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NUMERICAL ANALYSIS AND STABILITY OF THE
MOORE-GIBSON-THOMPSON-FOURIER MODEL

ALI SMOUK* AND ATIKA RADID!

Abstract. This work is concerned the Moore-Gibson-Thompson-Fourier Model.
Our contribution will consist in studying the numerical stability of the Moore-
Gibson-Thompson-Fourier system. First we introduce a finite element approxi-
mation after the discretization, then we prove that the associated discrete energy
decreases and later we establish a priori error estimates. Finally, we obtain some
numerical simulations.
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1. INTRODUCTION
In this paper, we consider a Moore-Gibson-Thompson (MGT) equation
(1) Ut + QU + ,BA’U,t + ")/AU = 0,

which describes the evolution of the unknown function v = u(x,t) : Q x
[0,00) — R, where  C R is a bounded domain with a sufficiently smooth
boundary 0f2. The equation includes various parameters such as «, 3,7 > 0,
which are fixed structural parameters.

Originally, for the Laplace-Dirichlet operator A = —A this equation was
introduced to model wave propagation in viscous thermally relaxing fluids
[13, 16], with its first appearance dating back to a paper by Stokes [14]. Over
time, researchers have discovered that the MGT equation finds applications
in a wide range of physical phenomena, including viscoelasticity and thermal
conduction. Notably, it has been interpreted as a model for vibrations in a
standard linear viscoelastic solid [8, 9].

In the particular case where A = A?, with proper boundary conditions
(see [11]), the MGT equation appears as a possible model for the vertical
displacement in viscoelastic plates.
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The mathematical analysis of the MGT equation has attracted significant
attention, resulting in a vast literature with numerous studies and references
available [3, 4, 10, 12, 1, 2, 15]. The main findings can be summarized as
follows:

For any positive values of the parameters «, 3, v, the MGT equation gener-
ates a strongly continuous semigroup of solutions. However, the behavior of
these solutions depends significantly on the constant v, defined as follows:

v=af—-".
For A = A? the semigroup of MGT equation is analytic and exponentially

stable the case of v > 0.
In present paper, we consider the MGT-Fourier system

(2) { e 4+ oy + BA% U + yA%u = —nA0,

0r — kKAO = nAuy + anAuy
where, the unknown function u = wu(x,t) represents the vibration of flexible
structures and 6 = 6(x,t) the difference of temperature between the actual
state and a reference temperature where z € Q,¢ € (0,00). The parameters

a, 3,7 and K are positive real numbers, n # 0 and = [0,1] is a bounded
domain. We assume the initial conditions
(3) u(x,0) =wug, ug(r,0) =wus, uy(x,0)=u2, 6(x,0)=70

where ug, u1,u9, 0y : 2 — R are assigned initial data. The system is comple-
mented with the boundary conditions

(4) u(x,t) = %(w,t) =0(x,t) =0, x€ N

Now, we intoduce a new variable z = w; + au and using v = aff — 4.
Consequently, the system (2) is equivalent to

(5) Zi + %AQZ + gAzut +nAf =0,
0y — kKAO —nAz = 0.

Associated to (2)—(4), we consider the energy functional
©)  B) =5 (I=l” + 21427 + £ Au + [|6]?)
L (e + a2 4 2 A + a2ul]? + ]| A + (6]

THEOREM 1 ([7]). The semigroup associate to (2) is analytic and exponen-
tially stable for v > 0.

As a results from [7] the energy (1) decays exponentially for v > 0, that is,
there exist two positive constants €1, €2 such that

E(t) < ere='; for all t > 0.
and satisfies
(7) E'(t) = —v||Au* — £ VO]* <0,
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For further details, refer to [7].

2. NUMERICAL APPROXIMATION

In this section, we propose a finite element approximation to system (2)
with boundary conditions (4) and initial conditions (3).

We introduce and study finite elements in space and an implicit Euler type
scheme based on finite differences in time. We prove that the discrete energy
decays.

Introducing new variables y = z;,v = 4, ® = —Az and ¥V = —Av; we
rewrite system (5)

Yy — LA — LAY 4 nAh = 0,
0y — kA —nAy =0
—Az=9o

—Av=1V.

(8)

In order to obtain the weak form associated with system (8), we multiply
the equations by test functions x, &, w,¢ € HZ(0,1) and integrate by parts.

Y, xX) + L (Ve,Vx) + £ (V¥,Vx) —n(VH,Vx) =0,
01,€) + £ (V0,VE) +n(Vy,VE) =0

Vz,Vw) — (®,w) =0

Vo,V() — (¥,() =0.

(9)

~—~~ N

For our purposes, we considered J a nonnegative integer and h = 1 a subdi-
vision of the interval (0,1) given by 0 = zo < 21 < ... < zj_1 < xj = 1, such
that x; = jh, for all j =0,...,J. We take

(10)

S"={geH'(0,1)] geC([0,1])

N

. g (wy,0,40) 152 linear polynomial, with

j=0,...,J—1}

and
St ={9€ 5" 90) =g(1) =0}

For a given final time 7" and a positive integer N, let At = T'/N be the time
step and t, = nAt, n=0,...,N.

The finite element method for (9) using the backward Euler scheme is to find
yp, O, ®F, U e SSL such that, for n = 1,..., N and for all x,, &, wn, (p €
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S6

(11)
& (U — w7 hoxn) + 2 (YR, V) + £ (VU] Vn) =0 (VO Vxa) = 0,
(08 = 070 6) + 5 (VOR, V) + 1 (Vo V) =0,

(Vzi, Vwp) — (P, wp) =0
(V’UZ, VCh) - ( Z? Ch) =0.

where
—1 n n—1
n __ UZ_UZ n__,n n n __ AR *
(12) vy = At , Rp = Up + aly, , and Yy = At y

are approximations to ug (t,), v (t,) + au(t,), 2 (t,) respectively.
By leveraging the properties of inner products and norms, we derive the
following identity, which will be frequently used:

(13) (a—b.a) =5 (la— I + flaf* b)) .

The next result is a discrete version of the energy decay property satisfied by
the solution of system (2).
We introduce the following discrete energy,

(14) e = 4 (IR + ZI9RIZ + £ w31 + 6717)
THEOREM 2. The discrete energy decay to zero, that is,
n__en—1
(15) S— <0,

holds form=1,2,..., N.

Proof. Taking x5, = yp and &, = 6} in (11).
(16)

& (v —wp ) + 2 (VR VyR) + £ (VU5 Vyi) = n (Y6}, Vi) = 0,
(87— 0771 67) + 5 (VOR, VOR) + 0 (TR, V) = 0.

Summing equations of system (16), we have
(17)

o (Vh —vi " uk) + 2 (VR Vi) + £ (VR Vi) + & (0F — 6571 6) +
+ 5 (VOF, VO = 0.
Recalling (12) and (13), we have

19) (o - o) = ke (o - o i = o)
Next,
(19) % (V(I)Za vy;zl) = _% ( Z’Ay;;) =
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= s (o - 2t g ep ).

Similarly,
(20)
& (VO3 Vi) = — & (V5 M)
A n_A n—1
=-a (\Iﬂ’: g )
- a h» i
A n—A n—1 A n_A n—1
T <\IJ’Z’ b Atvh ) — VUV (\IIZa il AtUh >

= e (o = v o = ) oo,
Also,
(1) (-0 = ok (HQZ - GZ‘IHQ + 11671 — H9Z‘1H2) :
Thus,
o (on = o |+ i = o) +
(22) + 55 <H<I>Z—‘I>21H2+II<I>Z||2— H‘P’filHQ)
o (o= v ) e
+ ke (flor - ot g o) + wiwsp = o.
We deduce that
o (A e 1 Tl
o [0 - o+ v — o)

et (L 7 I 7 7l RS A
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+ ke (Jon =+ 1o = ot ) + wivop®
> i

Ep—gpt

Which implies “2—h— < 0 and this completes the proof. ([l

Now, we prove a main error estimates result.

THEOREM 3. There exists a positive constant C, independent of the dis-
i=0

cretization parameters h and At such that for all {X%vf}il }N - SSL,
(24)

n__ ,mn|2 n__ §ni2 n _ qn| 2 n _ pnj2
Jmax {lly" = uf® + 187 = @R P4 [0 — P+ 6"~ 67} <

§C’At§:<’y§—5yi R R o e L R T
=1
vy v + [ vo - v ) +C max {lly" = xil* + 1" — €117}

N-1
+& X

o )

(o)

# O (o =l + o0 — o+ [ o - )

where §f' = (f — fi=1) JAt.

Proof. First, we subtract the first variational equation in (9) at time ¢t = ¢,

for a test function y = x5, € S§ C Hg (0,1) and the first discrete variational
equation in (11) to obtain

(25) (Wi — 0yp,xn) + 2 (VO" = VO, Vxyp) + £ (VI" — VI, Vxp) —
—n (V8" =V, V) =0, for all x;, € Sg

and so, we have

(26)

(Yt —0yn, y" —yp)+ L (VO"=VO5 V(y" —yp))+ 2 (VI" =V V(y" — yp))
—n (V0" = Vo, V(y" —yp))

= W =0y, y" —xn) + L (VE" =V, V(y" —xn))+ 2 (V"=V} V(y" —xn))
— (VO™ — VO, V(y" — x1n)), for all x, € S&

Taking into account that

(Wi = Syn,y™ —yp) = (e —=oy", y" —yp) +(0y" = dyn, y" —uyn) = (ys =y, y" —yp)

_ NP 9 _ a2
+ 357 (Hy”yﬁ(y” )| Hly—h Py




7 Numerical Analysis and Stability of the Moore-Gibson-Thompson-Fourier Model 349

2
By the positivity of the terms Hy” —yr = (" =y DI, we get the fol-
lowing inequality
(27)
(Yr —0yh,y" =) = (4 —8y" 4"~y rong (Hy [ | ) :

(VO" — Y}, V(" — ) = (@ - 50F.0" — @)
= (D} — 6", D" — BY) + (5B™ — 6B}, D" — BT
> (37 — 53", " — BT
+ ok (lom - ap)? — et —ap 1),

O — 5Dy)

U — Uy (UF + aP™) — (00 + aly))

TP —ovy) 4+ o (U™ — Uy, U™ — Uy

WP — SV W) |0 - W

PO ) o0 )

(V" = VU5, V(y" —yp)) =

+ o (o - o - fomt - ).

Second, we subtract the second variational equation in (9) at time ¢ = ¢,
for a test function ¢ = &, € S C HJ (0,1) and the second discrete variational
equation in (11) to obtain

(28) (0 — 005, &n) + £ (V0" = VO, V) + 1 (Vy" — Vi, V) =0,
and so, we have

(29)
(07 — 605, 0" — 05) + k (V0" — VO, V(0" — 6)) + 0 (Vy" = Vg, V(0" — 0;))

= (0 = 605, 0" — &)+ (VO" = VO, V(0" — &) +n (Vy" =Vyy, V(0" — &) .

Taking into account that
(30)
(0F —867,0™ —yp) = (07 — 60™,0™ — 67) + (00" — 60;5,0™ — 6F)

> (67 - 660" — 1)+ ok (167 — 6p1— ot~ o ).

From (26)—(27) and using several times Young’s inequality (31)

(31) ab<ea®+ L%, a,bER, e € R
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(=80 =)+ g (1=l =g ) + (o7 — o0m, 07 — g +

+akr (lom—ap - o —ap )+
(T L T R D
n

< (Y =0y, y" —yp)+ 2 (VO" =V, V(y" —yp))+ 2 (V" =V, V(y" —yy))
—n (V0" =V, V(y" —yp))

= (Y —0yp, y" — xn)+ 2 (VO" =V, V(y" —xn))+ 2 (VI =V, V(y" —xn))
—n (VO —Vor,V(y"

Next,

ki (I = ol = o=t = i) + ks (17 = @) — ot - o)
b [0 [y (10w ey ) (96 - o Vo)

< (Y —Oy, Y —xp)+L (V" =V, V(4" — xp) L (VI — VO, V(y"x1))
=0 (V0" = VO, V(" —xn) = (' —0y",y" — yp) — (B} — 62", &" — )
— (U7 — 5", U — W) | for all x;, € SP.

50" W) + |- )

—xn)), forall x;, € S&.

It follows that
(32)
e (1" =il = o= = o) + w2 (12 - o~ o — &)
o (H\If”—\PW—HW"1—@2—1\\2)+v |0 =3 —n (V0" — VO3, Ty V)
< (Ilgt = 05" + " — w1 + 119F — 60" |2 + @7 — B> + W} — 59"
T [P [V =V 4 [y~ xal® + 95" — VulP 4+ Ay" — Axal?)
+ (8y™ — yi,y™ — xn) » for all x;, € Sf.

Proceeding with a similar approach for equations (29)-(30), we obtain the
following estimates, for all &, € S¥,

(33)

s (107 =651 o = n 1 ) [ 96" V63 2 4 (T~ Vi, VO - V)

<C (||9" = 00"* + 10" = 0717 + |VO" = VOII* + [ Vy" — Vyi]|* + 10" — &l
+ V0" = V&) + (56" — 563, 0™ — &) .
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Combining estimates (32) and (33) it follows that, for all x5, &, € S&,
(34)

e (17 =il = o = o) + e (12 - o~ on - - &)
+gar (||\1J"—wz||2—H\IJ”—1 - \lelf)w [0 =W} P (V0" 07, V"~V i)

oo (107 = 12— ot = 31 ) o V0" = o4 (97 - VR, 90" 67)
< (gt = 09"+ " = vi” + |9F — 50" + 0" — | + w7 — 6w
T IV 05 Pyl IV — T Ay A 107 — 667
10" = 112+ 96" — VORI + [y — Vi + 167 — &4l + V6" — Ve ?)

+ (0y" = byi, y" — xn) + (60" — 665, 6™ — &) -

Multiplying the above estimates by At and summing up to n we find that,
for all xp,, &, € SE,
(35)

2 2 2 2
ly™ =yl + @™ — @) [|” + 9" — WL |I” + 10" — 0p]|” <
n
gCAtZ(
=0

. .12 . .12 . .12 . 112 . 112
i R R UG I M et Il Rl I Gt

2
+

2 L 2 2
Hlo =il +

yi — oy

<1>;'—5<1>Z’H2+H<1>i—<1>g Tl — 5

S T e e e R Oty
- Até (89" = ot v’ = i) + (06" — 36;,0" — &) )

+ 0 ([ o+ o0 - e e - g+ o — i)

Finally, taking into account that

n
At (05" = dyh ' —X3) = 0" —wioy" = xi) + (v — 2Ly = xd) +
i=1

n—1

+ 3 (v vy = Xi - (v =)
(36) i
ALY (56— 56),0" € ) = (0" — 050" — &) + (00— 0°.6' — &) +
=1

n—1

+3 (ai — 00— ¢ — (ei“ - g;‘l“))

i=1
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using again a discrete version of Gronwall’s inequality (see [5]) we obtain the
desired a priori error estimates. U

The estimates provided in the above theorem can be used to obtain the con-
vergence order of the approximations given by discrete problem (11). Hence,
as an example, if we assume the additional regularity:

we H'(0,7;L2(0,1)) 0 H3 (0,T; H'(0,1)) n C2 ([0, T]; H(0,1) )
(7 0 € 1? (0,7;L2(0,1)) n H* (0,75 H'(0,1)) N C° ([0,7]; H'(0, 1))

we obtain the quadratic convergence of the algorithm applying some results on
the approximation by finite elements (see [6]) and previous estimates already
derived in [5]. We have the following.

COROLLARY 4. Let (y,®,¥,60) be the solution of (8) and (yp, Ph, Vp,0f)
be that of the discrete system (11). Under the assumptions of Theorem 3, it
follows that there exists a positive constant C' > 0, independent of the dis-
cretization parameters h and At, such that
(38)

n (2 n n|(2 n n|2 n n|2 2 2
- - - - < .
max Ll = g2 + 7 — ORI+ 9" — R + 0" — 631} < C(2 + A?)
3. NUMERICAL SIMULATION

3.1. Numerical Convergence: error estimate with an exact solution.
In a first example, our aim is to show the accuracy and efficiency of the
proposed fully discrete example. Therefore, we will solve the problem:

(39) gy + auy + BA%u; + yA%u +nAf = f1 in (0,1) x (0,7),
0y — kAO — nAuy — anAuy = fo in (0,1) x (0,7,
with the following data:
(40)
T=1 a=2-10"2, f=310"3 ~=10"° n=10"% Kk=10"°.

If we use the following initial conditions, for all x € (0,1),
(41) uo(z) = uy(x) = ug(z) = 23(1 — )3, 0p(z) = 23(1 — 2).

considering homogeneous Dirichlet boundary conditions.

In the previous system of equations, the source terms f;,i = 1,2, can be
easily calculate from the exact solution to the above problem and it has the
form, for (x,t) € [0,1] x [0,1] :

u(z,t) = elad3(1 —z)3,0(x,t) = e'z®(1 — ).
Hence, for some values of the spatial and time discretization parameters, the
approximated numerical errors given by (11) are shown in Table 1.

Fig. 1 illustrates how the error depends on the parameters h? and At?,
demonstrating quadratic convergence. This confirms the theoretical results,
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assuming the solution meets certain regularity conditions. Moreover, Fig. 2
further validates these findings for different cases.

h{ At — 0.02 0.01 0.005 0.0025 0.00125
0.02 0.143200720 | 0.052391942 | 0.024164654 | 0.017698156 | 0.017492619
0.01 0.100412690 | 0.028129534 | 0.008809871 | 0.003280523 | 0.001545261
0.005 0.090920463 | 0.023251807 | 0.006174570 | 0.001746539 | 0.000551093

0.0025 0.088623052 | 0.022107428 | 0.005592580 | 0.001442328 | 0.000384684
0.00125 | 0.088053433 | 0.021826038 | 0.005451913 | 0.001371276 | 0.000348277

Table 1. Computed numerical errors x10~* for a final time T = 1
and for some values of h and At.

Fig. 1.

log(

Error) evolution

-1

-10 9
log(h? + At?)

-8 7

Error behavior on the logarithmic scale.

Case h At

Case 1: At #h L, &, . 55 | & Taes 550 oo

Case 2: At = 4h 50 5a5 Too0 555 | 0 &0 T30 330

Case 3: h fixed, At decreasing ﬁ 5i47 T{l)s’ ﬁ7 ﬁ
Case 4: At fixed, h decreasing | 4=, 163+ T35+ 45 s

Table 2. Values of h and At for different cases.
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. ‘ log(Er r'ur)‘ evolution o log(‘Errm') cvolution ‘
—%—log
a1
-10
8l
ol
-1
ol
11 — 12
12 / ]
13
13 / 1
14
/ 14
15 /
16 15
-12 -1 -10 -9 -8 -7 -6 -14 -13 -12 -1 -10 -9
log(h* + At?) log(h?)
(a) Error behavior on the loga- (b) Error behavior on the loga-
rithmic scale for case 1. rithmic scale for case 2.
7 log(Error) evolution . __log(Brror) cuolution

12 //* 13
13 P 14
14 // 15 —+
N
-15 / o
16 -17
-13 -12 -1 -10 -9 -8 -7 -10 9.8 9.6 9.4 9.2 -9 -8.8 8.6
log(At?) log(h?)
(c) Error behavior on the loga- (d) Error behavior on the loga-
rithmic scale for case 3. rithmic scale for case 4.

Fig. 2. Error Behavior.

3.2. Discrete Energy: exponential decay. Now, we consider the system
(8) with the following data :

(42) T=12, =10, =2, v=1, n=1 k=1.
and the following initial conditions, for all x € (0,1),
(43) uo(x) = uy(x) = uz(x) = 23(1 — 2)3, 00 (x) = 2*(1 — x)*sin().

If we take the parameters 3h = At = 0.03 and we use the following definition
for the discrete energy (14) in Fig. 3.3(a) and Fig. 3.3(b) we represent discrete
energy and discrete logarithm energy evolution of system (2). We can clearly
conclude that the discrete energy tends to zero and that an exponential energy
decay is achieved.
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[1]

Behavior of the discrete energy

03 gehavior of the discrete logarithme of energy
0.25 -2
02 -4
s == 6
&5 0.15 «
s 8
0.1
-10
0.05 12
0 14
0 2 4 6 8 10 12 0 2 4 6 8 10
time t" time t"
(a) Natural scale behavior of & (b) Semi-log scale behavior of &

Fig. 3. Energy Behavior.

The numerical schemes were implemented using MATLAB.
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