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ATM TRANSACTION SIMULATION:
COMBINATION OF ACDS AND COX PROCESS

REZA HABIBI∗

Abstract. Two main approaches for analyzing the ultra-frequency data such
as ATM (auto teller machine) transaction are Cox process and autoregressive
conditional durations (ACDs). This paper combines both models and gives its
advantages. The functional data analysis proposes useful method for modeling
the intensity of counting process. Two simulated cases results are verified. A
real data set is analyzed and conclusions are also given.
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1. INTRODUCTION

Irregularly spaced financial time series have received considerable attention
in high-frequency data literature, see [6]. High frequency time series forecast-
ing is a crucial field that tackles the analysis of data recorded at very short
intervals, from seconds to fractions of a second. This discipline is fundamen-
tal in various sectors, from meteorology to finance, energy management, and
quality control in manufacturing. Intraday transactions of ATM and POS [8],
trading in stock markets [11], and volatility patterns in high frequency trad-
ing [9] are well-known examples of these time series. In the current paper,
the ATM transactions are studied. To this end, suppose that N(t) counts
the number of intraday transactions of an ATM of a specific bank recorded
up until time 0 < t < 1. Indeed, N(t) is a counting process with intensity
function Λ(t).

There are two main independent approaches for analyzing these types of
time series including the Cox Poisson process (referred as approach a, in this
paper) from [11] and ACD models (approach b) from [4]. However, in the cur-
rent paper, the combined approach (called approach c) is proposed. There,
it is assumed that both types of Cox and ACD models govern the data, si-
multaneously. According to the author’s best knowledge, this model has not

∗Iran Banking Institute, Central Bank of Iran, Tehran, Iran.

https://doi.org/10.33993/jnaat541-1435
https://ictp.acad.ro/jnaat


90 R. Habibi 2

been applied before in the literature and has many advantages which are dis-
cussed in Section 2. Next, approaches a and b are customized for the problem
considered in the current paper.

Approach a: Cox process. Following [11], assume that N(t) is modeled as
Cox process. That is a Poisson process with a random intensity Λ(t) where

Λ (t) =
∫ t

0
λ (s) ds.

The Cox process is a type of point process. For comprehensive review on
Cox process and generally point processes, see [3].

Often, to find the functional forms of λ and Λ, the functional data analysis
(FDA) method is proposed which gives an approximation for λ (t).

Approach b: ACD models. The ACD model mainly uses the stopping times
of N (t) and stopped process properties, without assuming N(t) being a Pois-
son process, as Cox process assumes. To describe more, let τk be the time of
k-th transaction (in a day)

τk = inft {N (t) = k} .

The related duration be Lk defined by

Lk = τk − τk−1.

Let Lk be modeled by ACD model (with intercept c) from [4]; i.e.,

Lk = c + ϑkek,

at which errors ek’s are independent, positive random variables with E (ek) = 1
and

ϑk = α +
p∑

j=1
γjLk−j +

q∑
j=1

βjϑk−j ,

where p, q are unknown dimensions of model which are optimized during
solving the case study problem while parameters γj and βj are unknown pa-
rameters which should be estimated. The authors from [4] proposed a close
relationship between ACD and GARCH models. The ACDm package of soft-
ware R estimates these parameters, accurately and quickly, see [1].

Approach c: Combined model. Here, it is assumed that both models of Cox
and ACD are hold, simultaneously. Some advantages of this approach are:

1. Under this setting, the exact Monte Carlo simulation for dynamics of λ (t)
is derived.

2. Often, FDA λ (t) is a time-consuming task, because of choosing the length
of linear combination of orthogonal basis function.

3. Choosing basis functions and number of them are a little subjective which
is critical in applied problems.

4. By combined model, N(t) is also simulated, directly, by Binomial distri-
bution which approximates the Poisson distribution, see Section 2.3.
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The rest of paper is organized as follows. In the next section, two methods
are proposed to derive the dynamics of λ (t). Section 3 gives the results of
simulations. A real data set is analyzed in Section 4. Concluding remarks are
proposed in Section 5.

2. DYNAMICS OF λ (t)

Here, dynamics of Λ (t) and λ (t) are derived. To this end, first, the FDA
method is proposed which gives an approximation for λ (t). Then, under
the combined model setting, the derivation of λ (t) is based on Monte Carlo
simulation which uses the exact distribution of partial sums of Lk’s.

2.1. FDA λ (t). In practice, FDA is used to model the intensity function λ (t)
of Poisson process as random element in Hilbert space, see [7]. To this end,
considering n days, let Ni(t) the number of transactions throughout the i-th
day with intensity function λi (t). Following [8], to remove the periodically
effects for different days, let λi (t) be the intensity function of i-th day and let

δi (t) = λi (t) − λi−7 (t) ,

and consider the following functional autoregressive model for δi (t) as follows

δi (t) =
∫ 1

0
ρ(s, t)δi−1 (s)ds + εi (t) ,

where kernel ρ is estimated using the functional principal component and error
terms

{εi (t) ; t ∈ [0, 1]}
are supposed to be independent functions such that E{εi (t)} = 0 for each
t ∈ [0, 1] and

E

∫ 1

0
ε2

i (t) dt = σ2 < ∞.

For comprehensive review on functional data analysis, see [10]. Package
fda.usc of software R is useful instrument for studying functional time series
data, see [5]. Then, use the basis representation for λ(t) such as

λ (t) =
m∑

k=1
bkϕk (t) ,

(see [10]) for basis functions ϕk (t) for k = 1, . . . , m, say Fourier basis functions.
Therefore,

Λ (t) =
∫ t

0

m∑
k=1

bkϕk (s) ds =
m∑

k=1
bk

∫ t

0
ϕk (s) ds.

In the literature, widely used selections for ϕk (t) are

ϕk (t) =


sin(0.5(k+1)t)√

π
k is odd integer,

cos(0.5kt)√
π

k is even integer.
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However, in practice, we find Λ̂(t) for which we have

Λ̂ (t) = Λ (t) + ζ (t) ,

for some error terms ζ (t). Therefore,

Λ̂ (t) =
m∑

k=1
bk

∫ t

0
ϕk (s) ds+ζ (t) .

Following [2], this is a type of functional regression analysis. To this end,
variables Λ̂ (tj) and

∫ tj

0 ϕk (s) ds are computed for t = tj ; j = 1,. . . ,M , (m <
M) and parameters of a multiple regression model are estimated.

2.2. λ (t) in combined model. Here, the exact functional form of λ(t) is
derived. To this end, let L0 = τ0 = 0 and

τk =
k∑

j=1
Lj .

Notice that
P (τk ≤ t) = P (N (t) > k).

Hence,
P (τk−1 ≤ t) = P (N (t) > k − 1).

Let pk (t) := P (N (t) = k). One can see that

pk (t) = P (N (t) > k − 1) − P (N (t) > k) = P (τk−1 ≤ t) − P (τk ≤ t) .

It is concluded that

pk (t) = P

k−1∑
j=1

Lj ≤ t

 − P

 k∑
j=1

Lj ≤ t

 .

This relation leads to the computation of the exact probabilities. Notice
that

pk (t) = P (τk−1 ≤ t < τk) = P

k−1∑
j=1

Lj ≤ t <
k∑

j=1
Lj

 .

Therefore, the Monte Carlo estimate of pk(t) is the number of times (in M
repetitions of Monte Carlo simulations) that the random intervalk−1∑

j=1
Lj ;

k∑
j=1

Lj


contains the constant number t. In practice, after fitting and ACD(p, q) to
Lk, the Monte Carlo simulation method approximates the exact distribution
of

∑k
j=1 Lj and

∑k−1
j=1 Lj , hence P (N (t) = k) is computed. Notice that

k!pk (t) = exp(−Λ (t) )Λk (t) .
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Therefore,
Λ (t) − k log (Λ (t)) + bk (t) = 0,

where
bk (t) = log(k!pk (t)).

This is a non-linear equation and root-finding methods such as Newton-
Raphson are applicable, as follows: For iteration r-th, let

Λr (t) = Λr−1 (t) + Λr−1 (t) − k log (Λr−1 (t)) + bk (t)
1 − k/Λr−1 (t) .

To find λ (t) , after finding Λ(t) for discrete values of t’s, the numerical differ-
entiation is applied to find discrete values of λ(t). Then, a smoothing method
such as spline or smoothing polynomials is used to derive the functional form
of λ(t).

2.3. Another combined λ (t). In Sections 2.1 and 2.2, we proposed some
methods for obtaining functional form of λ(t) based on Cox process and ACD
models. However, in practice, the series of numbers of events that each oc-
curred in small fraction of the time are recorded and it is necessary to simulate
N(t), itself, directly.

The idea behind this method is that the Binomial distribution approximates
the Poisson distribution. To propose the method, suppose that throughout a
crowded business day the possible numbers of t’s in (t − h, t) where transac-
tions occur is large i.e., n (of Bernoulli distribution) is large. However, be-
cause of some political or social events which have happened the day before,
the probability of transaction pt is too low such that

npt ≈
∫ h

t−h
λ (s) ds.

Following [8] and noticing that∫ h

t−h
λ (s) ds ≈ hλ (t) ,

it is seen that 1
hnpt is a good estimate of λ (t). Therefore, N (t) is simulated

by sampling from binomial distribution with parameter (n, pt), directly and
λ (t) = 1

hnpt.

Then, by collecting a number of transactions and fitting an ACD model,
the empirical estimate of N(t) and consequently pt are estimated.

Suppose that, the dynamic of pt is proposed. For example, consider the
dynamics of pt given by Ito stochastic differential equation, as follows:

dpt = αptdt + δptdBt,

where Bt is standard Brownian motion on (0,1). To obtain parameters α, δ,
notice that they are mean and standard deviation of dpt

ptdt which are estimated
by their related samples values. Therefore, the dynamic of λ (t) is proposed.
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3. SIMULATIONS

In this section, some simulated cases are analyzed. Banks often refuse to
provide tick-by-tick transaction data of ATMs and do not make this type of
data available (or at least hard available) to the public due to network security
issues and keeping customer’s secrets. However, a small part of database is
usually given to researchers from the core system of databases of banks. This
is why, in the current paper, we only survey the simulated situations which
correspond to real data. For using simulated data instead of real ones, we
must be sure that the simulated data with the combined model are good
approximations for the real data. However, since in both cases, we use the
dataset in [11], we are sure that these considerations are checked. Case 1
studies the Cox process with known dynamic for λ. Case 2 gives simulation
results under the combined model setting.

Case 1: λ(t) as OU process. In the Cox process, motivated by [11],
suppose that λ(t) is an Ornstein-Uhlenbeck (OU process) process defined by

dλ (t) = −βλ (t) dt + βtdz,

where dz is increment of Brownian motion, t ∈ (0, 1) and 0 < β < ∞. Here,
it is supposed that β = 0.2 which corresponds to the empirical results from
[11]. Consider ti = i

100 , i = 0, . . . , 99 and let Λ (ti) = 1
100

∑b
u=1 λ(u), where

b = [100ti]. To simulate N(t) at ti’s, increments N (ti) − N(ti−1) are samples
from Poisson distribution with rate 1

100
∑b

u=a λ(u) where a = [100ti−1] . In
this way, the partial sums of increments generate paths of Poisson process.
Therefore, Lk’s are computable. It is easy to see that Lk is ACD(1, 1) process
with intercept, as follows

Lk = 0.0898 + ϑkek,

where ek has exponential distribution with mean 1 and
ϑk = 0.0017 + 0.885ek−1 − 1.58ϑk−1.

Case 2: Combined λ(t). Here in addition to the Cox process assumption,
assume that Lk come from process ACD(1, 1). For the weekly data from [11],
the ACD model is defined by

Lk = 0.01 + ϑkek,

ϑk = 0.002 + 0.65ek−1 − 2ϑk−1,

with ek being exponentially distributed random variable with rate 1. Hence,
empirical distributions of Lk, k = 1, 2 are computed. Next, using the Monte
Carlo method proposed in subsection 2.1, P (N (t) = 2) is computed for various
values of ti’s. Then, using the Newton-Raphson and numerical differentiation,
values of Λ(t) and λ(t) are computed, respectively. The following figure gives
the plot of λ(t). Smoothing λ(t) by basis Fourier function, it is seen that

λ (t) =
(
1 + sin (t) + cos (t)

)
/
√

π.
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Fig. 1. Plot of λ(t).

Although it is difficult to obtain real tick-by-tick data in practice, never-
theless, the case 3 provides an alternative method for reconstructing λ(t). For
the weekly data from [11], the following smoothing results are provided:

λi (t) =
(
c0i + c1isin (t) + c2icos(t)

)
/
√

π,

where π = 3.141592 and cji, j = 0, 1, 2 are periodic functions with period 7
given as follows:

i 1 2 3 4 5 6 7
c0i 0.2 0.2 0.5 0.5 0.1 0.25 0.25
c1i 0.1 0.1 0.5 0.25 0.5 0.2 0.5
c2i 0.2 0.2 0.1 0.1 0.1 0.25 0.25

Table 1. Values of cji for j = 0, 1, 2 and i = 1, . . . , 7.

4. REAL DATA SETS

Here, the method of Section 2.3 is applied to 3 real-time series.
Data set 1. The dataset includes 11520 observations which are 15-minute

by 15-minute ATM transactions of a selected branch of an Iranian Bank ABC
(which we are not naming for security reasons) from March 11, 2024 to October
11 2024 (30 days) during 7 AM to 7 PM. For a day, there are n = 48 15 minutes.
Therefore, h = 1/48. Thus, λ (t) = pt. The time series plot of the first 5000
observations is given as follows:
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(a)

(b)

Fig. 2. (a) Plot of λ(t); (b) Time series of N(t).

It is seen that α = 0.641, δ = 0.457. Here, we provide fittings of the model
on many real high frequency data sets, then obtain the optimal parameters,
plot on the same figure the real data and the optimal model and last analyze
the corresponding residuals. The following plot gives the simultaneously, time
series of actual λ (t) (blue line) and its estimate (red line).

Fig. 3. Plot of λ(t) and its estimate.

The following table gives the max, min, mean and standard deviation (sd) of
5000 residuals ∣∣∣ λ (t)

est(t) − 1
∣∣∣.

The table shows that errors are negligible.
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Max Min Mean SD
0.0632 0.0024 0.0414 0.019

Table 2. Residuals properties: maximum, minimum, mean, and standard deviation.

Data set 2. In the second data set, the transactions of an ATM along one
day for 6336 days are recorded. First the following ACD model is fitted to
duration of transactions

Lk = 0.045 + ϑkek,

ϑk = 0.001 + 0.34ek−1 − 1.68ϑk−1,

k = 1, 2, . . . , 6336. The following plot shows real N(t) plotted against its
estimated process derived from above ACD model using simulation of a Poisson
process based on simulating the Lk’s partial sums. To better presentation the
first 3000 observations i.e., the actual N (t) (blue line) and its estimate (red
line) are presented. This figure shows the maximum closeness of both series.

Fig. 4. Plot of N(t) and its estimate.

Again, the summaries of errors are proposed in the following table.
Max Min Mean SD

0.0475 0.0064 0.0325 0.032

Table 3. Differences between N(t) and its estimate: maximum, minimum, mean, and
standard deviation.

Also, a Poisson process is fitted to data, based on functional estimate of
λ (t), given by

λ (t) = (0.01 + 0.002sin (t) + 0.25cos(t))/
√

2π.

The following table gives the related errors.
Max Min Mean SD

0.0734 0.0055 0.0455 0.043

Table 4. Differences between actual N(t) and its Poisson simulation: maximum, min-
imum, mean, and standard deviation.



98 R. Habibi 10

Data set 3. Here, the functional form of λ (t) of previous data set are
compared with its actual values. First the following table shows that the errors
are negligible. Then, different scenarios are studied using 1 times standard
deviations of errors as shocks to λ (t). The following figure shows the errors of
actual λ (t) and its functional estimates. Shocks are simulated using normal
distributions with zero means and 1 times standard deviations.

Fig. 5. Plot of errors between λ(t) and its estimate.

Fig. 6. Plot of λ(t) and its shock estimate.

As seen, the shocks increase as the number of time series increases. However,
the shocks are negligible in the estimate of λ (t).

5. CONCLUDING REMARKS

This manuscript has many advantages and highlights as follows:
1. The compatibility of the combination of two common models used in the

analysis of data with high frequency was examined and it was seen in
the simulation section that these two models can be recovered from each
other.
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2. The use of functional data analysis was used as a practical solution for
modeling the intensity function of the Poisson process, and the perfor-
mance of this solution was seen alongside the previous two methods.

3. Mathematical models were developed to be useful for simulation analysis.
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