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Abstract. This paper proposes a new iterative technique for solving a linear
system Ax = y based on the Richardson iterative method. Then using the
Chebyshev polynomials, we modify the proposed method to accelerate the con-
vergence rate. Also, we present the results of some numerical experiments that
demonstrate the efficiency and effectiveness of the proposed methods compared
to the existing, state-of-the-art methods.
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1. INTRODUCTION AND PRELIMINARIES

Linear systems arise in various scientific and engineering applications, in-
cluding differential equations, signal processing, and optimization [3, 4, 5, 6,
7, 11]. Therefore, it is crucial to find the efficient solution of a linear sys-
tem in both theoretical and practical contexts. Iterative methods of solving
linear systems have been extensively studied because they are more efficient
than direct methods when solving large-scale problems. Furthermore, iterative
methods have the advantage of being easily adaptable to different types of lin-
ear operators, which makes them versatile and applicable to a broad range of
problems. Such operators frequently arise in practical applications, including
image processing and machine learning.

In the present work, we propose a new iterative method for solving linear
systems with bounded, self-adjoint operators and then present a new, modi-
fied version of the process by using the Chebyshev polynomials. The method
utilizes a flexible preconditioner that adapts to the structure of the operator
and exploits its self-adjointness. The resulting algorithms have favorable con-
vergence properties and require fewer iterations than some existing methods.
Also, we present the results of some numerical experiments that demonstrate
the efficiency and effectiveness of our methods compared to the existing, state-
of-the-art methods.
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Consider the linear system

(1) Ax = y

in a Hilbert space H, where A is a bounded and self-adjoint operator. The
basic idea of an iterative method is to use an initial guess x0, and then apply a
sequence of updates to the solution, refining the solution with each iteration.
There are many different iterative methods, each having its advantages and
disadvantages, depending on the properties of the equation to be solved.

The most straightforward approach to an iterative solution is to rewrite (1)
as a linear, fixed point iteration. If we consider the function L(x) = Ax+x−y
on H, then x∗ is a solution of Ax = y if and only if x∗ is a fixed point of L.
Thus, it seems natural to consider fixed-point theorems.

One of the best and most widely used methods to do this is the Richardson
iterative method [11]. The abstract Richardson iterative method has the form

(2) xk = xk−1 + αrk−1,

where 0 < α < 2
∥A∥ and rk is the residual vector y − Axk. Note that we can

rewrite (2) as

xk = (I − αA)xk−1 + αy.

The Conjugate Gradient method is a more sophisticated method that uses
information about the residual error to guide the iterative updates [11]. The
update for the kth iteration is given by

xk = xk−1 + αkpk,

where αk is the step size, pk is the search direction given by

pk = rk−1 + βkpk−1,

and

rk = y − Axk

is the residual, with βk determined by the Conjugate Gradient method.
However, it is possible to precondition the linear equation (1) by multiplying

both sides by an operator B to obtain BAx = By, so that the convergence of
the iterative methods is improved. In this case, the residual By−BAxk better
reflects the actual error. This method is a very effective technique for solving
differential equations, integral equations, and related problems [1, 8, 9].

In general, iterative methods are powerful tools for solving large systems of
linear equations. By choosing an appropriate iterative method based on the
properties of the operator under consideration, it is possible to obtain fast and
accurate solutions to a wide range of linear systems.
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2. PRECONDITIONING THE PROBLEM BASED ON RICHARDSON’S METHOD

Based on the properties of the operator A in equation (1), positive constants
c1 and c2 exist such that for each u ∈ H,
(3)

√
c1∥u∥H ≤ ∥Au∥H ≤

√
c2∥u∥H.

Although the positive definiteness of A is essential for methods such as
conjugate gradient, our method can disregard this property. This is more
evident in the Numerical results section.

It is not difficult to show that the optimal parameters c1 and c2 in equa-
tion (3) are equal to λmin(A2) and λmax(A2), respectively. Considering the
properties of matrix A, there exist constants c1 and c2 that satisfy the afore-
mentioned equation. It is not imperative to utilize the optimized coefficients
within this context. Consequently, precise knowledge of the eigenvalues of the
matrix A2 is not mandatory; an approximation thereof is sufficient.
Now, based on the Richardson iterative method, we consider the iteration

(4) xk = xk−1 + 4
c1+c2

(
I − 1

c1+c2
A2

)
A (y − Axk−1) .

In this case, the following lemma holds.

Lemma 1. Let A be a bounded and self-adjoint operator on a Hilbert space
H. Then ∥∥∥I − 4

c1+c2

(
I − 1

c1+c2
A2

)
A2

∥∥∥ ≤
(

c2−c1
c2+c1

)2
,

where c1 and c2 are the constants used in (3).

Proof. Since A is self-adjoint, for each x ∈ H we obtain〈(
I − 2

c1+c2
A2

)
x, x

〉
= ∥x∥2

H − 2
c1+c2

〈
A2x, x

〉
= ∥x∥2

H − 2
c1+c2

⟨Ax, Ax⟩ = ∥x∥2
H − 2

c1+c2
∥Ax∥2

H

≤ ∥x∥2
H − 2c1

c1+c2
∥x∥2

H =
(

c2−c1
c2+c1

)
∥x∥2

H,

where the inequality follows from (3).
Similarly, we can prove that for every x ∈ H,

−
(

c2−c1
c2+c1

)
∥x∥2

H ≤
〈(

I − 2
c1+c2

A2
)

x, x
〉

.

Therefore,

(5) ∥I − 2
c2+c1

A2∥H ≤
(

c2−c1
c2+c1

)
.

Finally, inequality (5) allows us to conclude that

∥I − 4
c1+c2

(
I − 1

c1+c2
A2

)
A2∥H = ∥I − 4

c1+c2
A2 + 4

(c1+c2)2 A4∥H

= ∥
(
I − 2

c1+c2
A2

)2
∥H

≤ ∥
(
I − 2

c1+c2
A2

)
∥2

H
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≤
(

c2−c1
c2+c1

)2
,

which completes the proof. □

Note that the optimal convergence rate in the Richardson iterative method,
obtained by letting α = 2

λmin(A)+λmax(A) , is λmax(A)+λmin(A)
λmax(A)+λmin(A) .

In the following theorem, we show that the convergence rate of the iterative
method (4) is

(
c2−c1
c2+c1

)2
.

Theorem 2. For any initial guess x0 of the solution of (1), the sequence
{xk}∞

k=0 defined by (4) converges to the exact solution x∗ of (1) with conver-
gence rate equal to

(
c2−c1
c2+c1

)2
.

Proof. The definition of xk in (4) leads to

x∗ − xk = x∗ − xk−1 − 4
c1+c2

(
I − 1

c1+c2
A2

)
A (y − Axk−1) ,

x∗ − xk−1 −
(

4
c1+c2

I − 4
(c1+c2)2 A2

)
A2 (x∗ − xk−1) =

=
(
I − 4

c1+c2
A2 + 4

(c1+c2)2 A4
)

(x∗ − xk−1)

=
(
I − 2

c1+c2
A2

)2
(x∗ − xk−1) .

Therefore,

∥x∗ − xk∥H = ∥
(
I − 2

c1+c2
A2

)2
(x∗ − xk−1) ∥H

≤ ∥
(
I − 2

c1+c2
A2

)
∥2

H∥ (x∗ − xk−1) ∥H.

Thus, the result follows from the previous lemma. □

Note: Assume c∗
1 = λmin(A2) and c∗

2 = λmax(A2). Let c1 = c∗
1 − δ and

c2 = c∗
2 + δ, then c1 + c2 = c∗

1 + c∗
2 and c2 − c1 = c∗

2 − c∗
1 + 2δ. Therefore, since(

c∗
2−c∗

1
c∗

2+c∗
1

)2
≤

(
c2−c1
c2+c1

)2
, Lemma 1 and so Theorem 2 hold in this case.

To summarize the results obtained so far, we present an algorithm that
generates an approximate solution to equation (1) with prescribed accuracy.

3. MODIFICATION BY CHEBYSHEV POLYNOMIALS

In this section, the properties of the Chebyshev polynomials are used to
modify the previous algorithm to accelerate the convergence rate.

Considering the iteration (3), let un =
∑n

k=1 ank
xk, where

∑n
kj=1 ank

= 1.
In this case, based on the proof of the previous theorem,

x∗ − un =
n∑

k=1
ank

x∗ −
n∑

k=1
ank

xk =
n∑

k=1
ank

(x∗ − xk) =
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Algorithm 1 [A, c1, c2, ϵ] −→ xϵ

1. Let ρ =
(

c2−c1
c2+c1

)2
.

2. k = 0, xk = 0.

3. k = k + 1, rk−1 := y − xk−1, vk−1 := Ark−1, wk−1 = Avk−1,
a) xk = xk−1 + 4

c2+c1

(
vk−1 − 1

c2+c1
Awk−1

)
,

b) ρk = ρk 1√
c1

∥y∥H.

4. If ρk < ϵ, then stop and set uϵ = xk as an approximate solution. Other-
wise, go to Step (3).

=
n∑

k=1
ank

(
I − 2

c1+c2
A2

)2k
(x∗ − x0) .

By setting B =
(
I − 2

c1+c2
A2

)2
and Pn(x) =

∑n
k=1 ank

xk, we see that

(6) x∗ − un =
n∑

k=1
ank

Bk (x∗ − x0) = Pn(B) (x∗ − x0) .

Since A is invertible and self-adjoint, A2 is a positive definite operator. Also,
by the previous lemma, the spectrum of B is a subset of the interval [−ρ, ρ],
where ρ =

(
c2−c1
c2+c1

)2
. Therefore, in view of (6), the spectral theorem leads to

(7)
∥x∗ − un∥H = ∥Pn(B) (x∗ − x0) ∥H ≤ ∥Pn(B)∥∥x∗ − x0∥H

≤ max
|x|≤ρ

|Pn(x)|∥x∗ − x0∥H.

In the sequel, we aim to minimize ∥x∗ − un∥H. We have to find

(8) min
Pn∈Pn

max
|x|≤ρ

|Pn(x)|,

where Pn := {Pn(x) : Pn(x) is a polynomial of degree n with Pn(1) = 1.}.
We investigate the solution to this problem in terms of the Chebyshev poly-

nomials [2]. These polynomials are defined by

cn(x) =
{

cos(n arccos(x)), |x| ≤ 1,

cosh(n cosh−1(x)), |x| > 1.

and satisfy the recurrence relations

c0(x) = 1, c1(x) = x, cn(x) = 2xcn−1(x) − cn−2(x), ∀n ≥ 2.

The following lemma presents a minimization property of these polynomials
which will be used later.



6 A new preconditioned Richardson iterative method 247

Lemma 3 ([2]). Let a < b < 1 and set

Qn(x) = cn( 2x−a−b
b−a )

cn

(
2−a−b

b−a

)
for x ∈ [a, b]. Then, for each Pn ∈ Pn,

max
a≤x≤b

|Qn(x)| ≤ max
a≤x≤b

|Pn(x)|.

Furthermore,
max

a≤x≤b
|Qn(x)| = 1

cn

(
2−a−b

b−a

) .

This lemma shows that the minimization problem (8) can be solved by
setting a = −ρ and b = ρ. These lead to

(9) Qn(x) =
cn

(
x
ρ

)
cn

(
1
ρ

) ,

which solves (8).
Now, we rewrite uk by using the Chebyshev polynomials. First of all, com-

bining (9) with the definition of the Chebyshev polynomials (the recurrence
relation) for n ≥ 2, we obtain

cn(1
ρ)Qn(x) = cn(x

ρ ) = 2x
ρ cn−1(x

ρ
) − cn−2(x

ρ )

= 2x
ρ cn−1(1

ρ)Qn−1(x) − cn−2(1
ρ)Qn−2(x).

Replacing x with B and applying the resulting operator identity to x∗ − x0
yield

cn(1
ρ)Qn(B) = 2B

ρ cn−1(1
ρ)Qn−1(B)(x∗ − x0) − cn−2(1

ρ)Qn−2(B)(x∗ − x0).

By (6) and the fact that Qn(x) is the solution of the minimization problem
(8), the above equation can be recovered as

cn(1
ρ)(x∗ − un) = 2

ρcn−1(1
ρ)B(x∗ − un−1) − cn−2(1

ρ)(x∗ − un−2),

or equivalently,
cn(1

ρ)(x∗) − cn(1
ρ)(un) =

= 2
ρcn−1(1

ρ)
(
I − 2

c1+c2
A2

)2
(x∗ − un−1) − cn−2(1

ρ)(x∗ − un−2)

= 2
ρcn−1(1

ρ)x∗ + 2
ρcn−1(1

ρ)
[

− un−1 −
( 4

c1+c2
A2 − 4

(c1+c2)2 A4)
(x∗ − un−1)

]
− cn−2(1

ρ)(x∗) + cn−2(1
ρ)(un−2).

Repeated application of the recurrence relations of the Chebyshev polyno-
mials for n ≥ 2 leads to

cn(1
ρ)un = 2

ρcn−1(1
ρ)

[
un−1 +

( 4
c1+c2

A2 − 4
(c1+c2)2 A4)

(x∗ − un−1)
]
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− cn−2(1
ρ)(un−2),

and hence

(10)
un = 2

ρ

cn−1( 1
ρ )

cn( 1
ρ )

[
un−1 +

( 4
c1+c2

A2 − 4
(c1+c2)2 A4)

(x∗ − un−1)
]

−
cn−2( 1

ρ )

cn( 1
ρ )

(un−2).

If we set

ρn = 2
ρ

cn−1( 1
ρ )

cn( 1
ρ )

,

then according to the properties of the Chebyshev polynomials we obtain

1 − ρn = −
cn−2(1

ρ)
cn(1

ρ)
.

Therefore, we can rewrite (10) as

un = ρn

[
un−1 +

(
4

c1+c2
A2 − 4

(c1+c2)2 A4
)

(x∗ − un−1)
]

+ (1 − ρn)un−2,

or equivalently,

un = ρn

[
un−1 − un−2 +

(
4

c1+c2
A2 − 4

(c1+c2)2 A4
)

(x∗ − un−1)
]

+ un−2.

This yields

(11) un = ρn

[
un−1 − un−2 + 4

c1+c2

(
I − 1

(c1+c2)A2
)

A (y − Aun−1)
]

+ un−2.

Also, a straightforward computation gives us the following recursive relation
for ρn,

(12) ρn =
(
1 − ρ2

4 ρn−1
)−1

.

Now, based on the recursive relation (12), we design the following algorithm
to approximately solve equation (1).

The following theorem investigates the convergence rate of the Algorithm.

Theorem 4. If x∗ is the exact solution of (1), then the approximate solution
un given in Algorithm 2 satisfies

∥x∗ − un∥H ≤ 2σn

1+σ2n
∥y∥H√

c1
.

Also, the output uϵ of Algorithm 2 satisfies
∥x∗ − uϵ∥H < ϵ.

Proof. Letting x0, u0 = 0, Lemma 3 and relation (7) allow us to write

(13) ∥x∗ − un∥H ≤ 1
cn( 1

ρ )
∥x∗ − u0∥H = 1

cn(1
ρ)

∥x∗∥H ≤ 1
cn( 1

ρ )
∥y∥H√

c1
.
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Algorithm 2 [A,c1,c2,ϵ]−→ uϵ

1. Let ρ =
(

c2−c1
c2+c1

)2
, σ =

√
c2

1+c2
2−

√
2c1c2√

c2
1+c2

2+
√

2c1c2
.

2. Set u0 = 0, u1 = 4
c2+c1

(
I − 1

c2+c1
A2

)
Ay, ρ1 = 2, n = 1.

3. While 2σn

1+σ2n
∥y∥H√

c1
> ϵ Do,

i) n = n + 1;
ii) ρn =

(
1 − ρ2

4 ρn−1
)−1

;
iii) un = ρn

[
un−1 − un−2 + 4

c1+c2

(
I − 1

(c1+c2) A2
)

A (y − Aun−1)
]

+ un−2.

4. uϵ = un.

By definition of Chebyshev polynomials and with a few straightforward
calculations, we obtain

cn(1
ρ) = cn

(
c2+c1
c2−c1

)2

= 1
2

[((√
c2

1+c2
2+

√
2c1c2

)(√
c2

1+c2
2−

√
2c1c2

))n

+
((√

c2
1+c2

2+
√

2c1c2
)(√

c2
1+c2

2−
√

2c1c2
))−n

]
.

Thus, by setting

σ =
√

c2
1+c2

2−
√

2c1c2√
c2

1+c2
2+

√
2c1c2

we conclude that
cn(1

ρ) = 1
2

(
1

σn + σn
)

= 1+σ2n

2σn .

Combining this equality with a relation (13), we obtain the desired result.
□

It is expected that methods utilizing more spectral information to yield
better results compared to those relying solely on matrix-vector products.
However, the exact eigenvalues are not necessary for our method, as we assume
that the coefficients c1 and c2 exist.

4. NUMERICAL RESULTS

In this section, we present several examples to evaluate the efficiency and
performance of our algorithms and compare them with several well-known
algorithms in some cases. In addition, we compare our algorithms, namely,
Algorithm 1 and Algorithm 2, with each other as well as with the Richardson
and Conjugate Gradient (CG) algorithms in some cases.

The reported experiments were performed on a 64-bit 2.4 GHz system using
MATLAB version 2010.



250 H. Jamali and R. Pourkani 9

In the following two examples, we show the efficiency of our novel algorithms
by using 3×3 and 5×5 systems, respectively. Both examples use the tolerance
threshold ϵ = 0.001.

Example 5. Let

A =

 101 −80 310
−80 89 −280
310 −280 1064

 .

Since

A =

 1 0 10
0 5 −8
10 −8 30

2

it is straightforward to investigate that A is invertible, self-adjoint and positive
definite. Assuming

f =

 1
4

−6


and concluding c1 = λmin(A2) = 81 and c2 = λmax(A2) = 1511700, the follow-
ing results are obtained for the system Ax = f .

The exact solution for this system is

x∗ =

 0.2376
0.1336

−0.0397


and as mentioned above, the given tolerance threshold is ϵ = 0.001. First, we
use Algorithm 1 to approximate the solution of this system. By using Algo-
rithm 1, we obtain the approximate solution gk after 31232 iterations within
t = 0.167103 sec. Also, Algorithm 2 gives an approximation of the solution
within t = 0.0073 sec. after only 353 iterations.

As discussed in Section 2, it is unnecessary to utilize the optimal values of c1
and c2 as the eigenvalues of the matrix A2; a mere approximation is sufficient.
Methods such as the Power Method [12] and the Jacobi Method [12] can be
employed to approximate the eigenvalues of A2.

To demonstrate the efficacy of our algorithms with approximate values of
c1 and c2, we employed several approximated values for c1 ≤ λmin(A2) and
c2 ≥ λmax(A2) in Example 5. The resulting data is summarized in Table 1.
In this table, the first column corresponds to the optimal values of c1 and c2,
while the second and third columns represent the data corresponding to the
approximate values.

As shown in Table 1, the further we deviate from the optimal values λmin(A2)
and λmax(A2), the number of iterations increases in both our algorithms, but
the computational error decreases due to the increased number of iterations.
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↓
→

c1 = 81, c2 = 1511700 c1 = 80, c2 = 1511701 c1 = 75, c2 = 1511725

Algorithm
iterations Err iterations Err iterations Err

Algorithm 1 31232 2.1523×
10−4

31661 1.6309×
10−4

33934 1.2082×
10−4

Algorithm 2 353 2.6629×
10−4

360 1.9264×
10−4

373 1.0464×
10−4

Table 1. The number of iterations needed to converge to x∗ and the final error Err for
Algorithm 1 and Algorithm 2 in Example 5, for ϵ = 0.001 with several approximated
c1 and c2.

This demonstrates that our algorithms also perform well with approximate
values for c1 and c2.

Example 6. Suppose that B is the 5 × 5 matrix

B =


13743 −441 6027 4374 799
−441 822 −164 119 975
6027 −164 3157 2232 1092
4374 119 2232 2286 2653
799 975 1092 2653 17214

 .

Then, similar to the previous example, we conclude that B is self-adjoint,
invertible and positive definite. Using approximations c1 = 80080 and c2 =
387614987 of the exact optimal values for λmin(A2) = 81087 and λmax(A2) =
387609486, and if

f =


7

−8
0
25
3


then the exact solution of the system Bx = f is

x∗ =


−0.0038
−0.0202
−0.0318
0.0564

−0.0052

 .

Applying Algorithm 1 with ϵ = 0.001, the number of iterations required to
converge to the system solution is 5455 within t = 0.031623 sec., while this
number is equal to 129 with t = 0.003826 sec. for Algorithm 2.

Here, the error function can be defined by Err(k) = ∥xk −x∗∥ at each step k
of the iterative method, where xk is the kth approximation of the solution and
x∗ is the exact solution of the system. We indicate the value of this function
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Fig. 1. The graph of the error function Err(k) concerning iteration step k for Algo-
rithm 1 (blue curve) and Algorithm 2 (red curve) algorithms in Example 6.

at the final iteration by Err. For the approximate solution obtained from
Algorithm 1 in the previous example, this value is 6.4613 × 10−4, which is a
little less than that of Algorithm 2 with Err = 6.5223 × 10−4. Nevertheless,
these error function values indicate that the final approximation obtained from
each of our two algorithms is accurate up to four decimal places. Fig. 1 shows
how Algorithm 1 and Algorithm 2 converge to the exact solution of the system
in Example 6.

Although the Richardson iterative method is a light calculation method that
is used in many applications of iterative methods in the solution of linear sys-
tems, our examples show that in many cases, the number of iterations required
to reach the desired solution in Richardson’s method is greater than that of
our second method. For instance, in the following example and the special
case ϵ = 0.001, the number of iterations required in Richardson’s method is
equal to 30322 and the final error value is equal to Err = 2.1836 × 10−4. But,
in our second algorithm, this number is equal to 23896 with an error value
equal to Err = 1.2679 × 10−4.

Example 7. Let

D =

 101 −57.4 589.4
−57.4 661 −497
589.4 −497 3500

 .
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It is straightforward to investigate that D is invertible and self-adjoint. As-
suming

f =

0.1
2
8

 ,

c1 = 0.2918 and c2 = 13556700, the following results are obtained for the
system Dx = f .

The maximum error for the approximate solution of this system is Err =
2.4138. For the case ϵ = 0.01, Richardson’s method obtains the approximate
solution after 22893 iterations with time t = 0.084436 sec. and Err = 0.0057,
but for Algorithm 2, these numbers are 18747 iterations with t = 0.301137 and
Err = 0.0024. In this case, Algorithm 1 works slowly but finally converges to
the exact solution of the system. Here, the CG method does not work at all.

The optimal values for c1 and c2 in the previous example are λmin(D2) =
0.3090 and λmax(D2) = 13556690. As can be seen, in this example, there is no
need to use optimal values for c1 and c2. Table 2 presents the numerical results
of the iterations required to converge to the exact solution of the systems in
Example 7.

Algorithms
epsilon ϵ

0.01 0.001 0.0001

The Richardson algorithm 22893 30322 37968
Algorithm 1 > 1 million > 1.5 million > 2.5 million

Algorithm 2 18747 23896 29038
The CG algorithm No Respond No Respond Not Respond

Table 2. The number of iterations needed to converge to x∗ for the Richardson it-
erative method, Algorithm 1, Algorithm 2 and the CG method in Example 7, for
ϵ = 0.01, 0.001 and 0.0001.

As shown in Table 2, in this special example, the well-known method CG
does not work at all, while our first algorithm works, although slowly!

Also, we can see in Table 2 that the required number of iterations with
different values of ϵ in Algorithm 2 is less than that of Richardson’s method.

According to the above example, if we ignore the condition of positive
definiteness, then the algorithm of the Conjugate Gradient method fails to
work. Moreover, if the matrix of the system has negative eigenvalues, then
the Richardson iterative method fails to work either. The following examples
illustrate such systems.



254 H. Jamali and R. Pourkani 13

Algorithms
epsilon ϵ

0.01 0.001 0.0001

The Richardson algorithm No Respond No Respond No Respond
Algorithm 1 2 58 115
Algorithm 2 2 11 19
The CG algorithm No Respond No Respond No Respond

Table 3. The number of iterations needed to converge to x∗ for the Richardson it-
erative method, Algorithm 1, Algorithm 2 and the CG method in Example 8, for
ϵ = 0.01, 0.001 and 0.0001.

Algorithms
epsilon ϵ

0.01 0.001 0.0001

The Richardson algorithm No Respond No Respond No Respond
Algorithm 1 0.000033 0.000329 0.000674
Algorithm 2 0.000171 0.000263 0.000391
The CG algorithm No Respond No Respond No Respond

Table 4. The run-time of the Richardson iterative method, Algorithm 1, Algorithm 2
and the Conjugate Gradient method in seconds for ϵ = 0.01, 0.001 and 0.0001 in
Example 8.

Example 8. Assume that

D =

−13468 −11470 3608
−11470 −17180 4380

3608 4380 −4196


and

f =

−8
25
14


then the eigenvalues of D are negative. Therefore the parameter α in Richard-
son’s method is negative so it will not work for solving the system Dx = f . But
in this case, with c1 = λmin(D2) = 8122414 and c2 = λmax(D2) = 799751706,
both our two algorithms lead to the approximated solution for the system prop-
erly.

In addition, due to the non-definite positivity of D, the CG method does not
respond.

Table 3 shows detailed information about the required iterations to converge
to the exact solution of the system by using different tolerance thresholds ϵ.
Also, a summary of the obtained information about the runtime of our algo-
rithms is given in Table 4.
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In Fig. 2, we show the way our algorithms converge to the exact solution
during successive iterations. We use the broken-line diagram to compare the
convergence of our algorithms at each step k. As seen in Fig. 2, Algorithm 2
converges faster than Algorithm 1. Also, the CG algorithm operates at only
one step and fails to converge. Note that this diagram corresponds to the error
threshold ϵ = 0.001.

Here is another example in which Richardson’s method fails to converge due
to a negative parameter α.

Example 9. Suppose that in the linear system Ax = y, the matrix of A is
given by −104 −50 16

−50 −120 20
16 20 −60


and

y =

 8
−22
10

 .

Then, λmin(A) = −168.6671 and λmax(A) = −53.8876. So, α < 0 and this
means that the Richardson iterative method fails to converge in this case. The
maximum error of the approximate solution is equal to the norm of the exact
solution, which is 0.3623. Let ϵ = 0.001. Then, by using c1 = λmin(A2) =
3766.2 and c1 = λmax(A2) = 27404, Algorithm 1 converges in 16 steps with
final error Err = 1.8055 × 10−4. Also, Algorithm 2 converges in 8 steps,
and its final error is Err = 1.8868 × 10−4. This value equals Err = 0.0074
for the CG method, which is greater than the threshold ϵ = 0.001. Thus, in
this case, the CG method fails to converge and operates only one step. Fig. 3

Algorithms Number of iterations Run-time Err

Algorithm 1 60 0.000741 5.894 × 10−4

Algorithm 2 12 0.000277 6.8232 × 10−4

Table 5. Run-time, number of iterations and final error Err needed for Algorithm 1
and Algorithm 2 to converge, by using perturbed values c1 = 7923000 and c2 =
799841230 in Example 8 for ϵ = 0.001.

Algorithms Number of iterations Run-time Err

Algorithm 1 12 0.222026 5.0480 × 10−4

Algorithm 2 6 0.007273 5.0355 × 10−4

Table 6. Run-time, number of iterations, and final error Err needed for Algorithm 1
and Algorithm 2 to converge using perturbed values c1 = 3698 and c2 = 27918 in
Example 9 for ϵ = 0.001.
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compares the convergence speeds of our algorithms with each other and with
the Conjugate Gradient method in this example.

To demonstrate that an approximation of the optimal values c1 and c2
suffices for both our algorithms, we have obtained approximated values for c1
and c2 in the two examples above applying eigenvalue approximation methods,
particularly the Power Method [12]. We then re-executed Example 8 and
Example 9 using these approximations with a tolerance of ϵ = 0.001. The
results are summarized in Table 5 for Example 8 and Table 6 for Example 9.

As illustrated in Table 5 and Table 6, our algorithms exhibit favorable
performance when utilizing the approximate values of c1 and c2.

Fig. 2. The graph of the error function Err(k) concerning iteration step k for Algo-
rithm 1, Algorithm 2, and CG algorithm in Example 8.

Example 10. Let A be the following matrix,

A =



−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · −2 1
0 0 0 · · · 1 −2


that is a finite difference discretization of the Laplace PDE of dimension 150
[10], and y =

[
1 2 3 · · · 150

]
. Then A is self-adjoint and invertible but

not positive definite, hence in this case CG method does not work at all. Since
eigenvalues of A are all negative, the Richardson method cannot be applied.
But our first method converges in t = 334.3829 seconds at 239591 steps and
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Fig. 3. The graph of the error function Err(k) concerning iteration step k for Algo-
rithm 1 and Algorithm 2 in Example 9.

our second algorithm converges to the solution of the system Ax = y in just
1417 iterations within 23.09 seconds with final error Err = 7.8411 × 10−4 for
ϵ = 0.001. This final error for our first algorithm is Err = 7.7815 × 10−4.

Here, c1 = 1.8735 × 10−7 and c2 = 15.9965 are optimal values satisfying in
equation (3).

5. CONCLUSIONS

In this paper, we proposed two new iterative methods for solving an operator
equation Ax = y, with A being bounded, self-adjoint, and positive definite.
Our first method used an iterative relation with a convergence rate equal to(

λmax(A2)−λmin(A2)
λmax(A2)−λmin(A2)

)2
and the second method used the Chebyshev polynomials

to accelerate the convergence rate of the first method.
Although the Richardson and Conjugate Gradient methods are among the

most popular methods used in various applications, they are inefficient for
a wide range of linear systems. Our algorithms worked decently well in such
cases. Both the Richardson and Conjugate Gradient methods have limitations
in their fields of application. For instance, Richardson’s algorithm is limited
by the assumption that the parameter α is positive, and so, fails to work if
α ≤ 0. Nevertheless, our algorithms worked properly in most of these cases.
Meanwhile, our second iterative method needed fewer iterations than Richard-
son’s method to converge. Also, the positive definiteness of the operator is an
essential condition for the CG method, and the method fails to respond if the
system’s operator Ax = y is not positive definite. However, our algorithms
can converge if the operator is only invertible and self-adjoint.
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Since iterative methods have various applications in other branches of sci-
ence, conducting research on these methods and their development can greatly
help other researchers in different scientific fields. We hope that this work will
motivate researchers to develop such methods and help other researchers in
the field of numerical solutions of linear systems.
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