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LEBESGUE CONSTANTS FOR CANTOR SETS.
NUMERICAL RESULTS∗

ALEXANDER GONCHAROV†, YİĞİT GÖRGÜLÜ† and YAMAN PAKSOY†

Abstract. We analyze numerically the form of Lebesgue functions and the val-
ues of Lebesgue constants in polynomial interpolation for three types of Cantor
sets.
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1. INTRODUCTION

This article is supplementary to [4], where the problem of boundedness of
Lebesgue constants for Cantor-type sets was investigated. Here, we consider
the three families of Cantor sets with uniform distribution of 2s interpolating
nodes in each corresponding set. The graphs of the corresponding Lagrange
fundamental polynomials and the Lebesgue functions are presented. Each fam-
ily of Cantor sets depends on its own parameter. We analyze the dependence
of the Lebesgue constants on these parameters.

First and the second families (Kβ) and K(αs) are geometrically symmetric
Cantor-type sets, where, during the Cantor procedure, all intervals of the same
level have the same length.

Let (ℓs)∞
s=0 be a sequence such that ℓ0 = 1 and ℓs ≤ 1

3ℓs−1 for s ∈ N. The
Cantor set associated with (ℓs)∞

s=0 is K = ⋂∞
s=0 Es, where E0 = I0,1 = [0, 1], Es

is a union of 2s closed intervals Ij,s of length ℓs and Es+1 is obtained by
replacing each Ij,s , j = 1, 2, ...2s, by two subintervals I2j−1,s+1 and I2j,s+1. In
what follows, we consider the interpolating set consisting of all 2s endpoints
of intervals in Es−1, see [4] for details.

A set Kβ with 0 < β ≤ 1/3 is associated with ℓs = βℓs−1 for s ∈ N, so K1/3
is the classical Cantor ternary set.

Suppose we are given ℓ1 ≤ 1/3 and a sequence α = (αs)∞
s=2 such that for

ℓs := ℓαs
s−1 = ℓ α2 ··· αs

1 the condition 3ℓs ≤ ℓs−1 is valid for all s ≥ 2. The
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corresponding Cantor-type set is denoted by K(αs). We will use the notation
Kα for the case of the constant sequence α

The third family of Cantor sets ([2]) consists of quadratic generalized Julia
sets. Given sequence γ = (γs)∞

s=1 with 0 < γs < 1/4, let r0 = 1 and rs = γsr2
s−1

for s ∈ N. Define polynomials P2(x) = x(x − 1), P2s+1 = P2s(P2s + rs)
and Es = {x ∈ R : P2s+1(x) ≤ 0} for s ∈ N. Then Es = ∪2s

j=1Ij,s and
K(γ) := ∩∞

s=0Es.
For a fixed s ∈ N, let Ys−1 be the set of all endpoints (xk)2s

k=1 of inter-
vals from the set Es−1. These points determine the polynomial ω2s(x) =∏2s

k=1(x − xk), the fundamental Lagrange polynomial lk,2s(x) = ω2s (x)
(x−xk)ω′

2s (xk) ,
the Lebesgue function λ2s(x) = ∑2s

k=1 |lk,2s(x)| and the Lebesgue constant
Λ2s(Ys−1, K) = supx∈K λ2s(x).

2. LEBESGUE FUNCTIONS ON Kβ

By [4, Theorem 4.4], in the case of small Cantor sets (Kα with α ≥ 2), the
choice of Ys−1 as the interpolating set provides a bounded subsequence of the
Lebesgue constants. However, for “large” Cantor sets such as Kβ, only one
fundamental polynomial at a certain point takes sufficiently large values for
large s.

We first consider the classical Cantor ternary set K1/3. Table 1 illustrates
the absolute values of fundamental Lagrange polynomials lk,2s evaluated at
the first node of the next level ℓs for 1 ≤ s ≤ 7, 1 ≤ k ≤ 2s. By comparison of
these values to the graphs of the corresponding Lebesgue functions (Fig. 1), we
observe that for each s, there exist a handful of polynomials that dominate rest
of them and determine the behaviour of the Lebesgue constants. For s ≥ 3, the
values marked in red are the largest of their levels and they correspond to the
value of the polynomial lm,2s , where m ≤ 2s is such that xm =

s∑
n=1

(−1)n+1ℓn.
Explicitly, if s is odd then m = (2s + 1)/3, if s is even then m = (2s + 2)/3.
Moreover, for these s, m, we have the ratios 5 ≤

∣∣∣ λ2s (ℓs)
lm,2s (ℓs)

∣∣∣ ≤ 6, which exhibit
the aforementioned similarity of behaviours.

On the other hand, comparing these results with the lower bounds corre-
sponding to |lk,2s(ℓs)| for k = 2s−1 −1 which were estimated in a more general
setting in [4, Lemma 3.1], we see that the latter are quite rough.

For s ∈ N, the fundamental polynomials lk,2s , k = 1, 2, .., 2s correspond to
interpolating nodes Ys−1. In Table 2, we evaluate maximal values of these
polynomials over points of Ys and denote this by Mk,s. That is, we have
Mk,s = maxx∈Ys |lk,2s(x)|.

Comparing these values to the graphs of the Lebesgue functions of corre-
sponding degree, it is evident that the fundamental polynomials that have
comparable maxima with respect to the corresponding Lebesgue constant, at-
tain their maximal values in either the first or the last interval of their level.
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These correspond to the polynomial lm,2s (marked by red) and the ones cor-
responding to the adjacent nodes of xm. In order to see this explicitly, one
can also compare the values from Table 1 and Table 2 directly and notice for
the aforementioned polynomials the agreement of values Mk,s and the values
at the first node of the next level.

s
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0,667 0,333
2 0,494 0,741 0,296 0,062
3 0,41 1,107 0,885 0,43 0,203 0,221 0,096 0,016
4 0,363 1,421 1,679 1,231 2,305 4,244 3,229 0,968 0,475 1,326 1,439 0,632 0,139 0,113 0,037 0,005

s
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5 0,335 1,672 2,532 2,387 9,753 23,5 23,51 9,308 72,26 283,5 435,2 272,8 183,2 221,7 107,8 20,04
6 0,317 1,863 3,318 3,683 24,7 70,3 83,17 38,99 1441 6755 12407 9315 10812 15741 9218 2065
7 0,306 2,001 3,97 4,91 45,57 144,6 190,8 99,75 9925 52003 1E+05 89595 1E+05 2E+05 2E+05 38918

s
k 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

5 9,957 50,63 98,26 76,5 94,49 141,1 85,81 20,37 1,126 2,48 2,126 0,74 0,082 0,054 0,014 0,001
6 3E+05 2E+06 4E+06 4E+06 1E+07 2E+07 1E+07 4E+06 2E+06 6E+06 7E+06 3E+06 8E+05 7E+05 2E+05 30040
7 1E+08 8E+08 2E+09 2E+09 8E+09 2E+10 2E+10 5E+09 8E+09 3E+10 3E+10 2E+10 6E+09 6E+09 2E+09 3E+08

s
k 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

6 14989 1E+05 3E+05 4E+05 1E+06 3E+06 3E+06 9E+05 1E+06 5E+06 6E+06 3E+06 1E+06 1E+06 5E+05 73047
7 1E+13 9E+13 3E+14 4E+14 2E+15 6E+15 6E+15 3E+15 2E+16 6E+16 9E+16 6E+16 3E+16 4E+16 2E+16 3E+15

s
k 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

6 255,3 1092 1784 1170 868,5 1096 563,8 113,3 1,446 2,717 1,989 0,591 0,041 0,023 0,005 4E-04
7 1E+15 5E+15 1E+16 8E+15 1E+16 1E+16 9E+15 2E+15 1E+14 3E+14 3E+14 1E+14 1E+13 8E+12 2E+12 2E+11

s
k 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

7 1E+11 1E+12 4E+12 6E+12 5E+13 1E+14 2E+14 7E+13 1E+15 4E+15 7E+15 4E+15 3E+15 4E+15 2E+15 4E+14
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

7 1E+15 7E+15 1E+16 1E+16 2E+16 3E+16 2E+16 5E+15 8E+14 2E+15 2E+15 7E+14 1E+14 9E+13 3E+13 3E+12
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

7 4E+07 3E+08 7E+08 7E+08 2E+09 4E+09 3E+09 9E+08 5E+08 1E+09 2E+09 8E+08 2E+08 2E+08 6E+07 9E+06
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

7 1479 5671 8305 4885 2617 2963 1368 246,7 1,201 2,03 1,336 0,357 0,018 0,009 0,002 1E-04

Table 1. Values |lk,2s(ℓs)| for 1 ≤ s ≤ 7 and k ≤ 2s.

s
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1
2 1 1,037 1,037 1
3 1 1,274 1 1 1 1,274 1
4 1 1,445 1,679 1,231 2,305 4,244 3,229 1 3,229 4,244 2,305 1,231 1,679 1,445 1

s
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5 1 1,672 2,532 2,387 9,753 23,5 23,51 9,308 72,26 283,5 435,2 272,8 183,2 221,7 107,8 20,04
6 1 1,863 3,318 3,683 24,7 70,3 83,17 38,99 1441 6755 12407 9315 10812 15741 9218 2065
7 1 2,001 3,97 4,91 45,57 144,6 190,8 99,75 9925 52003 1E+05 89595 1E+05 2E+05 2E+05 38918

s
k 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

5 20,04 107,8 221,7 183,2 272,8 435,2 283,5 72,26 9,308 23,51 23,5 9,753 2,387 2,532 1,672 1
6 3E+05 2E+06 4E+06 4E+06 1E+07 2E+07 1E+07 4E+06 2E+06 6E+06 7E+06 3E+06 8E+05 7E+05 2E+05 30040
7 1E+08 8E+08 2E+09 2E+09 8E+09 2E+10 2E+10 5E+09 8E+09 3E+10 3E+10 2E+10 6E+09 6E+09 2E+09 3E+08

Table 2. Values Mk,s for 1 ≤ s ≤ 7 and k ≤ 2s.

Fig. 1 – Fig. 3 give the graphs of λ2s , 2 ≤ s ≤ 7 for K1/3. We observe fast
growth of Λ2s(Ys−1, K1/3).
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s
k 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

6 30040 2E+05 7E+05 8E+05 3E+06 7E+06 6E+06 2E+06 4E+06 1E+07 2E+07 1E+07 4E+06 4E+06 2E+06 3E+05
7 1E+13 9E+13 3E+14 4E+14 2E+15 6E+15 6E+15 3E+15 2E+16 6E+16 9E+16 6E+16 3E+16 4E+16 2E+16 3E+15

s
k 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

6 2065 9218 15741 10812 9315 12407 6755 1441 38,99 83,17 70,3 24,7 3,683 3,318 1,863 1
7 1E+15 5E+15 1E+16 8E+15 1E+16 1E+16 9E+15 2E+15 1E+14 3E+14 3E+14 1E+14 1E+13 8E+12 2E+12 2E+11

s
k 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

7 2E+11 2E+12 8E+12 1E+13 1E+14 3E+14 3E+14 1E+14 2E+15 9E+15 1E+16 1E+16 8E+15 1E+16 5E+15 1E+15
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

7 3E+15 2E+16 4E+16 3E+16 6E+16 9E+16 6E+16 2E+16 3E+15 6E+15 6E+15 2E+15 4E+14 3E+14 9E+13 1E+13
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

7 3E+08 2E+09 6E+09 6E+09 2E+10 3E+10 3E+10 8E+09 5E+09 2E+10 2E+10 8E+09 2E+09 2E+09 8E+08 1E+08
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

7 38918 2E+05 2E+05 1E+05 89595 1E+05 52003 9925 99,75 190,8 144,6 45,57 4,91 3,97 2,001 1

Fig. 1. β = 1/3, λ22 (left), λ23 (right).

Fig. 2. β = 1/3, λ24 (left), λ25 (right).

Numerical results demonstrate the exponential growth of these values, which
correspond to in [4, Theorem 3.2]. Fig. 4 – Fig. 9 contain the graphs of
λ2s , 2 ≤ s ≤ 8 for Kβ with β = 1/5 and β = 1/10.

From these figures, we observe that the local maximum values λ2s become
smaller when β decreases. However, even for small β the figures illustrate a
fast growth of Λ2s(Ys−1, Kβ). Of course this does not support [5, Theorem 6.2]
(see [4, Section 3] for a more detailed discussion of this contradiction).
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Fig. 3. β = 1/3, λ26 (left), λ27 (right).

Fig. 4. β = 1/5, λ22 (left), λ23 (right).

Fig. 5. β = 1/5, λ24 (left), λ25 (right).

3. LEBESGUE FUNCTIONS ON Kα

In the Cantor process corresponding to Kα, the length of intervals converges
to zero exponentially, whilst for Kβ it does geometrically. So in this sense the
sets Kα are smaller than Kβ. Based upon the previous results, we have the
intuition that smaller sets correspond to smaller Lebesgue constants. The
results from the numerical experiments for Kα support this intuition and are
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Fig. 6. β = 1/5, λ26 (left), λ27 (right).

Fig. 7. β = 1/10, λ24 (left), λ25 (right).

Fig. 8. β = 1/10, λ26 (left), λ27 (right).

illustrated numerically in [4, Corollary 4.5]: the sequence (Λ2s(Ys−1, Kα))∞
s=1

is bounded if and only if α ≥ 2.
Fig. 10 – Fig. 13 contain the graphs of λ2s for K2 with ℓ1 = 1/3 and

ℓ1 = 1/10. We see that the local maxima of the Lebesgue functions decrease
fast to one.
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Fig. 9. β = 1/10, λ27 (left), λ28 (right).

Fig. 10. α = 2, ℓ1 = 1/3, λ22 (left), λ23 (right).

Fig. 11. α = 2, ℓ1 = 1/3, λ24 (left), λ25 (right).

In general, we have a function of two variables Fs(ℓ1, α) := Λ2s(Ys−1, Kα(ℓ1)),
where α > 1, ℓ1 ≤ 1/3 with

(1) 3ℓα−1
1 ≤ 1.

By [4, Theorem 4.4], the fixed values α < 2 and ℓ1 ≤
(

1
3

) 1
α−1 give Fs(ℓ1, α) →

∞ as s → ∞. Following our intuition, in order to get fast growth of Fs we have
to take values of α close to 1 and not very small values of ℓ1. However, by the
restriction (1), this is impossible. We guess that for this reason and since our
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Fig. 12. α = 2, ℓ1 = 1/10, λ22 (left), λ23 (right).

Fig. 13. α = 2, ℓ1 = 1/10, λ24 (left), λ25 (right).

computational abilities are limited to values of s ≤ 6, the results from Fig. 14
– Fig. 16 do not show the growth of Fs.

Fig. 14. α = 1.5, ℓ1 = 1/3, λ22 (left), λ23 (right).

Let us note that Kα is polar if and only if α ≥ 2, see, e.g., in [6, Chapter
V, §6, Theorem 3] or [1, Chapter IV, Theorem 3]. It gives immediately:

Proposition 1. The sequence (Λ2s(Ys−1, Kα))∞
s=1 is bounded if and only if

the set Kα is polar.
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Fig. 15. α = 1.5, ℓ1 = 1/3, λ24 (left), λ25 (right).

Fig. 16. α = 1.5, ℓ1 = 1/10, λ26 .

In the next section we will show that there are both polar and non-polar
sets from the third family with a bounded sequence (Λ2s(Ys−1, K(γ)))∞

s=1.

Now we present an example of a polar set K(αs) for which the corresponding
subsequence of Lebesgue constants is not bounded. It should be mentioned
that Privalov constructed in [7] a polar set K (in fact countable) such that
for any array of interpolating nodes from K the corresponding sequence of
Lebesgue constants is not bounded, so K is outside BLC in notations from [4].

Example 2. Let αk = 2 − 2δk and πs := ∏s
k=2(1 − δk). If πs → 0 as

s → ∞ with the divergent series
∑∞

s=2 πs, then the set K(αs) is polar and
Λ2s(Ys−1, K(αs)) → ∞ as s → ∞.

Indeed, by [1], the set K(αs) is polar if and only if the series
∑∞

s=2
α2α3···αs

2s

diverges. Hence, by the condition, K(αs) is polar. On the other hand, by [4,
Lemma 3.1],

|lk(ℓs)| ≥ ℓs

(
1−ℓs

1−ℓ1+ℓs−1

)2s−1

,

where k = 2s−1 − 1 with xk = ℓ1 − ℓs−1. Here, s ≥ 3, so ℓ1(1 − ℓs) > ℓs−1,
which implies 1−ℓs

1−ℓ1+ℓs−1
> 1

1−ℓ1
. Therefore,

Λ2s(Ys−1, K(αs)) ≥ |lk(ℓs)| ≥ ℓα2α3···αs
1 ·

(
1

1−ℓ1

)2s−1

=
(

ℓπs
1

1−ℓ1

)2s−1

,
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for large enough s, by the condition, ℓπs
1 > 1−ℓ1. Hence, Λ2s(Ys−1, K(αs)) → ∞

as s → ∞.

4. LEBESGUE FUNCTIONS ON K(γ)

Finally, we turn our attention to the family of weakly-equilibrium sets
K(γ). Here each set is the intersection of the inverse polynomial images(

2
rs

P2s + 1
)−1

([−1, 1]) .

By (3.1) in [3], the set K(γ) is non-polar if and only if

(2)
∞∑

k=1
2−k log 1

γk
< ∞.

Reference [4, Theorem 6.3] gives boundedness of (Λ2s(Ys−1, K(γ)))∞
s=1 pro-

vided γs ≤ 1/32 for s ∈ N and
∞∑

s=1
γs < ∞. It is easy to find sequences γ

satisfying these conditions with (2), as well as without it.
Here, in Fig. 17 – Fig. 20, we observe that even for the large values of the

parameters (γs = 0.24 for all s), the magnitudes of Λ2s(Ys−1, K(γ)) are not
large for s ≤ 8.

Fig. 17. γ ≃ 0.24, λ22 (left), λ23 (right).

Fig. 18. γ ≃ 0.24, λ25 (left), λ26 (right).
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Fig. 19. γ ≃ 0.24, λ26 (left), λ27 (right).

Fig. 20. γ ≃ 0.24, λ28 .

On the other hand, in the limit case, when γs = 1/4 for all s, we have
K(γ) = [0, 1], see [2, Example 1 from Section 4]. In this case, Ys−1 consists
of zeros of the Chebyshev polynomial T2s,[0,1], corresponding to the interval
[0, 1] with the logarithmic growth of the Lebesgue constants. The numerical
evidence from Fig. 17 – Fig. 20 is quite consistent with the hypothesis about
the logarithmic growth of Λ2s(Ys−1, K(γ)) for such values of the parameters.
We guess that the condition

∞∑
s=1

γs < ∞ is more important for the boundedness
of (Λ2s(Ys−1, K(γ)))∞

s=1 than the second restriction. Indeed, even in the case
of arbitrary small γ0, the condition γs = γ0 for all s gives a uniformly perfect
set K(γ) ([2, Theorem 3]), which is more close in its nature to Kβ than to
Kα. Recall that the sequence (Λ2s(Ys−1, Kβ))∞

s=1 is not bounded for any β.
For the definition of uniformly perfect sets, see, e.g., [2].

5. CONCLUSIONS

Based on numerical experiments as well as theoretical results from [4], we
conclude that for Cantor-type sets K, the values Λ2s(Ys−1, K):

1. are smaller for smaller sets,
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2. may be bounded for sufficiently small K,
3. increase fast to infinity for symmetric uniformly perfect Cantor sets,
4. may be bounded even for non-polar sets, if K is a “good” generalized

Julia set constructed by means of a proper sequence of polynomials.

At the same time, the sequence (Λ2s−1(Z, K))∞
s=1 is not bounded ([4, The-

orems 4.6 and 6.4]) for any uniformly distributed set of nodes Z. What is
more, by Theorem 6.4, even in the case of a “good” generalized Julia set, this
sequence has a linear or faster growth.

Comparison of Corollary 4.5 and Theorem 4.6 allows us to assume that, at
least for small Cantor-type sets, 5. uniform distribution of nodes is preferable.

Moreover, by [4, Theorem 5.1] we know that for α > 2 and for any distri-
bution of nodes the Lebesgue Constants on Kα are unbounded, which gives
Kα /∈ BLC.
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