∗, s2]. Then, the equation F (x) = 0 is uniquely
solvable by x∗ in the domain D1.

Proof. Let us assume that there exists x̄ ∈ D1 solving the equation F (x) =
0. Define the linear operator Q =

∫ 1
0 F

′(x∗ + θ(x̄− x∗))dθ. Then, it follows by
the condition (T4), and (23) that

∥E−1(Q− E)∥ ≤
∫ 1

0
φ0(θ∥x̄− x∗∥)dθ ≤

∫ 1

0
φ0(θs2)dθ < 1.

Hence, the linear operator Q−1 ∈ L(B,B0). Moreover, from the identity

x̄− x∗ = Q−1(F (x̄) − F (x∗)) = Q−1(0) = 0,

we deduce x̄ = x∗. □

Remark 4. Clearly, we can choose s1 = δ in Proposition 3.

3. CONVERGENCE 2: SEMI-LOCAL

The roll of x∗ and the functions φ0, φ are exchanged by x0, and the functions
ψ0, ψ, respectively.

Suppose:
(H1) There exists FCND ψ0 : A → A, such that the equation ψ0(t) − 1 = 0

has a SPS denoted by s1.
Set A1 = [0, s1).
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(H2) There exists FCND ψ : A1 → A. Define the sequence {an} for a0 = 0,
some b0 ≥ 0, and each n = 0, 1, 2, . . . by

ϱn =
∫ 1

0
ψ((1 − θ)(bn − an))dθ(bn − an),

cn = bn + ϱn

1 − ψ0(an) ,

dn = cn + 2(cn − bn),(24)

pn =
∫ 1

0
ψ((1 − θ)(cn − an))dθ(cn − an) + (1 + ψ0(an))(cn − bn),

qn =
∫ 1

0
ψ((1 − θ)(dn − an))dθ(dn − an) + (1 + ψ0(an))(dn − bn),

an+1 = dn + 2ϱn + 3pn + 2qn

1 − ψ0(an) ,

µn+1 =
∫ 1

0
ψ(θ(an+1 − an))dθ(an+1 − an) + (1 + ψ0(an))(an+1 − bn),

and

bn+1 = an+1 + µn+1
1 − ψ0(an+1) .

The sequence {an} is shown to be majorizing for the method (2) in
Theorem 6. But first we need a general convergence condition for it.

(H3) There exists s0 ∈ [0, s1) such that for each n = 0, 1, 2, . . .
ψ0(an) < 1, and an ≤ s0.

It follows by this condition and (24) that
0 ≤ an ≤ bn ≤ cn ≤ dn ≤ an+1 < s0,

and there exists a∗ ∈ [0, s0] such that limn→+∞ an = a∗. Notice that
a∗ is the least upper bound of the sequence {an} which is unique.

As in the local analysis, we connect the functions ψ0 and ψ to be
operators on the method (2).

(H4) There exists an invertible operator E and a point x0 ∈ Ω such that
∥E−1(F ′(x) − E)∥ ≤ ψ0(∥x − x0∥) for each x ∈ Ω. Notice that for
x = x0, the definition of s1 and this condition imply

∥E−1(F ′(x0) − E)∥ ≤ ψ0(0) < 1.
So, the linear operator F ′(x0)−1 ∈ L(B0, B). Hence, we can set

b0 ≥ ∥F ′(x0)−1F (x0)∥. Define the domain D2 = Ω ∩M(x0, s1).
(H5) ∥E−1(F ′(y) − F ′(x))∥ ≤ ψ(∥y − x∥) for each x, y ∈ D2.

and
(H6) M [x0, a

∗] ⊂ Ω.

Remark 5. Similar remarks as in Remark 1 follow, and E = F ′(x0) is a
possible choice.
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In the next result, we develop the semi-local analysis of convergence for the
method (2) under the conditions (H1) − (H6).

Theorem 6. Suppose that the conditions (H1) − (H6) hold. Then, the
sequence {xn} generated by (2) is well defined in the ball M(x0, a

∗) remains
in M(x0, a

∗) for each n = 0, 1, 2, . . . , and is convergent to a solution x∗ ∈
M [x0, a

∗] of the equation F (x) = 0 such that

(25) ∥xn − x∗∥ ≤ a∗ − an.

Proof. The following claims are demonstrated using induction

∥wn − xn∥ ≤ bn − an,(26)
∥yn − wn∥ ≤ cn − bn,(27)
∥zn − yn∥ ≤ dn − cn,(28)

and

∥xn+1 − zn∥ ≤ an+1 − dn.(29)

The assertions (26)-(29) are shown using induction. By the condition (H4),
the definition of b0, and the first substep of the method (24), we have ∥w0 −
x0∥ = ∥F ′(x0)−1F (x0)∥ ≤ b0 = b0 − a0 < a∗. So, the iterate w0 ∈ M(x0, a

∗),
and the assertion (26) holds in n = 0. Let v ∈ M(x0, a

∗).
Then, the definition of s1 and the condition (T4) imply

∥E−1(F ′(v) − E)∥ ≤ ψ0∥v − x0∥ < 1,

thus F ′(v)−1 ∈ L(B,B0) and

(30) ∥F ′(v)−1L∥ ≤ 1
1 − ψ0(∥v − x0∥) .

Notice that by the existence of F ′(x0)−1 the iterates w0, y0, z0 and x1 are
well defined by the four substeps of the method (2), respectively. Next, we
need in turn the estimates

F (wm) = F (wm) − F (xm) − F ′(xm)(wm − xm),

and by the conditions (H5), (30) (if v = xm)

∥E−1F (wm)∥ =
∥∥∥∥ ∫ 1

0
E−1(F ′(xm + θ(wm − xm)) − F ′(xm))dθ(wm − xm)

∥∥∥∥
≤

∫ 1

0
v(θ∥wm − xm∥)dθ∥wm − xm∥ = ϱ̄m

≤
∫ 1

0
v(θ∥bm − am∥)dθ∥bm − am∥ = ϱm,

ym − wm = − F ′(xm)−1F ′(wm),
∥ym − wm∥ ≤∥F ′(xm)−1E∥∥E−1F ′(wm)∥
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≤ ϱ̄m

1 − ψ0(∥xm − x0∥) ≤ ϱm

1 − ψ0(am) = cm − bm,

∥ym − x0∥ ≤∥ym − wm∥ + ∥wm − x0∥
≤cm − bm + bm − a0 = cm < a∗,

zm − ym =2F ′(xm)−1F ′(wm) = −2(ym − wm),
∥zm − ym∥ ≤2∥ym − wm∥ ≤ 2(cm − bm) = dm − cm,

∥zm − x0∥ ≤∥zm − ym∥ + ∥ym − x0∥ ≤ dm − cm + cm − a0 = dm < a∗,

F (ym) =F (ym) − F (xm) − F ′(xm)(wm − xm)
=F (ym) − F (xm) − F ′(xm)(ym − xm) + F ′(xm)(ym − wm),

∥E−1F (ym)∥ ≤∥
∫ 1

0
E−1(F ′(xm + θ(ym − xm)∥) − F ′(xm))dθ(ym − xm)∥

(31)

+ ∥E−1(F ′(xm) − E + E)(ym − xm)∥

≤
∥∥∥∥ ∫ 1

0
ψ(θ∥ym − xm∥)dθ

∥∥∥∥∥ym − xm∥

+ (1 + ψ0(∥xm − x0∥))∥ym − wm∥

=p̄m ≤
∫ 1

0
ψ(θ(cm − am))dθ(cm − am)

+ (1 + ψ0(am))(cm − bm) = pm.

Similarly by exchanging ym by zm in the previous calculation, and using

F (zm) = F (zm) − F (xm) − F ′(xm)(zm − xm) + F ′(xm)(zm − xm),

we get

∥E−1F (zm)∥ ≤ q̄m ≤ qm,

xm+1 − zm = 2F ′(xm)−1F ′(wm) − 3F ′(xm)−1F ′(ym) − 2F ′(xm)−1F ′(zm),
∥xm+1 − zm∥ ≤ 2∥F ′(xm)−1E∥∥E−1F ′(wm)∥ + 3∥F ′(xm)−1E∥∥E−1F ′(ym)∥

+ 2∥F ′(xm)−1E∥∥E−1F ′(zm)∥

≤ 2ϱ̄m + 3p̄m + 2q̄m

1 − ψ0(∥xm − x0∥) ≤ 2ϱm + 3pm + 2qm

1 − ψ0(am) = am+1 − dm,

∥t0∥ ≤ ∥xm+1 − zm∥ + ∥zm − x0∥
≤ am+1 − dm + dm − a0 = am+1 < a∗,

F (xm+1) = F (xm+1) − F (xm) − F ′(xm)(wm − xm)
= F (xm+1) − F (xm) − F ′(xm)(tm) + F ′(xm)(tm)

− F ′(xm)(wm − xm),
= F (xm+1) − F (xm) − F ′(xm)(tm) + F ′(xm)(xm+1 − wm)
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∥E−1F (xm+1)∥ ≤
∥∥∥∥ ∫ 1

0
E−1(F ′(xm + θ(tm)∥) − F ′(xm))dθ(tm)

∥∥∥∥
(32)

+ ∥E−1(F ′(xm) − E + E)(tm)∥

≤
∥∥∥∥ ∫ 1

0
ψ(θ∥tm∥)dθ∥tm∥ + (1 + ψ0(∥xm − x0∥))∥xm+1 − wm

∥∥∥∥
=µ̄m+1

≤
∫ 1

0
ψ(θ(am+1 − am))dθ(am+1 − am)

+ (1 + ψ0(am))(am+1 − bm) = µm+1,

(33)
∥wm+1 − xm+1∥ ≤ ∥F ′(xm+1)−1E∥∥E−1F ′(xm+1)∥

≤ µ̄m+1
1 − ψ0(∥t0∥) ≤ µm+1

1 − ψ0(am+1) = bm+1 − am+1,

∥wm+1 − x0∥ ≤ ∥wm+1 − xm+1∥ + ∥t0∥
≤bm+1 − am+1 + am+1 − a0 = bm+1 < a∗,

where tm = xm+1 − xm.
Hence, the assertions (26)–(29) hold for each m = 0, 1, 2, . . . , and all iterates

xm, wm, ym, zm belong in M(x0, a
∗). Moreover, it follows by the condition

(H3) that the sequence {am} is Cauchy as convergent. Then, by the triangle
inequality and (26)–(29)

∥tm∥ ≤ ∥xm+1 − zm∥ + ∥zm − ym∥ + ∥ym − wm∥ + ∥wm − xm∥
≤ am+1 − dm + dm − cm + cm − bm + bm − am = am+1 − am,

i.e.,

∥tm∥ ≤ am+1 − am.(34)

Hence, the sequence {am} is also Cauchy in the Banach space B0, and
consequently, there exists x∗ ∈ M [x0, a

∗] such that limm→+∞ xm = x∗. Fur-
thermore, using the continuity of operator F , and by letting m → +∞ in the
estimate (32) we deduce that F (x∗) = 0. Let k = 0, 1, 2, . . . . Then, by (34),
we obtain

(35) ∥tm∥ ≤ am+k − am.

Finally, by letting k → +∞ in (35), we get the assertion (25). □

The uniqueness ball is determined in the next result.

Proposition 7. Suppose: There exists a solution x̄ ∈ M(x0, s3) of the
equation F (x) = 0 for some s3 > 0. The condition (H4) holds on the ball
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M(x0, s3) and there exists s4 ≥ s3 such that

(36)
∫ 1

0
ψ0((1 − θ)s3 + θs4)dθ < 1.

Define the domain D3 = Ω
⋂
M [x0, s4]. Then, the only solution of the equa-

tion F (x) = 0 in the domain D3 is x̄.

Proof. Let u ∈ D3 be such that F (u) = 0. Define the linear operator Q1 =∫ 1
0 F

′(x̄+ θ(u− x̄))dθ. It follows by the condition (H4), and (30) that

∥E−1(Q1 − E)∥ ≤
∫ 1

0
ψ0((1 − θ)∥x̄− x0∥ + θ∥u− x̄∥)dθ

≤
∫ 1

0
ψ0(θs4 + (1 − θ)s3)dθ < 1.

Then, the identity
u− x̄ = Q−1

1 (F (u) − F (x̄)) = Q−1(0) = 0,
we conclude u = x̄. □

Remark 8. (i) In the condition (H6), the limit point a∗ can be replaced
by s0.

(ii) In Proposition 7, we can set x̄ = x∗, and s3 = a∗ under all the condi-
tions of Theorem 6.

4. NUMERICAL RESULTS

The numerical tests contribute to a deeper understanding of the convergence
properties of iterative compositions, enhancing the practical applicability and
theoretical foundation of nonlinear modeling techniques. In view of this, here
we verify the theoretical results proven in the preceding sections. Let us
consider the following problems:

Example 9. Consider the equation
(37) F (x) = x− βsin(x) −K = 0,
where 0 ≤ β < 1, 0 ≤ K ≤ π, that comes from Kepler’s [5]. In [5], several
options are provided for the values of β and K. Specifically, the approximate
solution to (37) is x∗ ≈ 0.13320215 . . . for K = 0.1 and β = 0.25. Let D =
S(x∗, c) be the initial approximation such that x(0) = 3

4 ∈ D, with c being a
positive constant. Now, we have

F ′(x) = 1 − βcos(x).
Thus, ∀ x, y ∈ D, we get the approximation,

|F ′(x∗)−1(F ′(x) − F ′(y))| = |β(cos(x) − cos(y))|
|1 − β cos(x∗)|

=
2|β| · | sin(x+y

2 ) sin(x−y
2 )|

|1 − β cos(x∗)|
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≤ L0|x− y|,
and

|F ′(x(0))−1(F ′(x) − F ′(y))| ≤ L1|x− y|,
where L0 = |β|

|1−β cos(x∗)| ≈ 0.332352 and L1 = |β|
|1−β cos(x(0))| ≈ 0.305968.

The aforesaid approximations lead to the estimation of parameters utilised in
the conditions of Section 2 and Section 3. The parameters listed in (T1)− (T4)
are given as

φ0(t) = L0t, φ(t) = L0t,

and
δ = min{2.00591, 1.45636, 1.01559, 0.413765} = 0.413765.

Moreover, the parameters defined in (H1) − (H5) are chosen as
ψ0(t) = L0t, ψ(t) = L0t, b0 = 0.0122

and consequently, we obtain the sequence {an} as
{an}n≥1 = {0.0126708 . . . , 0.0131713 . . . , 0.0131721 . . . , · · · · · · },

which converges to a∗ ≈ 0.0132 < s1 = 3.00886.

Example 10. The norm ∥x∥ = max1≤i≤m |xi| for every x = (x1, x2, . . . , xm)T ∈
Rm and matrix norm ∥A∥ = max1≤i≤m

∑j=m
j=1 |aij | for any A = (aij)1≤i,j≤m ∈

L(Rm). We can take the domain Rm, for every m ≥ 2.
On a closed interval [0, 1], define the boundary value problem as

(38) x′′(t) = −x(t)2, x(0) = x(1) = 0.
Taking into consideration the partitioning of [0, 1] with a sub-interval of

length h = 1/k as
t0 = 0 < t1 < t2 < · · · < tk−1 < tk = 1

in order to convert the equation (38) into a finite dimensional problem.
Denoting xi = x(ti) ∀ i, and by finite differences

x′′
i ≈ xi+1 − 2xi + xi−1

h2 ,

∀ i = 1, 2, . . . , k − 1, equation (38) reduces into nonlinear system, F : D ⊆
Rk−1 → Rk−1, given by
(39) xi+1 − 2xi + h2x2

i + xi−1 = 0, i = 1, 2, 3, . . . , k − 1,
where x0 = 0 = xk. Now at x = (x1, x2, . . . , xk−1)T ∈ D the Fŕechet derivative
is given as follows:

F ′(x) =


2h2x1 − 2 1 0 . . . 0

1 2h2x2 − 2 1 . . . 0
0 1 2h2x3 − 2 . . . 0
...

...
...

...
...

0 0 0 . . . 2h2xk−1 − 2

 .
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In specifically, we select k = 101 to find the parameters provided in the
Section 2 and Section 3 to convert (39) to a system of 100 equations fulfilling
the solution x∗ = (0, 100· · ·, 0)T .

Furthermore, we choose the initial estimate as x0 = (0.5, 100· · ·, 0.5)T ∈ D,
treating the domain D = S(x∗, c) as an open ball for some positive constant c.
Then, we can determine that

∥F ′(x∗)−1(F ′(x) − F ′(y))∥ ≤ L0∥x− y∥,

and
∥F ′(x0)−1(F ′(x) − F ′(y))∥ ≤ L1∥x− y∥,

where L0 = 0.24999 and L1 = 0.27896, for any x, y ∈ D.
The parameters listed in Section 2 under (T1) − (T4) conditions for the

local convergence analysis are selected as follows in view of the aforementioned
approximations:

φ0(t) = L0t, φ(t) = L0t,

and consequently, we have that

δ = min{2.666773, 1.936172, 1.350181, 0.550085} = 0.550085.

Additionally, for the semilocal convergence analysis, the parameters defined
in Section 3 under conditions (H1) − (H5) are selected as

ψ0(t) = L0t, ψ(t) = L0t, b0 = 0.025

and consequently, we have the sequence {an} as

{an}n≥1 = {0.0264888 . . . , 0.0280819 . . . , 0.0280883 . . . , · · · · · · },

which converges to a∗ ≈ 0.0281 < s1 = 4. These results confirm Section 2 and
Section 3 conditions.

Example 11. Let C[0, 1] stand for the continuous function space with norm
∥x∥ = sup0≤t≤1|x(t)| for each x ∈ C[0, 1] and defined on the domain as a closed
unit interval [0, 1]. Let D = {x ∈ C[0, 1], ∥x∥ < 1} and nonlinear mapping
(see [8]) F : D → C[0, 1] as

(40) F (x)(t) = x(t) − µ

∫ 1

0
k(s, t)x(s)3ds, t ∈ [0, 1], x ∈ D,

where µ ∈ R, and the kernel k(s, t) is given as

k(s, t) =
{

(1 − s)t, t ≤ s,
s(1 − t), s ≤ t,

that satisfies the following, ∥∥∥ ∫ 1

0
k(s, t)ds

∥∥∥ ≤ 1
8 .
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Moreover, the Fréchet derivative of (40) is given by

F ′(x)κ(t) = κ(t) − 3µ
∫ 1

0
k(s, t)x(s)2κ(s)ds, κ ∈ D.

Note that solution of (40) is x∗ = 0 and also satisfies F ′(x∗) = I. Then, for
x, y ∈ D, we have,

∥F ′(x∗)−1(F ′(x) − F ′(y))∥ ≤ 3|µ|
∥∥∥ ∫ 1

0
k(s, t)(x(s)2 − y(s)2)κ(s)ds

∥∥∥
≤ L0∥x− y∥,

where L0 = 3|µ|
4 .

Furthermore, for the x(0) ∈ D which is given as x(0)(t) = 1
2 , t ∈ [0, 1], and

the estimation

∥I − F ′(x(0)∥ ≤ 3|µ|
∥∥∥ ∫ 1

0
k(s, t)x(0)(s)2κ(s)ds

∥∥∥ ≤ 3|µ|
32 ,

it is calculated that F ′(x(0))−1 ≤ 32
32−3|µ| , provided |µ| < 32

3 . Therefore, ∀
x, y ∈ D, we get

∥F ′(x(0))−1(F ′(x) − F ′(y))∥ ≤ L1∥x− y∥,

and
∥F ′(x(0))−1F ′(x(0))∥ ≤ L2,

where L1 = 24|µ|
32−3|µ| and L2 =

(
1 + |µ|

32
) 16

32−3|µ| .

We particularly fix µ = 1
2 , in the above approximations, for parameters listed

in Section 2 and Section 3. The parameters used in the conditions (T1) − (T4)
are defined as

φ0(t) = L0t, φ(t) = L0t,

and so

δ = min{1.77778, 1.29073, 0.900085, 0.366709} = 0.366709.

Furthermore, the parameters defined in (H1) − (H5) are chosen as

ψ0(t) = L0t, ψ(t) = L0t, b0 = 0.0156

and consequently, we obtain the sequence {an} as

{an}n≥1 = {0.0164694 . . . , 0.0173984 . . . , 0.0174017 . . . , · · · · · · },

which converges to a∗ ≈ 0.0174 < s1 = 2.66667. These results confirm Sec-
tion 2 and Section 3 conditions.
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5. CONCLUSION

Comprehensive analysis is conducted on a fifth-order iterative technique to
assess its local and semilocal convergence in Banach Spaces. In contrast to
the conventional reliance on Taylor series expansions, this study establishes
generalized convergence results based solely on assumptions about first-order
derivatives. The presented analysis introduces a fresh perspective for exam-
ining the convergence of the iterative method, focusing exclusively on the
operators inherent in the given iterative processes. Unlike earlier studies,
which incorporated higher-order derivatives not present in the methods under
consideration, this approach acknowledges the potential non-existence of such
derivatives. Consequently, previous results do not provide a definitive guar-
antee of convergence, even though it may occur. This innovative approach
effectively broadens the applicability of the given method to a more extensive
range of problems. Rigorous testing on applied problems lends support to the
validity of the developed results. A noteworthy observation is that the analyt-
ical technique employed in this study has broader applicability and could be
extended to enhance the effectiveness of other methods in a similar manner.
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