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Abstract. The main goal of this paper is to introduce the Hartley-Bessel L2
α-

multiplier operators and to give for them some new results as Plancherel’s,
Calderon’s reproducing formulas and Heisenberg’s, Donoho-Stark’s uncertainty
principles. Next, using the theory of reproducing kernels we give best approxi-
mation and an integral representation of the extremal functions related to these
operators on weighted Sobolev spaces.
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1. INTRODUCTION

In their seminal papers, Hörmander’s and Mikhlin’s [10], [15] initiated the
study of boundedness of the translation invariant operators on Rd. The trans-
lation invariant operators on Rd were characterized using the classical Eu-
clidean Fourier transform F(f) and therefore they are also known as Fourier
multipliers. Given a measurable function

m : Rd −→ C

its Fourier multiplier is the linear map Tm given for all λ ∈ Rd by the relation

(1) F(Tm(f))(λ) = m(λ)F(f)(λ).

The Hörmander-Mikhlin fundamental condition gives a criterion for Lp-
boundedness for all 1 < p < ∞ of Fourier multiplier Tm in terms of derivatives
of the symbol m, more precisely if

(2)
∣∣∂γλm(λ)

∣∣ ≲ |λ|−|γ| for 0 ≤ |γ| ≤
[
d
2

]
+ 1,

then, Tm can be extended to a bounded linear operator from Lp(Rd) into itself.
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The condition (2) imposes m to be a bounded function, smooth over Rd\{0}
satisfying certain local and asymptotic behavior. Locally, m admits a singu-
larity at 0 with a mild control of derivatives around it up to order

[
d
2

]
+ 1.

This singularity links to deep concepts in harmonic analysis and justifies the
key role of Hörmander-Mikhlin theorem in Fourier multiplier Lp-theory. This
condition defines a large class of Fourier multipliers including Riesz transforms
and Littelwood-Paley partitions of unity which are crucial in Fourier summa-
bility or Pseudo-differential operator. The boundedness of Fourier multipliers
is useful to solve problems in the area of mathematical analysis as probability
theory (see [13]) and stochastic processes (see [2]). For its importance, many
researchers extended the theory of Fourier multiplier to different settings, for
example in the Dunkl-Weinstein setting [20], in the Laguerre-Bessel setting [7]
and in the Dunkl’s setting [19].

The general theory of reproducing kernels started with Aronszajn’s in [1] in
1950, next the authors in [12], [17], [18] applied this theory to study Tikhonov
regularization problem and they obtained approximate solutions for bounded
linear operator equations on Hilbert spaces with the viewpoint of numerical
solutions by computers. This theory has gained considerable interest in var-
ious fields of mathematical sciences, especially in Engineering and numerical
experiments by using computers [12], [18].

The Hartley transform is an integral transform attributed to Hartley see
[5], [6], this transform shares several essential properties with the classical
Fourier transform, including linearity, invertibility and Parseval’s identity.
These transforms find extensive applications across various fields of mathe-
matics, physics and engineering, such as signal processing, data analysis and
number theory see [5], [6], [11], [21].

The Hartley transform is a linear operator defined for a suitable function
ψ(x) as follows:

(3) H (ψ)(λ) = 1√
2π

∫
R
ψ(x) cas(λx)dx,

where cas(x) is the cas function, defined as

(4) cas(x) =
∞∑
n=0

(−1)
(n+1

2 )
n! xn,

with
(n

2
)

= n(n−1)
2 being the binomial coefficient. The cas(x) function (4) can

be seen as a generalization of the exponential function exp.
A simple computation shows that the cas function is the unique C∞ solution

of the following differential-reflection problem (see [5])

{
R∂xu(x) = λu(x),
u(0) = 0.



28 A. Chana and A. Akhlidj 3

Here, ∂x represents the first-order derivative, and R is the reflection operator
acting on functions f(x) as:

(5) (Rf)(x) = f(−x).

Furthermore, the function cas(x) is multiplicative on R in the sense

(6) cas(x) cas(y) = 1
2(cas(x+ y) − cas(−x− y) + cas(x− y) + cas(y − x)).

Inspired by relation (6), the author in [3] generalized the relation (6) for
the Hartley-Bessel function and introduced a generalized convolution product.
This paper focuses on the generalized Hartley transform introduced in [3], [4]
called the Hartley-Bessel transform, more precisely we consider the following
dfferential-reflection operator ∆α defined by

(7) ∆α = R
(
∂x + α

x

)
+ α

x , α ≥ 0,

where R is the reflection operator given by the relation (4).
The operator ∆α is closely connected with the Dunkl’s theory [9]. Fur-

thermore, the eigenfunctions of this operator are related to Bessel functions
and they satisfy a product formula which permits to develop a new harmonic
analysis associated with this operator (see [3] for more information).

The Hartley-Bessel transform Hα generalizes the classical Hartley transform
(3) and it is defined on L1

α(R) by

Hα(f)(λ) =
∫
R
Bα(λx)f(x)dµα(x), for λ ∈ R,

where µα is the measure on R and Bα(λ·) is the Hartley-Bessel kernel given
later.

Let σ be a function in L2
α(R) and β > 0 be a positive real number. The

Hartley-Bessel L2
α-multiplier operators are defined for a smooth function on R

as

(8) Mσ,β(f)(x) := H −1
α (σβHα) (x).

These operators are a generalization of the classical multiplier operators
given by the relation (1). The remainder of this paper is organized as fol-
lows. In Section 2 we recall the main results concerning the harmonic anal-
ysis associated with the Hartley-Bessel transform. In Section 3 we intro-
duce the Hartley-Bessel L2

α-multiplier operators Mσ,β and we give for them a
Plancherel’s point-wise reproducing formula and Heisenberg’s, Donoho-Stark’s
uncertainty principles. Section 4 is devoted to give an application of the gen-
eral theory of reproducing kernels to Fourier multiplier theory and to give best
estimates and an integral representation of the extremal functions related to
the Hartley-Bessel L2

α-multiplier operators on weighted Sobolev spaces.
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2. HARMONIC ANALYSIS ASSOCIATED WITH THE HARTLEY-BESSEL

TRANSFORM

In this section we recall some results in harmonic analysis related to the
Hartley-Bessel transform. For more details we refer the reader to [3].

• For α ≥ 0, µα is the weighted Lebesgue measure defined on R by

dµα(x) := |x|2α

2α+ 1
2 Γ

(
α+ 1

2
)dx,

where Γ is the Gamma function.

• Lpα(R), 1 ≤ p ≤ ∞, the space of measurable functions on R, satisfying

∥f∥p,µα =:


(∫

R
|f(x)|pdµα(x)

)1/p
< ∞, 1 ≤ p < ∞,

ess supx∈R |f(x)| < ∞, p = ∞.

In particular, for p = 2, L2
α(R) is a Hilbert space with inner product given

by

⟨f, g⟩α =
∫
R
f(x)g(x)dµα(x).

2.1. The Eigenfunctions of the differential-reflection operator ∆α. For
λ ∈ C we consider the following Cauchy problem

(S) :
{

∆α(u)(x) = λu(x),
u(0) = 1.

From [3], [4], the Cauchy problem (S) admits a unique solution Bα(λ.) given
by

(9) Bα(λx) = j
α− 1

2
(λx) + λx

2α+1jα+ 1
2
(λx),

where jα denotes the normalized Bessel function of order α (see [16]).
The function Bα(λ.) is infinitely differentiable on R and we have the follow-

ing important result

(10) ∀λ, x ∈ R, |Bα(λx)| ≤
√

2.

Furthermore from [3], the Hartley-Bessel kernel (9) is multiplicative on R
in the sense

(11) ∀λ ∈ R, x, y ∈ R∗ Bα(λx)Bα(λy) =
∫
R
Bα(λz)Kα(x, y, z)dµα(z),

where Kα is the Bessel kernel given explicitly in [3].
The product formula (11) generalizes the relation (6) and permits to define

a translation operator, a convolution product and to develop a new harmonic
analysis associated to the Differential-reflection operator ∆α.
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2.2. The Hartley-Bessel transform.

Definition 1 ([3]). The Hartley-Bessel transform Hα defined on L1
α(R) is

given by
Hα(f)(λ) =

∫
R
Bα(λx)f(x)dµα(x), for λ ∈ R.

Some basic properties of this transform are the following. For the proofs,
we refer the reader to [3], [4], [5].

Proposition 2. 1. For every f ∈ L1
α(R) we have

(12) ∥Hα(f)∥∞,µα
≤

√
2∥f∥1,µα .

2. (Inversion formula). For f ∈
(
L1
α ∩ L2

α

)
(R) such that Fα(f) ∈ L1

α(R) we
have

(13) f(x) =
∫
R
Bα(λx)Hα(f)(λ)dµα(λ), a.e. x ∈ R.

3. (Parseval formula). For all f, g ∈ L2
α(R) we have

(14) ⟨f, g⟩α = ⟨Hα(f),Hα(g)⟩α ,
In particular we have

(15) ∥f∥2,µα = ∥Hα(f)∥2,µα .

4. (Plancherel theorem). The Hartley-Bessel transform Hα can be extended
to an isometric isomorphism from L2

α(R) into L2
α(R).

2.3. The translation operator associated with the Hartley-Bessel trans-
form. The product formula (11) permits to define the translation operator as
follows.

Definition 3. Let x, y ∈ R and f be a measurable function on R. The
translation operator is defined by

τxαf(y) =
∫
R
f(z)Kα(x, y, z)dµα(z).

The following proposition summarizes some properties of the Hartley-Bessel
translation operator (see [3]).

Proposition 4. For all x, y ∈ R, we have:
1.

(16) τxαf(y) = τyαf(x).
2.

(17)
∫
K
τxαf(y)dµα(y) =

∫
R
f(y)dµα(y).

3. For f ∈ Lpα(R) with p ∈ [1; +∞], τxαf ∈ Lpα(R) and we have
(18) ∥τxαf∥p,µα ≤ 4∥f∥p,µα .



6 Best approximation of Hartley-Bessel multiplier operators 31

4. For f ∈ L1
α(R), τxαf ∈ L1

α(R) and we have
(19) Hα (τxαf) (λ) = Bα(λx)Fα(f)(λ), ∀λ ∈ R.

Relation (19) shows that the translation operator τxα is a particular case of
the Hartley-Bessel multiplier operator (8).

By using the translation, we define the generalized convolution product of
f, g as

(f ∗α g) (x) =
∫
K
τxα(f)(y)g(y)dµα(y).

This convolution is commutative, associative and it satisfies the following
properties (see [3]).

Proposition 5. 1. (Young’s inequality). For all p, q, r ∈ [1; +∞] such
that: 1

p + 1
q = 1 + 1

r and for all f ∈ Lpα(R), g ∈ Lqα(R) the function f ∗α g
belongs to the space Lrα(R) and we have

(20) ∥f ∗α g∥r,µα ≤ 4∥f∥p,µα∥g∥q,µα
2. For f, g ∈ L2

α(R) the function f ∗α g belongs to L2
α(R) if and only if the

function Hα(f)Hα(g) belongs to L2
α(R) and in this case we have

(21) Hα (f ∗α g) = Hα(f)Hα(g).
3. For all f, g ∈ L2

α(R) we have

(22)
∫
R

|f ∗α g(x, t)|2 dµα(x) =
∫
R

|Hα(f)(λ)|2 |Hα(g)(λ)|2 dµα(λ),

where both integrals are simultaneously finite or infinite.

3. THE HARTLEY-BESSEL L2
α-MULTIPLIER OPERATORS

The main purpose of this section is to introduce the Hartley-Bessel L2
α-

multiplier operators on R and to establish for them some uncertainty principles
and Calderon’s reproducing formulas.

3.1. Calderon’s reproducing formulas for the Hartley-Bessel L2
α-multiplier

operators.

Definition 6. Let σ ∈ L2
α(R) and β > 0. The Hartley-Bessel L2

α-multiplier
operators are defined for smooth functions on R as
(23) Mσ,β(f)(x) := H −1

α (σβHα(f)) (x),
where the function σβ is given for all λ ∈ R by

σβ(λ) := σ(βλ).

By a simple change of variable we find that for all β > 0, σβ ∈ L2
α(R) and

(24) ∥σβ∥2,µα = β
− 2α+1

2 ∥σ∥2,µα .
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Remark 7. According to relation (21) we find that

(25) Mσ,β(f)(x) =
(
H −1
α (σβ) ∗α f

)
(x),

where
(26) H −1

α (σβ) (x) = β
−(2α+1)

H −1
α (σ)

(
x
β

)
.

We give some properties of the Hartley-Bessel L2
α-multiplier operators.

Proposition 8. (i) For every σ ∈ L2
α(R), and f ∈ L1

α(R), the function
Mσ,β(f) belongs to L2

α(R), and we have

∥Mσ,β(f)∥2,µα ≤ 4β
− 2α+1

2 ∥σ∥2,µα∥f∥1,µα .

(ii) For every σ ∈ L∞
α (R), and for every f ∈ L2

α(R), the function Mσ,β(f)
belongs to L2

α(R), and we have
(27) ∥Mσ,β(f)∥2,µα ≤ ∥σ∥∞,µα∥f∥2,µα

(iii) For every σ ∈ L2
α(R), and for every f ∈ L2

α(R), then Mσ,β(f) ∈ L∞
α (R),

and we have

(28) Mσ,β(f)(x) =
∫
R
σ(βλ)Bα(λx)Hα(f)(λ)dµα(λ), a.e. x ∈ R

and
∥Mσ,β(f)∥∞,µα

≤ 4β
− 2α+1

2 ∥σ∥2,µα∥f∥2,µα .

Proof. (i) By using the relations (20), (25) we find that

∥Mσ,β(f)∥2
2,µα =

∥∥∥H −1
α (σβ) ∗α f

∥∥∥2

2,µα
≤ 16∥f∥2

1,µα

∥∥∥H −1
α (σβ)

∥∥∥2

1,µα
.

Plancherel’s formula (15) and relation (24) give the desired result.
(ii) It is a consequence of Plancherel’s formula (15).
(iii) By relations (15), (20), (24) and (25) we find the result. On the other

hand the relation (28) follows from inversion formula (13). □

In the following result, we give Plancherel’s and pointwise reproducing in-
version formula for the Hartley-Bessel L2

α-multiplier operators.
Theorem 9. Let σ ∈ L2

α(R) satisfy the admissibility condition:

(29)
∫ ∞

0
|σβ(λ)|2 dβ

β = 1, λ ∈ R.

(i) (Plancherel formula). For all f in L2
α(R), we have

(30)
∫
R

|f(x)|2dµα(x) =
∫ ∞

0
∥Mσ,β(f)∥2

2,µα
dβ
β .

(ii) (First Calderón’s formula). Let f ∈ L1
α(R) such that Hα(f) ∈ L1

α(R).
Then we have

f(x) =
∫ ∞

0

(
Mσ,β(f) ∗α H −1

α (σβ)
)

(x)dββ , a.e. x ∈ R.
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Proof. (i) By using Fubini’s theorem and the relations (22) and (25) we get∫ ∞

0
∥Mσ,β(f)∥2

2,µα
dβ
β =

∫ ∞

0

[∫
R

∣∣∣H −1
α (σβ) ∗α f(x)

∣∣∣2 dµα(x)
]
dβ
β

=
∫ ∞

0

[∫
R

|Hα(f)(λ)|2 dµα(λ)
]

|σβ(λ)|2 dβ
β .

The admissibility condition (29) and Plancherel’s formula (15) give the de-
sired result.

(ii) Let f ∈ L1
α(R) such that Hα(f) ∈ L1

α(R). By using Fubini’s theorem
and relations (14), (19) we find that∫ ∞

0
(Mσ,β(f) ∗αH −1

α (σβ)
)

(x)dββ =

=
∫ ∞

0

[∫
R

Mσ,β(f)(y)τxα
(
H −1
α (σβ)

)
(y)dµα(y)

]
dβ
β

=
∫ ∞

0

[∫
R

Hα(f)(λ)Bα(λx)(x, t)dµα(λ)
]

|σβ(λ)|2 dβ
β .

The admissibility condition (29) and inversion formula (15) give the desired
result. □

To establish the second Calderon’s reproducing formula for the Hartley-
Bessel L2

α-multiplier operators, we need the following technical result.

Proposition 10. Let σ ∈ L2
α(R)∩L∞

α (R) satisfy the admissibility condition
(29). Then the function defined by

Φγ,δ(λ) =
∫ δ

γ
|σβ(λ)|2 dβ

β

belongs to L2
α(R) ∩ L∞

α (R) for all 0 < γ < δ < ∞.

Proof. Using Hölder’s inequality for the measure dβ
β and relation (24) we

find that

∥Φγ,δ∥2
2,µα ≤ log(δ/γ)∥σ∥2

∞,µα∥σ∥2
2,γα

∫ δ

γ

dβ

β
(2α+3)/2 < ∞.

So, Φγ,δ belongs to L2
α(R). Furthermore, by using relation (29) we get

∥Φγ,δ∥∞,µα
≤ 1 and therefore Φγ,δ belongs to L2

α(R) ∩ L∞
α (R). □

Theorem 11 (Second Calderón’s formula). Let f ∈ L2
α(R) and σ ∈ L2

α(R)∩
L∞
α (R) satisfy the admissibility condition (29) and 0 < γ < δ < ∞. Then the

function

fγ,δ(x) =
∫ δ

γ

(
Mσ,β(f) ∗α H −1

α (σβ)
)

(x)dββ , x ∈ R

belongs to L2
α(R) and satisfies

(31) lim
(γ,δ)→(0,∞)

∥fγ,δ − f∥2,µα = 0.
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Proof. By a simple computation we find that

fγ,δ(x) =
∫
R

Φγ,δ(λ)Bα(λx)Hα(f)(λ)dµα(λ) = H −1
α (Φγ,δHα(f)) (x).

Using Proposition 10 we find that Φγ,δ ∈ L∞
α (R). Then we have fγ,δ ∈

L2
α(R) and

Hα (fγ,δ) (λ) = Φγ,δ(λ,m)Hα(f)(λ).
On the other hand, by using Plancherel’s formula (15) we find that

lim
(γ,δ)→(0,∞)

∥fγ,δ − f∥2
2,µα = lim

(γ,δ)→(0,∞)

∫
R

|Hα(f)(λ)|2 (1 − Φγ,δ(λ))2 dµα(λ).

By using the admissibility condition (29), the relation (31) follows from the
dominated convergence theorem. □

3.2. Uncertainty principles for the Hartley-Bessel L2
α-multiplier op-

erators. The main purpose of this subsection is to establish Heisenberg’s and
Donoho-Stark’s uncertainty principles for the Hartley-Bessel L2

α-multiplier op-
erators Mσ,β.

3.2.1. Heisenberg’s uncertainty principle for Mσ,β. In [14] the authors proved
the following Heisenberg’s inequality for Hα, there exists a positive constant
c such that for all f ∈ L2

α(R) we have

(32) ∥f∥2
2,µα ≤ c

∥∥∥|x|2f
∥∥∥

2,µα

∥∥∥|λ|2Hα(f)
∥∥∥

2,µα
.

We will generalize this inequality for Mσ,β.

Theorem 12. There exists a positive constant c such that for all f ∈ L2
α(R)

we have

∥f∥2
2,µα ≤ c

∥∥∥|λ|2Hα(f)
∥∥∥

2,µα

[∫ ∞

0

∥∥∥|x|2Mσ,β(f)
∥∥∥2

2,µα
dβ
β

] 1
2
.

Proof. By using relation (32) we find that∫
R

|Mσ,β(f)(x)|2dµα(x) ≤ c
∥∥∥|x|2Mσ,β(f)

∥∥∥
2,µα

∥∥∥|λ|2σβHα(f)
∥∥∥

2,µα
.

Integrating over ]0,+∞[ with respect to the measure dβ
β and by using

Plancherel’s formula (30) and Schwartz’s inequality we get

∥f∥2
2,µα ≤ c

[∫ ∞

0

∥∥∥|x|2Mσ,β(f)
∥∥∥2

2,µα
dβ
β

] 1
2

·
[∫ ∞

0

[∫
R

∣∣∣|λ|4σβ(λ)
∣∣∣2 |Hα(f)(λ)|2|(λ)|dµα(λ)

]
dβ
β

] 1
2
.

Fubini’s theorem and the admissibility condition (29) give the desired result.
□
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3.2.2. Donoho-Stark’s uncertainty principle for Mσ,β. Building on the ideas
of Donoho and Stark in [8], the main purpose of this subsection is to give
an uncertainty inequality of concentration type in L2

θ(R) where L2
θ(R) is the

space of measurables functions on ]0,+∞[×R such that

∥f∥2,θα =
[∫ ∞

0
∥f(β, ·)∥2

2,µα
dβ
β

] 1
2
.

We denote by θα the measure defined on ]0,+∞[×R by

dθα(β, x) = dµα(x) ⊗ dβ
β ,

Definition 13 ([8]). (i) Let E be a measurable subset of R. We say that
the function f ∈ L2

α(R) is ϵ-concentrated on E if

(33) ∥f − 1Ef∥2,µα ≤ ϵ∥f∥2,µα ,

where 1E is the indicator function of the set E.
(ii) Let F be a measurable subset of ]0,+∞[×R. We say that the function

Mσ,β(f) is ρ-concentrated on F if

(34) ∥Mσ,β(f) − 1FMσ,β(f)∥2,θα ≤ ρ∥Mσ,β(f)∥2,θα .

We have the following result.

Theorem 14. Let f ∈ L2
α(R) and σ ∈ L2

α(R) ∩ L1
α(R) satisfy the admissi-

bility condition (29). If f is ϵ-concentrated on E and Tσ,β(f) is ρ-concentrated
on F then we have

∥σ∥1,µα(µα(E))
1
2

[∫
F

dθα(β,x)
β2α+1

] 1
2

≥ 1 − (ϵ+ ρ).

Proof. Let f ∈ L2
α(R) and σ ∈ L2

α(R) ∩ L∞
α (R) satisfying (29) and assume

that µα(E) < ∞ and
[∫
F
dθα(β,x)
β2α+1

] 1
2 < ∞.

According to relations (33), (34) and Plancherel’s relation (30) we find that

∥Mσ,β(f)∥2,θα ≤ ∥Mσ,β(f) − 1FMσ,β(1Ef)∥2,θα + ∥1FMσ,β(1Ef)∥2,θα

≤ (ϵ+ ρ)∥f∥2,µα + ∥1FMσ,β(1Ef)∥2,θα .(35)

On the other hand by the relations (13), (28) and Hölder’s inequality we
find that

(36) ∥1FMσ,β(1Ef)∥2,θα ≤ ∥f∥2,µα∥σ∥1,µα(µ(E))
1
2

[∫
F

dθα(β,x)
β2α+1

] 1
2
.

By using relations (35), (36) we deduce that

∥Mσ,β(f)∥2,θα ≤ ∥f∥2,µα

[
(ϵ+ ρ) + ∥σ∥1,γα(µα(E))

1
2

[∫
F

dθα(β,x
β2α+1

] 1
2
]
.

Plancherel’s formula (30) for Mσ,β gives the desired result. □
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4. EXTREMAL FUNCTIONS ASSOCIATED WITH THE HARTLEY-BESSEL

L2
α-MULTIPLIER OPERATORS

In this section we study the extremal functions associated with the Hartley-
Bessel L2

α-multiplier operators.
Definition 15. Let ψ be a positive function on R satisfying the following

conditions
(37) 1

ψ ∈ L1
α(R)

and
(38) ψ(λ) ≥ 1, (λ) ∈ R.

We define the Sobolev-type space Hψ(R) by

Hψ(R) =
{
f ∈ L2

α(R) :
√
ψHα(f) ∈ L2

α(R)
}
,

provided with inner product

⟨f, g⟩ψ =
∫
R
ψ(λ,m)Hα(f)(λ)Hα(g)(λ)dµα(λ),

and the norm
∥f∥ψ =

√
⟨f, f⟩ψ.

Proposition 16. Let σ be a function in L∞
α (R). Then the Hartley-Bessel

L2
α multiplier operators Mσ,β are bounded and linear from Hψ(R) into L2

α(R)
and we have for all f ∈ Hψ(R)
(39) ∥Mσ,β(f)∥2,µα ≤ ∥σ∥∞,γα∥f∥ψ.

Proof. By using relations (15), (27), (38) we get the result. □

Definition 17. Let η > 0 and let σ be a function in L∞
α (R). We denote by

⟨f, g⟩ψ,η the inner product defined on the space Hψ(R) by

⟨f, g⟩ψ,η =
∫
R

(
ηψ(λ) + |σβ(λ)|2

)
Hα(f)(λ)Hα(g)(λ)dµα(λ),

and the norm
∥f∥ψ,η =

√
⟨f, f⟩ψ,η.

Theorem 18. Let σ ∈ L∞
α (R). The Sobolev-type space (Hψ(R)) , ⟨·, ·⟩ψ,η)

is a reproducing kernel Hilbert space with kernel

Kψ,η(x, y) =
∫
R

Bα(λx)Bα(λy)
ηψ(λ)+|σβ(λ)|2dµα(λ),

that is
(i) For all y ∈ R, the function x 7→ Kψ,η (x, y) belongs to Hψ(R).

(ii) For all f ∈ Hψ(R) and y ∈ R, we have the reproducing property
f(y) = ⟨f,Kψ,η(·, (y))⟩ψ,η .
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Proof. (i) Let y ∈ R, from the relations (10), (37) we have that the function

gy : λ −→ Bα(λy)
ηψ(λ)+|σβ(λ)|2

belongs to L1
α(R) ∩ L2

α((R). Hence the function Kψ,η is well defined and by
the inversion formula (13), we get

Kψ,η(x, y) = H −1
α (gy)(x).

By using Plancherel’s theorem for Hα we find that Kψ,η(·, y) belongs to
L2
α(R) and we have

(40) Hα(Kψ,η(·, y))(λ) = Bα(λy)
ηψ(λ)+|σβ(λ)|2 .

By using relations (10), (37) and (40) we find that

∥
√
ψHα(Kψ,η(·, y))∥2,µα ≤ 1

η2

∥∥∥ 1
ψ

∥∥∥
1,µα

< ∞.

This proves that for every y ∈ R the function x 7→ Kψ,η (x, y) belongs to
Hψ(R).

(ii) By using the relation (4.4) we find that for all f ∈ Hψ(R),

⟨f,Kψ,η (·, y)⟩ψ,η =
∫
R

(
ηψ(λ) + |σβ(λ)|2

)
Hα(f)(λ)Hα(Kψ,η (·, y) (λ)dµα(λ)

=
∫
R
Bα(λy)Hα(f)(λ)dµα(λ).

Inversion formula (13) gives the desired result. □

By taking σ a null function and η = 1 we find the following result.

Corollary 19. The Sobolev-type space (Hψ(R)) , ⟨·, ·⟩ψ) is a reproducing
kernel Hilbert space with kernel

Kψ(x, y) =
∫
R

Bα(λx)Bα(λy)
ηψ(λ) dµα(λ).

The main result of this section can be stated as follows.

Theorem 20. Let σ ∈ L∞
α (R) and β > 0, for any h ∈ L2

α (R) and for any
η > 0, there exists a unique function f∗

η,β,h where the infimum

(41) inf
f∈Hψ(R)

{
η∥f∥2

ψ + ∥h− Mσ,β(f)∥2
2,µα

}
is attained. Moreover the extremal function f∗

η,β,h is given by

f∗
η,β,h(y) =

∫
R
h(x)Θη,β(x, y)dµα(x),

where Θη,β is given by

Θη,β(x, y) =
∫
R

σβ(λ)Bα(λx)Bα(λy)
ηψ(λ)+|σβ(λ)|2 dµα(λ).
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Proof. The existence and the unicity of the extremal function f∗
η,β,h satis-

fying (41) is given in [17], [18]. Furthermore, f∗
η,β,h is given by

f∗
η,β,h(y) = ⟨h,Mσ,β(Kψ,η (·, y))⟩µα .

By using the inversion formula (13) and relation (40) we get

Mσ,β(Kψ,η (·, y) (x) =
∫
R

σβ(λ)Bα(λx)Bα(λy)
ηψ(λ)+|σβ(λ)|2 dµα(λ)

= Θη,β(x, y)
and the proof is complete. □

Theorem 21. If σ ∈ L∞
α (R) and h ∈ L2

α (R), then the function f∗
η,β,h

satisfies the following properties

(42) Hα(f∗
η,β,h)(λ) = σβ(λ)

ηψ(λ)+|σβ(λ)|2 H (λ)

and
∥f∗
η,β,h∥ψ ≤ 1√

2η∥h∥2,µα .

Proof. Let y ∈ R. Then the function

ky : (λ) −→ σβ(λ)Bα(λy)
ηψ(λ)+|σβ(λ)|2

belongs to L2
α(R) ∩ L1

α(R) and by using inversion formula (13) we get
Θη,β(x, y) = H −1

α (ky)(x).
Using Plancherel’s theorem and Parseval’s relation (14) we find that Θη,β(·, y) ∈

L2
α(R) and

f∗
η,β,h(y) =

∫
R

Hα(f)(λ)ky(λ)dµα(λ) =
∫
R

σβ(λ)
ηψ(λ)+|σβ(λ)|2 Hα(h)(λ)Bα(λy)dµα(λ).

On the other hand the function

F : λ −→ σβ(λ)Hα(h)(λ)
ηψ(λ)+|σβ(λ)|2

belongs to L1
α(R)∩L∞

α (R). By using the inversion formula (13) and Plancherel’s
theorem we find that f∗

η,β,h belongs to L2
α(R) and

Hα(f∗
η,β,h)(λ) = F (λ).

On the other hand we have

|Hα(f∗
η,β,h)(λ)|2 = |σβ(λ)|2(

ηψ(λ)+|σβ(λ)|2
)2 |Hα(h)(λ)|2 ≤ 1

2ηψ(λ) |Hα(h)(λ)|2.

By Plancherel’s formula (15) we find that
∥f∗
η,β,h∥ψ ≤ 1√

2η∥h∥2,µα .

□
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Theorem 22 (Third Calderón’s formula). Let σ ∈ L∞
α (R) and f ∈ Hψ(R).

Then the extremal function given by

f∗
η,β,h(y) =

∫
R

Mσ,β(f)(x)Θη,β(x, y)dµα(x),

satisfies

(43) lim
η→0+

∥∥∥f∗
η,β − f

∥∥∥
2,µα

= 0.

Moreover we have f∗
η,β −→ f uniformly when η −→ 0+.

Proof. f ∈ Hψ(R), we put h = Mσ,β(f) and f∗
η,β,h = f∗

η,β in the relation
(42) and we find that

(44) Hα(f∗
η,β,h − f)(λ) = −ηψ(λ)Hα(f)(λ)

ηψ(λ)+|σβ(λ)|2 .

Therefore ∥∥∥f∗
η,β − f

∥∥∥2

ψ
=

∫
R

η2(ψ(λ))3

ηψ(λ)+|σβ(λ)|2 |Hα(f)(λ)|2 dµα(λ).

On the other hand we have

(45) η2(ψ(λ))3

ηψ(λ)+|σβ(λ)|2 |Hα(f)(λ)|2 ≤ ψ(λ) |Hα(f)(λ)|2 .

The result (43) follows from (45) and the dominated convergence theorem.
Now, for all f ∈ Hψ(R) we have Hα(f) ∈ L2

α(R) ∩ L1
α(R) and by using the

relations (13), (44) we find that

f∗
η,β(y,s) − f(y) =

∫
R

−ηψ(λ)Hα(f)(λ)
ηψ(λ)+|σβ(λ)|2 Bα(λy)dµα(λ)

and

(46)
∣∣∣∣−ηψ(λ)Hα(f)(λ)
ηψ(λ)+|σβ(λ)|2 Bα(λy)

∣∣∣∣ ≤ |Hα(f)(λ,m)| .

Using relation (46) and the dominated convergence theorem we deduce that

lim
η→0+

∣∣∣f∗
η,β(y) − f(y)

∣∣∣ = 0,

which completes the proof of the theorem. □

Acknowledgements. The authors are deeply indebted to the referees for
providing constructive comments and helps in improving the contents of this
article.



40 A. Chana and A. Akhlidj 15

REFERENCES

[1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), no.
3, pp. 337–404.
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