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TWO STEP STEFFENSEN-TYPE METHODS WITH
OR WITHOUT MEMORY FOR NONDIFFERENTIABLE EQUATIONS

IOANNIS. K. ARGYROS† and GAGAN DEEP∗

Abstract. In the current study, two step Steffensen-Type methods with and
without memory free from derivatives are considered for the nondifferentiable
equations and the local as well as semilocal convergence analysis is proved under
more generalized conditions. Numerical applications are provided which demon-
strate the theoretical results. Better results in terms of radii of convergence balls
and number of iterations are obtained using the proposed approach as compared
to the existing ones.

MSC. 41A58, 65G99, 65H10, 65T20.
Keywords. Divided Difference, Steffensen-type Method, Banach space, Con-
vergence, Non differentiable equation.

1. INTRODUCTION

A significant and interesting challenge in numerical analysis is the problem
of solving a nonlinear equation or system of nonlinear equations of the form

F (x) = 0,(1)
where F is a Fréchet differentiable operator mapping from a Banach space X
into X, and D be an open convex subset of X. Formulation of problems as
an equation like (1) using Mathematical Modeling [2, 6, 11, 14, 24] arises in
multiple disciplines of science and engineering. Obtaining a solution x∗ ∈ D of
(1) in analytic form is another important issue. The non-analytic and complex
functions are thereby handled using a useful computational tool called iterative
methods which approximate the solution x∗ of (1). To further overcome the
issues like slow or no convergence, divergence and inefficiency, an extensive
literature can be found on convergence of iterative methods based on algebraic
or geometrical considerations [14, 24]. As a result, researchers all around the
world are persistently endeavoring to create higher order iterative methods
[1, 3, 7, 8, 5, 9, 13, 16, 17, 18, 19, 20, 21]. Let L(X) denote the space of
bounded linear operators from X into itself and ξ ∈ R \ {0} be a parameter.
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We examine the convergence of a general Steffensen-type method free from
derivatives developed by Chicharro et. al [7] which is defined for all m =
0, 1, 2, . . . by

x0 ∈ D, um = xm + ξF (xm),
ym =xm − [um, xm; F ]−1F (xm),
xm+1 = ym − [um, ym; F ]−1F (ym),(2)

where [·, ·; F ] : D × D → L(X) is divided difference of order one [2, 14]. The
beauty of the method (2) lies in the fact that if ξ is a nonzero constant then
the method is without memory and if it is taken to be Kurchatov operator
[7] then it becomes method with memory. The fifth convergence order of the
method (2) is proved utilizing Taylor series expansions in [7] provided that
X = Rk and by assuming the existence of at least the fourth derivative which
is not on the method. Hence, the application is limited to solving nonlinear
equation (1) where the operator is at least that many times differentiable. But
the method may converge even if F (4) does not exist.

For an instance, consider D to be an interval
[

−5
2 , 2

]
and the function f

defined on D as

f(t) =
{

t3 log(π2t2) + t5 sin(1
t ), t ̸= 0

0, t = 0.

Clearly, f (3)(t) is not continuous at t = 0. As a result the convergence
of method (2) to the solution t∗ = 1

π cannot be assured using results in [7]
although the method converges.

Moreover, notice that the method (2) does not have any derivatives. Also,
the iterates which contain xm + F (xm) may lead to loss of convergence when
F has large variations near the solution [15].

Some other limitations with local convergence analysis provided in [7] are:
(C1) The initial guess x0 is “a shot in dark”and no information is available

on the uniqueness of the solution.
(C2) A priori upper bounds on ∥xm − x∗∥ are not given, x∗ ∈ D being a

solution of the equation (1). The number of iterations to be performed
to reach a predecided error tolerance are not known.

(C3) The convergence of the method is not assured (although it may converge
to x∗) if at least f (3) does not exist.

(C4) The results are limited to the case only when X = Rk.
(C5) The more interesting semi-local convergence is not given in [7].

The same concerns exist for numerous other methods with no derivatives [7,
21]. So, the technique of this study can also be used to extend the applicability
of such methods along the same lines.

The main feature of current study is that it takes up all the aforementioned
limitations positively. In particular, the local convergence is based on the
more general ω-continuity condition [1, 2, 17] and uses only information from
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the operators appearing on the method. Moreover, the semi-local convergence
utilizes majorizing sequences [1, 2] is also provided.

The novelty of the article lies in the fact that the process leading to the
aforementioned benefits does not rely on the particular method (2). But it can
be utilized on other methods involving inverses of linear operators in a similar
manner. The numerical study includes the results considering both cases of
the method (2) i.e with memory and without memory. The results show
that lesser number of iterations are required to obtain the solution and larger
convergence radii are obtained using the presented approach as compared to
existing ones. The development of efficiency and computational benefits have
been discussed in [7], hence are not repeated in present article.

The paper is structured as follows: The local convergence of the method
(2) is followed by the semi-local convergence. The numerical applications and
concluding remarks, respectively complete the paper.

ANALYSIS I: LOCAL

In this section, local convergence of (2) for solving (1) is established. Sup-
pose U(x, r) and U [x, r] denote the open and closed balls, respectively with
center x and radius r. Let B = [0, +∞). The hypotheses for the local conver-
gence analysis are: Assume there exist
(T1) Functions Φ0 : B × B → B, w1 : B → B, which are continuous, sym-

metric and nondecreasing (CSNF) such that Φ0(w1(t), t) − 1 = 0 admits
a minimal positive solution (MPS) denoted as k0. Let B0 = [0, k0).

(T2) A CSNF Φ : B0 × B0 → B such that for J1 : B0 → B, where

J1(t) = Φ(w1(t), t)
1 − Φ0(w1(t), t) ,

J1(t) − 1 = 0 admits MPS in B0 denoted as k1. Let B1 = [0, k1).
(T3) Φ0(w1(t), J1(t), t) − 1 = 0 admits a MPS in B1 denoted by k2. Let

B2 = [0, k2).
(T4) For J2 : B2 → B, where

J2(t) = Φ(w1(t), J1(t)t)
1 − Φ0(w1(t), J1(t)t) ,

J2(t) − 1 = 0 has a MPS in B2 denoted by k3.
Let k∗ = min{k1, k3} and B∗ = [0, k∗).(3)

It follows by this definition that for all t ∈ B∗

0 ≤ Φ0(w1(t), t) < 1,(4)
0 ≤ Φ0(w1(t), J1(t)t) < 1,(5)

and
0 ≤ Jj(t) < 1 for j = 1, 2.(6)
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(T5) There exist x∗ ∈ D solving equation F (x) = 0 and an invertible operator
L so that for all x ∈ D, u = x + ξF (x)

∥u − x∗∥ ≤ w1(∥x − x∗∥)
and

∥L−1(F ′(x) − L)∥ ≤ Φ0(∥u − x∗∥, ∥x − x∗∥).
Define the set D0 = D ∩ U(x∗, k0).

(T6) For all x ∈ D0, u = x + ξF (x)
∥L−1([u, x; F ] − [x, x∗; F ])∥ ≤ Φ(∥u − x∗∥, ∥x − x∗∥).

and
(T7) U [x∗, k] ⊂ D, where

k = max{k∗, w1(k∗)}.
The analysis follows for the method (2) via means of hypotheses (T1)-(T7).

Theorem 1. Assume hypotheses (T1)-(T7) are valid. Then, the assertions
are validated

{xm} ⊂ U(x∗, k∗),(7)
∥ym − xm∥ ≤ J1(∥xm − x∗∥)∥xm − x∗∥ ≤ ∥xm − x∗∥ < k∗,(8)

∥xm+1 − x∗∥ ≤ J2(∥xm − x∗∥)∥xm − x∗∥ ≤ ∥xm − x∗∥(9)
and the sequence {xm} is convergent to x∗, provided that the initial point
x0 ∈ U(x∗, k∗) − {x∗}.

Proof. The application of hypotheses (T1), (T5) and (4), (7) gives
∥L−1(F ′(x0) − L)∥ ≤Φ0(∥u − x∗∥, ∥x0 − x∗∥)

≤Φ0(w1(∥x0 − x∗∥), ∥x0 − x∗∥)
≤Φ0(w1(k∗), k∗) < 1.(10)

The estimate (10) and the celebrated lemma attributed to Banach on linear
operators imply the invertibility of [u0, x0; F ] and the estimate
(11) ∥[u0, x0; F ]−1L∥ ≤ 1

1−Φ0(w1(∥x0−x∗∥),∥x0−x∗∥) .

Thus, the iterate y0 exists and
y0 − x∗ = x0 − x∗ − [u0, x0; F ]−1F (x0)(12)

by the first substep of (2) if m = 0. It follows by the estimate (3), (6) (if
j = 1), (11), (12) and (T6) that

y0 − x∗ = [u0, x0; F ]−1([u0, x0; F ] − [x0, x∗; F ])(x0 − x∗),
so

∥y0 − x∗∥ ≤Φ(∥u0−x∗∥,∥x0−x∗∥)∥x0−x∗∥
1−Φ0(∥u0−x∗∥,∥x0−x∗∥)

≤J1(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥ < k∗.(13)
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Hence, the iterate y0 ∈ U(x∗, k∗) and the assertion (8) is validated if m = 0.
As in (10) but using (3), (5) and (T5) we obtain
(14) ∥[u0, y0; F ]−1L∥ ≤ 1

1−Φ0(∥u0−x∗∥,∥y0−x∗∥) ,

so the iterate x1 exists.
Moreover,we can have if m = 0 in the method (2)

x1 − x∗ = [u0, y0; F ]−1([u0, y0; F ] − [y0, x∗; F ])(y0 − x∗)
leading as in (13)

∥x1 − x∗∥ ≤Φ(∥u0−x∗∥,∥y0−x∗∥)∥y0−x∗∥
1−Φ0(∥u0−x∗∥,∥y0−x∗∥)

≤J2(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥.(15)
So, the iterate x1 ∈ U(x∗, k∗) and the assertion (7), (9) are validated if m =

1 and m = 0, respectively. The induction for assertions (7)–(9) is terminated
if x0, u0, y0, x1 are exchanged by xm, um, ym, xm+1 in previous calculations.
Furthermore, the estimate
(16) ∥xm+1 − x∗∥ ≤ b(∥xm − x∗∥) ≤ k∗,

for b = J2(∥x0 − x∗∥) ∈ [0, 1) gives limm→+∞ xm = x∗ and completes the
induction for assertions (7)–(9). □

Remark 2. The real function w1 can be selected using the assumption (18)
and the following calculations:

u − x∗ = x − x∗ + ξF (x) = x − x∗ + ξ[x, x∗; F ](x − x∗)
= (I + ξLL−1([x, x∗; F ] − L + L))(x − x∗),
= ((I + ξL) + ξLL−1([x, x∗; F ] − L))(x − x∗).

Thus, a possible choice for the function w1 is
w1(t) = (∥1 + ξL∥ + ∥ξ∥Φ1(t))t.(17)

The function can be further specified if the linear operator L is precised.
A popular choice is L = F ′(x∗). But in this case although there are no

derivatives on the method (2) it cannot be used to solve non differentiable
equations under previous assumptions, since we assume x∗ is a simple solution
(i.e., F ′(x∗) is invertible). Thus L should be chosen so that functions “Φ”
are as tight as possible but not L = F ′(x∗) in the case of nondifferentiable
equations.

The isolation of the solution domain is specified in the next result.

Proposition 3. Assume conditions (T2) and (T5) are validated on the ball
U(x∗, p) for some p > 0 and there exists p1 ≥ p such that

∥L−1([y, x∗; F ] − L)∥ ≤Φ1(∥y − x∗∥),
Φ1(p1) <1,
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where Φ1 : B0 × B → R is CSNF.
Then, the equation F (x) = 0 is uniquely solvable by x∗ in the domain D1 =

D ∩ U [x∗, p].

Proof. Suppose there exists a solution λ ∈ D1 such that F (λ) = 0 and
λ ̸= x∗. Define the divided difference [λ, x∗; F ]. Then, we get

∥L−1([λ, x∗; F ] − L)∥ ≤Φ1(∥λ − x∗∥)(18)
≤Φ1(p1) < 1.

Thus, from identity
λ − x∗ =[λ, x∗; F ]−1(F (λ) − F (x∗))

=[λ, x∗; F ]−1(0) = 0,

we conclude λ = x∗. □

Remark 4. Notice that a possible choice for p = k∗.

ANALYSIS II: SEMI-LOCAL

This time the role of x∗ ∈ D and the functions “Φ” are switched by x0 ∈ D
and the functions “Ψ” precised below.

Assume there exist:
(M1) Functions CSNF Ψ0 : B×B → B, w2 : B → B so that Ψ0(w2(t), t)−1 =

0 has MPS in B denoted as q. Let B3 = [0, q).
(M2) Functions CSNF Ψ : B3 × B3 × B3 → B, Ψ1 : B3 × B3 × B3 × B3 → B.

Let D1 = D ∩ U(x0, q).
(M3) There exists x0 ∈ D and an invertible linear operator L so that for

x ∈ D, u = x + ξF (x)
∥u − x0∥ ≤ w2(∥x − x0∥)

and
∥L−1([u, x; F ] − L)∥ ≤ Ψ0(∥u − x0∥, ∥x − x0∥).

It follows by (M1) and (M3) that
Ψ0(∥u0 − x0∥, ∥x0 − x0∥) ≤ Ψ(w2(0), 0) < 1,

so, [u0, x0; F ] is invertible, thus y0 exists and consequently we can let
∥[u0, x0; F0]−1F (x0)∥ ≤ γ0.

Consider the sequence {δm} generated for δ0 = 0 and each m =
0, 1, 2 . . . as

δm+1 =γm + Ψ(w2(δm),δm,γm)(γm−δm)
1−Ψ0(w2(δm),γm) ,

ζm+1 =Ψ1(w2(δm), δm, γm, δm+1)(19)
and

γm+1 = δm+1 + ζm+1
1−Ψ0(w2(δm+1),δm+1) .
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(M4)
Ψ0(w2(δm), γm) < 1 Ψ0(w2(δm), δm) < 1

m = 0, 1, 2, . . . and δm ≤ q0 for some q0 ∈ B3 − {0}. It follows from
the definition (19) and this hypothesis that 0 ≤ δm ≤ γm ≤ δm+1 ≤ q0
and there exists δ∗ ∈ [0, q0] so that limm→+∞ δm = δ∗. Notice that δ∗

is the least upper bound of the scalar sequence {δm} which is unique.
(M5) For each x, y, u ∈ D1, u = x + ξF (x)

∥L−1([y, x, ; F ] − [u, x; F ])∥ ≤ Ψ(∥x − x0∥, ∥u − x0∥, ∥y − x0∥)
and

∥L−1([x, y, ; F ] − [u, v; F ])∥ ≤ Ψ1(∥x − x0∥, ∥y − x0∥, ∥u − x0∥, ∥v − x0∥).
and

(M6) U(x0, q∗) ⊂ D, where
q∗ = max{δ∗, w2(δ∗)}.

Then as in local case we present the semi-local result.

Theorem 5. Under the Assumptions (M1)−(M4) there exists x∗ ∈ U [x0, q∗]
solving the equation F (x) = 0 so that

∥xm − x∗∥ ≤ δ∗ − δm for all m = 0, 1, 2, . . . .(20)

Proof. The assertions
∥yi − xi∥ ≤ γi − δi(21)

and
∥xi+1 − yi∥ ≤ δi+1 − γi,(22)

must be shown by induction. Notice that (21) holds if m = 0 by the choice
of δ0, γ0 and the first substep of the method (2) if m = 0. Then, as in local
proof we have in turn the estimates

∥[ui, yi; F ]−1L∥ ≤ 1
1−Ψ0(∥ui−x0∥,∥xi−x0∥)

≤ 1
1−Ψ0(w2(δi),γi) ,

F (yi) = F (yi) − F (xi) − [ui, xi; F ](yi − xi),
= ([yi, xi; F ] − [ui, xi; F ])(yi − xi),

∥L−1F (yi)∥ ≤ Ψ(∥ui − x0∥, ∥xi − x0∥, ∥yi − x0∥)
≤ Ψ(w2(δi), δi, γi) = Pi,

xi+1 − yi = −[ui, yi; F ]−1F (yi),
∥xi+1 − yi∥ ≤ ∥[ui, yi; F ]−1L∥∥L−1F (yi)∥

≤ Pi
1−Ψ0(w2(δi),γi) = δi+1 − γi,

∥xi+1 − x0∥ ≤ ∥xi+1 − yi∥ + ∥yi − x0∥
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≤ δi+1 − γi + γi − δ0 = δi+1 < δ∗,

F (xi+1) = F (xi+1) − F (yi) − [ui, xi; F ](xi+1 − yi),
= ([xi+1, yi; F ] − [ui, xi; F ])(xi+1 − yi),

∥L−1F (xi+1)∥ ≤ Ψ1(∥ui − x0∥, ∥xi − x0∥, ∥yi − x0∥, ∥xi+1 − x0∥),
≤ Ψ(w2(δi), δi, γi, δi+1) = ζi+1,(23)

∥[ui+1, xi+1; F ]−1L∥ ≤ 1
1−Ψ(w2(δi+1),δi+1) ,

∥yi+1 − xi+1∥ ≤ ∥[ui+1, xi+1; F ]−1L∥∥L−1F (xi+1)∥

≤ ζi+1
1−Ψ0(w2(δi+1),δi+1) = γi+1 − δi+1,

∥yi+1 − x0∥ ≤ ∥yi+1 − xi+1∥ + ∥xi+1 − x0∥
≤ γi+1 − δi+1 + δi+1 − δ0 = γi+1 < δ∗.

Thus, {xi}, {yi} ∈ U(x∗, δ∗), (21), (22) are validated and the sequences
are Cauchy in Banach space X. Hence, there exists x∗ ∈ U [x∗, δ∗] so that
lim

i→+∞
xi = x∗. By letting i → +∞ in (23) we get F (x∗) = 0. Finally, for i ≥ 0

the estimate
∥xi+m − xi∥ ≤ δi+m − δi

implies (20) if i → +∞. □

Remark 6. The function w2 can be determined analogously to the function
w1 as follows:

u − x0 = x − x0 + ξF (x)
= (I + ξ[x, x0; F ])(x − x0) + ξF (x0),
= [(I + ξL) + ξLL−1([x, x0; F ] − L)](x − x0) + ξF (x0).

Assume: There exists FCN Ψ2 : B3 → B such that
∥L−1([x, x0; F ] − L))∥ ≤ Ψ2(∥x − x0∥)

for all x ∈ B3. Then, we can choose
w2(t) = (∥I + ξL∥ + ∥ξ∥∥L∥Ψ2(t))t + ∥ξ∥∥F (x0)∥.

The next result determines the isolation of a solution region.
Proposition 7. Assume there exists a solution τ ∈ B(x0, υ) of solution

F (x) = 0 for some υ > 0, The first condition in (M3) is validated on the ball
B(x0, υ) and there exists ϖ ≥ υ such that

∥L−1([τ, x; F ] − L)∥ ≤Ψ0(∥τ − x0∥, ∥x − x0∥),
Ψ0(υ, ϖ) <1,

where Ψ0 : B × B → R is FCN.
Let D3 = D ∩ B[x0, ϖ]. Then, the only solution of the equation F (x) = 0

is τ in the region D3.
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Proof. Let τ∗ ∈ D3 satisfy F (τ∗) = 0. Define the divided difference
[τ, τ∗; F ]. This is possible if τ∗ ̸= τ . Then, we obtain in turn by the con-
ditions

∥L−1([τ, τ∗; F ] − L)∥ ≤Ψ0(∥τ − x0∥, ∥τ∗ − x0∥),
≤Ψ0(υ, ϖ) < 1,

thus [τ, τ∗; F ]−1 ∈ L(B). But the identity

0 = F (τ) − F (τ∗) = [τ, τ∗; F ](τ − τ∗)

leads to a contradiction and the divided difference [τ, τ∗; F ] can not be defined.
Therefore, we conclude that τ∗ = τ . □

Remark 8. (1) The point q can also be replaced by δ∗ in condition (M4).
(2) If conditions (M1)–(M4) are all validated, let x∗ = τ and δ∗ = υ.

APPLICATIONS

Method (2) can turn from without memory to with memory if the constant
ξ turns into a suitable linear operator. As in [7] choose ξ to be the Kurchatov
operator [2, 14]

ξ ≈ −[2xm − xm−1, xm−1; F ]−1.(24)

That is, we obtain the method with memory derived by (2) for ξ replaced by
(24). Then, the local as well as the semi-local results hold say if w1, w2 are
adjusted. In view of the calculation

∥[2xm − xm−1, xm−1; F ]−1LL−1∥ ≤ ∥L−1∥
1−Φ0(2xm−xm−1−x∗∥,∥xm−x∗∥)

≤ ∥L−1∥
1−Φ0(2∥xm−x∗∥+∥xm−1−x∗∥,∥xm−x∗∥)

provided that

∥L−1([z, x; F ] − L)∥ ≤ Φ0(∥z − x∗∥, ∥x − x∗∥),

where Φ0 : X → X → X is CSNF for all x, z ∈ D.
Then, ξ can be replaced in Remark 2 by ∥L−1∥

1−Φ0(3t,t) = a∗ provided that
Φ0(3t, t) − 1 has a MPS denoted as s.
In this case we also require (T7) to be replaced by

(T7)′ U [x∗, ς] where ς = max{3k∗, w1(k∗)}.

Example 9. Let X = R × R × R and D = B[x∗, 1]. Consider the mapping
on the ball D be given for ρ = (ρ1, ρ2, ρ3)T as

F (ρ) =
(

e−1
2 ρ2

1 + ρ1, ρ2, eρ3 − 1
)T

.
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Method SM1 SM2 P M14 M4 MW M HLM5 P M25

Convergence Radius 0.274772 0.330032 0.111497 0.131305 0.184350 0.02763 0.118532

Table 1. Comparison of radius of convergence Example 9.

The Jacobian is given by

F ′(ρ) =

(e − 1)ρ1 + 1 0 0
0 1 0
0 0 eρ3

 .

It follows that the solution x∗ = (0, 0, 0)T and F ′(x∗) = I the identity map-
ping with choice L = F ′(x∗). The divided difference is defined by [x, y; F ] =∫ 1

0 F ′(x + θ(y − x))dθ. Then, the conditions (T3)-(T4) are validated provided
that

Φ0(u1, u2) = 1
2(e − 1)(u1 + u2)

Φ(u1, u2) = 1
2(e − 1)u2

Φ1(u1) = e−1
2 u1.

Then, taking ξ = 1 i.e considering the case of method (2) (denoted by SM1)
without memory, the radius of convergence k∗ from (4) is given as

k∗ = 0.2747721282852604 . . .

If we consider the method (2) (denoted by SM2) with memory, then from
(24) the radius of convergence k∗ is given by

k∗ = 0.33003245785816543 . . .

We compare the radius of convergence obtained by fourth order Kung-Traub
method (M4) given by Sharma et al. [22], fifth-order Weerakoon method (MWM)
in Sharma and Parhi [23], fourth and fifth order methods (PM14),

(HLM5), (PM25) in Maroju et al. [12].
Thus, from Table 1 it is clear that enlarged convergence radius is obtained

by our approach for the methods SM1 and SM2 in comparison to existing
methods.

Remark 10. Notice that using the iterates of the type um = xm + xiF (xm)
may lead to very small radius of attraction balls for the method, unless a small
xi is used.

Example 11. Let Q : X → X be a mapping. Recall that the standard
divided difference of order one when B = Rk is defined for x = (x1, x2, . . . , xk),
y = (y1, y2, . . . , yk), i = 0, 1, 2, . . . , k, j = 0, 1, 2, . . . , k by

[y, x; Q]ji = Qj(y1,...,yi−1,yi,xi+1,...,xk)−Qj(y1,...,yi−1,xi,xi+1,...,xk)
yi−xi

provided that yi ̸= xi. It is known that for certain pairs of distinct vectors x, y,
the formula is not applicable when some of the components are equal.
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The solution is sought for the nonlinear system
t2
1 − t2 + 1 + 1

9 |t1 − 1| = 0
t1 + t2

2 − 7 + 1
9 |t2| = 0.

Let Q = (Q1, Q2)T for (t1, t2) ∈ R × R, where
Q1 =t2

1 − t2 + 1 + 1
9 |t1 − 1| and

Q2 =t1 + t2
2 − 7 + 1

9 |t2|.
Then, the system becomes

Q(t) = 0 for t = (t1, t2)T .

The divided difference L = [·, ·; Q] belongs to the space L2×2(R) and is
the standard 2 × 2 matrix in R2 [10]. Let us choose x0 = (1.15, 2.36)T and
ξ = 1. Then, the application of the method (2) gives the solution x∗ after three
iterations. The solution

x∗ = (x∗
1, x∗

2)T = (1.159360850193 . . . , 2.361824342093 . . . )T .
Taking into account (24) and x−1 = (1.22, 2.37)T , if we consider the method

(2) with memory, the solution x∗ is obtained after two iterations. The number
of iterations required to obtain solution x∗ by two Kurchatov methods presented
in [4] are four and five, respectively. Thus, less number of iterations are re-
quired to obtain the solution by the methods SM1 and SM2 in comparison to
Kurchatov methods [4].

Example 12. Consider the following system of ten equations:
10∑

j=1,j ̸=i

xj − e−xi = 0, 1 ≤ i ≤ 10.

The initial approximations chosen are x0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T and x−1 =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T to obtain the solution

x∗ = (0.10048840033731707 . . . , 0.10048840033731707 . . . , . . . ,

0.10048840033731707 . . . )T

The comparison of error and norm of function for methods SM1 and SM2
taking three iterations are presented in Table 2. The stopping criterion used
is ∥xk+1 − xk∥ + ∥F (xk)∥ < 10−100.

The number of iterations required to obtain solution x∗ by methods SM1
and SM2 are three and two, respectively. Thus, the method (2) with memory
requires less number of iterations than the method without memory taking ξ =
0.5.

Remark 13. Summing up what we did in this study is that the local and
semilocal convergence of the method (2) are presented without Taylor series
expansions. Moreover, the limitations (C1)–(C5) have been addressed as fol-
lows:
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Methods k ∥xk+1 − xk∥ ∥F (xk)∥
1 0.283 − 001 1.29e − 001

SM1 2 1.31e − 002 1.61e − 007
3 1.62e − 008 3.13e − 025
1 0.284 − 001 6.92e − 003

SM2 2 6.98e − 004 1.80e − 013
3 1.82e − 014 3.11e − 048

Table 2. Comparison of the performances of methods for Example 12.

(C1)′ The radius of convergence k∗ is provided in (3). So, the initial point is
selected from a certain ball centered at x∗ and of radius k∗. Moreover,
the uniqueness of the solution is established in the Proposition 3 and
Proposition 7. Furthermore, the convergence conditions use only the
first derivative (see Theorem 1 and Theorem 5).

(C2)′ Computable error bounds on ∥xm − x∗∥ or ∥xm+1 − xm∥ become avail-
able in Theorem 1 and Theorem 5, respectively. Thus, the number of
iterations to be performed to reach a certain error tolerance is known
in advance.

(C3)′ The method (2) converges t∗ = 1
π in the motivational example of the

introduction if t0 is chosen close enough to t∗ and inside D for ξ = 1.
(C4)′ The results are established in more general setting of a Banach space.
(C5)′ The more interesting and challenging semi-local convergence analysis is

provided using majorizing sequences [2, 14].

CONCLUDING REMARKS

The present study is based on the local and semi-local analysis of two step
Steffensen-type methods with and without memory. It is applicable to the case
when the problems formulated from varied areas of science and engineering are
nondifferentiable. However, this methodology can also be applied to solve the
differentiable equations and on other methods utilizing the inverses of linear
operators. Further, numerical experiments are performed on various examples
for both the cases, i.e., with and without memory that demonstrates the
theoretical results. The enlarged convergence radii have been obtained by the
presented approach as compared to the existing ones. In our future research
the methodology shall be extended to extend the applicability of multipoint
and multi-step methods [2, 14, 21, 24].

Acknowledgements. We would like to express our gratitude to the re-
viewers for the constructive criticism of this paper.
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