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CHEBFUN APPROXIMATION TO STRUCTURE OF POSITIVE
RADIAL SOLUTIONS FOR A CLASS OF SUPERCRITICAL

SEMI-LINEAR DIRICHLET PROBLEMS∗

CĂLIN I. GHEORGHIU†

Abstract. We use the Chebfun programming package to approximate numeri-
cally the structure of the set of positive radial solutions for a class of supercritical
semilinear elliptic Dirichlet boundary value problems. This structure (bifurca-
tion diagram) is provided only at the heuristic level in many important works. In
this paper, we investigate this structure, as accurately as possible, for the class
of problems mentioned above taking into account the dimension of Euclidean
space as well as the physical parameter involved.
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1. INTRODUCTION

We study the uniqueness and exact multiplicity of positive solutions u ∈
C2 (Bn,R) for the Dirichlet boundary value problem on a unit ball Bn in
Rn, n ≥ 1 (x ∈ Rn) of the form
(1) ∆u + λf (u, ϵ) = 0, |x| < 1 u = 0 if |x| = 1,

with λ a positive parameter and
(2) f (u, ϵ) := exp (u/(1 + ϵu) ,

where ϵ ∈ [0, 1) is a parameter with physical significance.
For ϵ = 0 and n = 1, 2, 3 the above problem is the so-called Gelfand’s

problem [4]. The parameter ϵ has been introduced by Frank-Kamenetski and
when ϵ > 0 it has the physical significance of the reciprocal of the activation
energy. The continuous solution u(x) stands for the temperature in a chemical
(catalysis) reaction.

Given the classical theorem of Gidas, Ni and Nirenberg [6] positive solutions
of (1) are radially symmetric, i.e., u = u(r), with r := |x|, and moreover
u′(r) < 0 for all r ∈ (0, 1) , and hence they satisfy
(3) u′′ (r) + n−1

r u′ (r) + λf (u, ϵ) = 0, 0 < r < 1, u′ (0) = u (1) = 0
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Quasilinear problems of type (1) arise in the theory of nonlinear diffusion gen-
erated by nonlinear sources, in the theory of thermal ignition of a a chemically
active mixture of gases, in the theory of membrane buckling and in the the-
ory of gravitational equilibrium of poly-tropic stars, to mention just a few
applications.

Actually, the nonlinearity f is derivable, increasing, convex and superlinear(
lims→∞

f(s)
s = ∞

)
.

In [9] the authors observe that if the growth rate of f is greater than some
critical exponents and the space dimension is higher (for example, f(u) :=
exp (u) , (1 + u)p , p > 1, 1/(1 − u)k, k > 0, ..., for n ≥ 3), then the bifurcation
diagram can be very complicated even for the balls.

One of the most striking features of such problems is that positive solutions
to (1) need not be unique. The exact multiplicity of positive solutions has
been theoretically studied extensively in recent years, starting with Joseph
and Lundgren [7], and continued by Bebernes, Eberly and Fulks [1] (and in
some other papers by various authors).

Once a numerical solution to the problem (3) is found, say u (r, λ) , it is
called stable as all eigenvalues of the linearised problem are negative. The
linearised problem around solution u (r, λ) reads

(4) w′′ (r) + n−1
r w′ (r) + λf ′ (u) w = 0, 0 < r < 1, w′ (0) = w (1) = 0.

When at least one is positive, that solution is called unstable.The technique
of studying the linearized equation is not new, and some of them, relevant to
the problem at hand, can be traced to early works by Chen and Lin [3].

We mention that we will focus in this paper on the cases of n = 2 and n = 3.
We will define a solution u (r) of the problem (3) to be bell-shaped if it has

a unique point of inflexion for r ∈ (0, 1) .
The bifurcation diagrams presented in [7], [1] or [8] may not be completely

accurate.
The purpose of this work is to parallelize the analytical results with an ac-

curate numerical study, i.e., to determine exactly the multiplicity of solutions,
to draw some bifurcation diagrams and last but not least to calculate examples
of solutions in various situations accurately.

Moreover, we can deduce the qualitative behaviour of the solution profiles
with a change in any one of the physical parameters ϵ, n and λ.

The paper is organized as follows. In Section 2 we summarize Chebfun as
a MATLAB object-oriented software package. In Section 3 we consider the
bidimensional case, find concave and bell-shaped solutions and plot some bi-
furcation diagrams for unperturbed and perturbed cases, i.e., vanishing and
non-vanishing ϵ respectively. In Section 4 we consider the tridimensional case
and get our main results. We find accurately the turning points in the bifur-
cation diagram when ϵ = 0 and show that for the larger values, i.e., ϵ : 0.1
reduces to a simple fold one.
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2. A CONCISE REVIEW OF CHEBFUN

For basic features of Chebfun, we refer to the book of Trefethen, Birkisson,
and Driscoll [11]. The Chebfun software system represents functions and
operators automatically as numerical objects. The BVP solver implements
Newton’s method in function space and the derivatives involved are Frechet
derivatives, not Jacobian matrices. The automatic differentiation techniques
are used within the Chebfun class called chebop allows users to set up and
solve nonlinear BVPs. Finally, the “nonlinear backslash” operator is used to
solve the nonlinear algebraic system and consequently find the solution.

More details about the algorithms, design and performances of the Chebfun
solver for BVPs are available in the paper [2]. Our own experience in using
this solver is available in [5].

However, the process called pseudo-arclength continuation is implemented
in the Chebfun by the code followpath. The idea of path-following is that
we will not just vary a parameter such as λ, but we will follow a path of
solutions (see [11] Ch. 18). The initial solution in this process is computed
using the routine solvebvp and the necessary number of steps is determined
on a case-by-case basis.

3. THE CASE n = 2

A concave solution for n = 2, ϵ = 0 is displayed in Fig. 3.1(a). The Chebfun
operatorial error in computing this solution has been of order 10−12. Newton’s
method in solving the nonlinear algebraic system is clearly of order two (see
Fig. 3.1(b)) and the convergence of Chebyshev collocation implemented by
Chebfun is exponential as it is apparent from Fig. 3.1(c).

It is worth noting now that simple initial data, equating a constant leads
to these results. Moreover, the solution is stable because all the attached
eigenvalues of the problem (4) are negative.

A bell-shaped solution for n = 2, ϵ = 0 is displayed in Fig. 3.2(a). The
Chebfun operatorial error in computing this solution has been only of order
10−6. Newton’s method in solving the nonlinear algebraic system remained
of order two (see Fig. 3.2(b)) and the convergence of Chebyshev collocation
implemented by Chebfun is somewhere between exponential and algebraic, as
it is apparent from Fig. 3.2(c).

It is worth noting now that simple initial data, equating a constant do
not lead to a bell-shaped solution. It took many numerical experiments to
find initial data that would lead Chebfun to such a solution. In the end, we
found a second-degree polynomial that satisfies the boundary conditions in
the problem (3).

Moreover, the solution is unstable because all the attached eigenvalues of
the problem (4) are negative except one which is positive.

Incipient numerical results in solving the disturbed problem (2) can be
traced back to the beginning of the ’60s in the work of Parks [10].
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(a) A concave solution n = 2, ϵ = 0.
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(b) The evolution of Newton’s iter-
ates, n = 2.
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(c) The behavior of Chebyshev coef-
ficients, n = 2.

Fig. 1. A concave and stable solution and its approximation.

Three bifurcation diagrams, i.e., the dependence of the scalar measure
u (0, λ) (supremum norm of the solution u) on λ are depicted in Fig. 3. The
solutions branches in all these plots as λ approaches λmax. In some sense
they bend around to turn back into the other direction, making u (0, λmax) a
double-valued function of λ.

Conceptually these figures are identical, the only difference is that λmax

grows with ϵ as this parameter approaches unity. Along with [1] we introduce
the ”invariant”

(5) I (a, λ) := c2 + 4c + 2λ,
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(a) A bell-shaped solution n = 2, ϵ = 0.
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(b) The evolution of Newton’s iter-
ates, n = 2, ϵ = 0.
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(c) The behavior of Chebyshev coef-
ficients, n = 2, ϵ = 0.

Fig. 2. An unstable bell-shaped solution and its approximation.

where c = c (a, λ) := u′ (1, a, λ) and a := u (0, λ) . The bifurcation diagram
can be summarized as follows:

• for λ ∈ (0, λmax), there exist two solutions;
• for λ = λmax there exists one solution;
• for λ > λmax there are no solutions;
• the ”invariant” I (a, λ) = 0 is satisfied with an error of order 10−12.

These results are in perfect agreement with those reported in the paper [1].
It is important to observe that when ϵ = 0 the followpath code stops after

92 steps with a warning message about a failure in solving the linear algebraic
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(a) Bifurcation diagram n = 2, ϵ = 0.

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

u
(0

,
)

 Bifurcation diagram

max

n:=2;

=0.001

(b) Bifurcation diagram when n =
2 and ”small” ϵ. Chebfun code
followpath attained a maximum of
92 steps.
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(c) Bifurcation diagram when n =
2 and ”large” ϵ. Chebfun code
followpath attained a maximum of
300 steps. λmax computed equals now
2.26040973.

Fig. 3. Bifurcation diagrams for various ϵ when n = 2.

system. The number of steps accepted by this code increases with ϵ that is,
when the problem becomes less critical (see Fig. 3).
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4. THE CASE n = 3

The bifurcation of solutions is much more complicated in this case than in
the previous one. We will analyse two distinct situations.

4.1. The unperturbed source. The concave or bell-shaped solutions com-
putation in this case does not differ from the previous case. For this reason,
we will not address this issue.

As far as bifurcation diagrams are concerned, things are quite different.
Thus, we begin with the case ϵ = 0 in (2).
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Fig. 4. Bifurcation diagram when n = 3 and ϵ = 0.

In this case, Chebfun has found the following values for turning points in
Fig. 4:

λ1 = 1.664158, λmax = 3.321987, λ2 = 2.108171, λ3 = 1.972368.

Moreover, we can state that:
• for 0 < λ < λ1 one stable solution; and for λ > λmax there are no solutions;
• for λ2 < λ < λmax there are two solutions;
• for λ1 < λ < λ3 there are three solutions;
• for λ2 < λ < λ3 there are a countable (?) infinity of solutions;
• at each point λmax,λ1, λ2, and λ3 there is a solution to unperturbed prob-

lem i.e., ϵ = 0 in (2).

4.2. The perturbed source. We now comment on the case of non-vanishing
ϵ in (2). It is also worth noting that when ϵ is close to zero, i.e., ϵ = O

(
10−4)

or smaller the bifurcation diagram has the same aspect as that in Fig. 4.
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The situation changes radically when ϵ increases. Thus for ϵ = 0.1 Chebfun
found the diagram from Fig. 5.
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Fig. 5. Bifurcation diagram when n = 3 and ϵ = 0.1. Chebfun has
computed λmax = 3.77418342.

We must say that we have not found anywhere in the literature the nu-
merical values for these turning points. There is only the information that
λmax > λ = 2 (2 − n) , a condition that in our case is fully satisfied.

The right-hand panel of Fig. 5 displays the same bifurcation diagram but
in a semilogy linear plot.

5. CONCLUDING REMARKS AND OPEN PROBLEMS

The question of finding an appropriate initial starting guess when solving a
nonlinear BVP remains an open and quite time-consuming one. However, in
all the problems addressed, the operatorial error did not decrease under the
order 10−8.

On the other hand, to some extent, the pseudo-arclength method imple-
mented with Chebfun has worked fairly well. Efforts to improve the efficiency
of the continuation code will probably lie in the linear solvers (the same conclu-
sion as in [8]). This is because to solve some bifurcation issues, Chebfun issued
the following: Warning: Linear system solution may not have converged.

However, we believe that for the most difficult situation, i.e., n = 3, we
have considerably improved, in terms of accuracy, the bifurcation diagrams
from literature (see for instance [8] and [1]).
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