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A NUMERICAL APPROACH FOR
SINGULARLY PERTURBED PARABOLIC REACTION-DIFFUSION

PROBLEM ON A MODIFIED GRADED MESH

KISHUN KUMAR SAH∗ and SUBRAMANIAM GOWRISANKAR†

Abstract. This paper addresses the numerical approximations of solutions for
one dimensional parabolic singularly perturbed problems of reaction-diffusion
type. The solution of this class of problems exhibits boundary layers on both
sides of the domain. The proposed numerical method involves combining the
backward Euler method on a uniform mesh for temporal discretization and an
upwind finite difference scheme for spatial discretization on a modified graded
mesh. The numerical solutions presented here are calculated using a modified
graded mesh and the error bounds are rigorously assessed within the discrete
maximum norm. The primary focus of this study is to underscore the crucial
importance of utilizing a modified graded mesh to enhance the order of conver-
gence in numerical solutions. The method demonstrates uniform convergence,
with first-order accuracy in time and nearly second-order accuracy in space con-
cerning the perturbation parameter. Theoretical findings are supported by nu-
merical results presented in the paper.
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1. INTRODUCTION

Singular perturbation problem consists of small parameter associated with
highest order derivative in the equation. Presence of the parameter will cause
the distortion in the solution in the vicinity of the boundary. Such problems
have boundary or interior layers in their solutions. The interior layer develops
when there is a discontinuity in the provided data, and the boundary layer
happens when a term containing the highest order derivative is multiplied by a
singular perturbation parameter. Furthermore, the problem is stiff due to the
simultaneous presence of a discontinuous coefficient and a delay parameter,
and the solution shows multi-scale character as ε → 0. Many physical and
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real world problems are followed by singularly perturbed parabolic problem.
In [7], its applications to many field of interests have been described. One can
refer the book [2] for the application of the problem in medicine while, [11,13]
are dealing with the applications of such problems in mechanics. There are
many articles in the literature that have emerged as a result of convergence
of numerical schemes applied to singularly perturbed problems of parabolic
type, e.g., one can refer to the articles [3–5,7].

Finite difference method (FDM) is a numerical technique that approximates
the derivatives in a differential equation by finite differences calculated over a
discrete grid of points, to solve for the unknown function or solution. There
are a lot of beauties of this methods including:

• Discretization: FDM discretizes the continuous domain into a grid of
points, allowing numerical approximation.

• Approximation of derivatives: FDM approximates derivatives using finite
differences, such as forward, backward, or central differences.

• Local accuracy: FDM has high local accuracy, meaning it’s accurate in
small neighbourhood around each grid point.

• Global convergence: FDM can converge to the exact solution as the grid
size decreases.

• Easy to implement: FDM is relatively simple to understand and imple-
ment, especially for simple geometries.

• Computational efficiency: FDM can be computationally efficient, espe-
cially for large-scale problems.

• Flexibility: FDM can be applied to various types of differential equations,
including non-linear and time-dependent equations.

However, certain limitations to the method are grid dependence, numerical
diffusion and boundary treatment. Overall, the finite difference method is a
powerful tool for solving differential equations, offering a good balance between
accuracy, efficiency, and simplicity.

The manuscripts that are utilizing the methods to obtain accuracy of dis-
cretized solution include [6, 10, 15, 18]. Different variants of FDMs have been
utilized to get the accuracy and convergence of the problem with different
conditions and restrictions. [8] is the study of convection–reaction problem in
which space direction is discretized by Shishkin mesh while Crank-Nikolson is
adapted to discretize in time direction. As a result, second order convergence
in time domain and higher order convergence in space domain are gained,
respectively. Morevover, [9] is the study of the discretization of convection-
reaction problem using Euler technique in time domain and a central difference
method comprised with space domain. Almost second order convergence up
to logarithmic term is shown as a convergence result.
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Through these manuscripts, we have considered the singularly perturbed
parabolic initial-boundary-value problem (IBVP):

(1)



uθ(r, θ) + Lεu(r, θ) = f(r, θ), (r, θ) ∈ Π = Υr × Υθ,

u(r, θ) = ψb(r), on Υr,

u(r, θ) = ψr∗(θ), {1} × Λr∗ = {(1, θ), 0 < θ ≤ T},

u(r, θ) = ψl∗(θ), {0} × Λl∗ = {(0, θ), 0 < θ ≤ T},

where:
(2) Lεu ≡ −εurr + b(r)u
0 < ε ≪ 1 is a small parameter, b and f are sufficiently smooth functions
with b(r) ≥ δ > 0 for r ∈ Υr = [0, 1]. Here, Π = Υr × Υθ, where Υr = (0, 1)
and Υθ = (0,T] and also Λ = Λl∗ ∪ Λb ∪ Λr∗ . The above considered singular
perturbation parameter is ε ∈ (0, 1] and also considered functions b(r), f(r, θ),
ψb(r), ψ∗

l (θ) and ψ∗
r (θ) are sufficiently smooth, bounded and also satisfy the

condition b(r) ≥ 0. The reduced problem corresponding to (1) is

(3)


∂u(r,θ)
∂θ + b(r)u(r, θ) = f(r, θ), ∀ (r, θ) ∈ Π,

u(r, θ) = ψb(r), r ∈ Λb.

As (1) is characterized by boundary layers, uniform meshes do not work
properly [1], which results to the construction of non-uniform and layer adapted
meshes. In recent days, layer adapted meshes are better in handling the prob-
lems possess boundary and interior layers. [3, 14, 17] are the study about the
convergence of finite difference methods over Shishkin mesh and other layer
adapted meshes for reaction-convection equations.

In the present study, we have adopted the modified graded mesh for spatial
domain. simple upwinding is introduced for discretizing the problem and
uniform grid for the time domain discretization. As a consequence, almost
second order convergence up to logarithimic factor we have achieved in spatial
direction as a convergence rate of numerical solution which is optimal. Finally,
we have presented two test problems to validate our theoretical conclusions.

The rest of the manuscripts are adored in the following manner: Section 2
is a brief study of the analytical behavior of the problem, including an in-
troduction to the appropriate Hölder spaces. The discussion includes the
maximum principle for the differential operator, highlighting its role in en-
suring ε-uniform stability. We also present sufficient compatibility conditions
on the initial and boundary data to ensure the existence, uniqueness, and ap-
propriate regularity of the problem’s solutions. In Section 3, both classical
and new sharper ε-uniform bounds in the maximum norm on the derivative
of the solution are discussed. The latter are obtained by means of a new de-
composition of the solution, which leads to a deceptively simple proof of the
required results. We generated the modified graded mesh and their properties
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are contained in Section 4. The upwind finite difference scheme is constructed
in Section 5. We have completed error analysis for the presented method in
Section 6. In Section 7, the numerical results are reported, which validate the
results predicted by the theory and in fact show that the numerical methods
work equally well in practice for a much broader class of problems than the
theory predicts. Section 8 ends with the conclusion.

Notation: C is used as a generic constant throughout the paper and also,
C is independent of the perturbation parameter ε and the mesh point N and
we use discrete maximum norm to study convergence which is defined as,

∥u∥Π = max
r∈Π

|u(r)|.

2. ANALYTICAL BEHAVIOUR OF THE CONTINUOUS PROBLEM

To explore the consistency of solutions to the time-dependent problem under
consideration, we introduce certain function spaces characterized by Hölder
continuity in both spatial and temporal dimensions. Specifically, consider
Υ ⊂ R and Π be a convex domain in Υ × [0, T ]. Again we suppose that κ ∈ R
and fulfilled the condition 0 < κ ≤ 1. Then a function y is said to be Hölder
continuous in Π of degree κ if, for all (r, θ), (r′, θ′) ∈ Π,

|u(r, θ) − u(r′, θ′)| ≤ C
(
|r − r′|2 + |θ − θ′|

)κ/2
.

Notice the distinction in the metrics employed for the spatial and tempo-
ral variables. The collection of all Holder continuous functions constitutes a
normed linear vector space denoted by C0

κ(Π), equipped with the norm

∥u∥κ,Π = ∥u∥Π + sup
(r,θ),(r′,θ′)∈Π

|u(r,θ)−u(r′,θ′)|
(|r−r′|2+|θ−θ′|)κ/2 ,

where
∥u∥Π = sup

(r,θ)∈Π
|u(r, θ)|.

We introduce the subspace Cpκ(Π) of C0
κ(Π) for each integer p ≥ 1. These

are functions within C0
κ(Π) that possess Hölder continuous derivatives. and

also introduced

Cpκ(Π) =
{
u : ∂i+ju

∂ri∂θj ∈ C0
κ(Π) for all positive integers i and j with 0 ≤ i+2j ≤ p

}
.

The norm on Cpκ(Π) is taken to be

∥u∥p,κ,Π = max
0≤i+2j≤p

∥ ∂i+ju
∂ri∂θj ∥κ,Π.

Observe once more the distinct handling of space and time derivatives. For
u ∈ Cpκ(Π) and 0 ≤ q ≤ p, we also define the following semi-norms:

∥u∥q,κ,Π = max
i+2j≤q

∥ ∂i+ju
∂ri∂θj ∥κ,Π.
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From these definitions, it is clear that
∥u∥p,κ,Π = max

0≤q≤p
∥ u ∥q,κ,Π .

Adopting the notational convention ∥u∥0,κ,Π = |u|0,κ,Π = ∥u∥κ,Π, when the
domain is apparent or of no specific importance, Π is typically omitted.

Furthermore, the initial functions ψb(r), are essential to meet compatibil-
ity conditions at corner points of the domain, namely at (0, 0) and (1, 0).
These points significantly represents the boundaries or changes in the bound-
ary conditions, satisfying compatibility conditions at these points ensures a
consistency where the boundary or initial conditions may change sharply. The
required compatibility conditions at the corners are stated below,

ψb(0) = ψl∗(0),
ψb(1) = ψr∗(0),

dψl∗ (0)
dθ − εd

2ψb(0)
dr2 + b(0)ψb(0) = f(0, 0),

dψr∗ (0)
dθ − εd

2ψb(1)
dr2 + b(1)ψb(1) = f(1, 0).

Under the above compatibility condition, (1) possess unique solution with
possibility of layer at both the end points r = 0 and r = 1.

Minimum Principle. Assume that b ∈ C0(Π) and let ψ ∈ C2(Π) ∩ C0(Π)
also suppose that ψ ≥ 0 on Λ then Lεψ ≥ 0 in Π implies that ψ ≥ 0 in Π.

Proof. Let us assume that for all (r, θ) ∈ Λ, we have ψ(r, θ) ≥ 0, and for
all (r, θ) ∈ Λ, Lεψ(r, θ) ≥ 0. Now, we apply the differential operator Lε on
ψ. To contradict we assume that there exists a point (r0, θ0) ∈ Π such that
ψ(r0, θ0) < 0, and ψ(r0, θ0) is a minimum of ψ in Π. Since, we have assumed
that ψ(r0, θ0) minimum and also ψ is differentiable, then by applying a second
order differential operator Lε, on ψ shows that it has upward concavity, which
contradicts our supposition that ψ(r0, θ0) < 0. Also, if ψ attain its minimum
on Π, then by assumption that ψ(r, θ) ≥ 0 for all (r, θ) ∈ Π and hence on Π,
ψ must also be non-negative. □

Ensuring the stability of Lε and establishing an ε-uniform bound for the
solution (1) in the maximum norm naturally follows from this.

Theorem 1. Consider any function S within the domain of the differential
operator Lε in (1). Then

∥S∥ ≤ (1 + αT) max{∥LεS∥, ∥S∥Λ},
and any solution u(r, θ) of (1) has the ε-uniform upper bound

∥u(r, θ)∥ ≤ (1 + αT) max{∥f∥, ∥φ∥},
where α = maxΠ{0, (1 − b)} ≤ 1/δ.

The subsequent classical theorem provides adequate conditions for guaran-
teeing the existence of a unique solution.
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Theorem 2. Suppose that φ = 0, the data b and f ∈ C0
λ(Π), and that the

compatibility conditions
f(0, 0) = f(1, 0) = 0

are fulfilled. Then (1) has a unique solution u and u ∈ C2
λ(Π).

3. BOUNDS ON THE SOLUTION AND ITS DERIVATIVES

The proposed method’s error estimate, discussed below, is validated assum-
ing that the solution of (1) exhibits a higher level of regularity than guar-
anteed by Theorem 4. Achieving this heightened regularity necessitates the
imposition of stronger compatibility conditions at the two corners of Π. The
additional compatibility conditions are

(4)
(
∂
∂θ + ε ∂

2

∂r2

)(
f

)
(0, 0) = 0 and

(
∂
∂θ + ε ∂

2

∂r2

)(
f

)
(1, 0) = 0

Note that these conditions necessitate additional smoothness of f . The
subsequent theorem establishes the existence of a smooth solution for the
problem with homogeneous boundary conditions.

Theorem 3. Assume that φ = 0, the data b and f ∈ C2
λ(Π), and that the

compatibility conditions
f(0, 0) = f(1, 0) = 0

and (
∂
∂θ + ε ∂

2

∂r2

)(
f

)
(0, 0) =

(
∂
∂θ + ε ∂

2

∂r2

)(
f

)
(1, 0) = 0

are fulfilled. Then (1) has a unique solution u and u ∈ C4
λ(Π). Furthermore,

the derivatives of the solution u satisfy, for all non-negative integers i, j, such
that 0 ≤ i+ 2j ≤ 4, ∥∥∥∂i+juε

∂ri∂θj

∥∥∥
Π

≤ Cε−i/2,

where the constant C is independent of ε.

Proof. The first part’s proof is provided in [12]. Bounds on the derivatives
are acquired through the following process: by transforming the variable r
into the stretched variable r̃ = r/

√
ε, problem (1) becomes problem{

−∂2ũ
∂r̃2 + b̃ũ+ ∂ũ

∂θ = f̃ on Π̃ε

ũ = 0,
(5)

where Π̃ε = (0, 1/
√
ε)×(0,T]. The differential equation in (5) is not dependent

on ε. Utilizing the estimate (10.5) from [12], it is deduced that for all non-
negative integers i, j such that 0 ≤ i+ 2j ≤ 4, and all Ñδ in Π̃ε,∥∥∥ ∂i+j ũ

∂r̃i∂θj

∥∥∥
Ñδ

≤ C(1 + ∥ũ∥Ñ2δ
).

Hence, we used the Theorem 1 which bound on the uε. □
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The limits on the derivatives of the solution, as provided in Theorem 3, were
initially deduced from classical findings. Nevertheless, it has been discovered
that they lack sufficiency for proving the ε-uniform error estimate. To ad-
dress this, more robust boundaries on these derivatives are acquired through a
methodology initially presented in [16]. A pivotal maneuver involves breaking
down the solution,uε, into components of smoothness and singularity.

Suppose that the solution u of equation (1) and write in the form as

(6) uε = Rε + Sε,

where Rε and Sε are smooth and singular components of uε .
Now, again decomposed the smooth component Rε in the form such that

Rε = R0 + εR1,

where the define the component R0 and R1 in the form as

bR0 + ∂R0
∂θ = f in Π, R0 = 0 on Λ̄b,

LεR1 = ∂2R0
∂r2 in Π, R1 = 0 on Λ.

Therefore, it is evident that R0 represents the solution to the reduced prob-
lem and moreover, Rε satisfies

LεRε = f and Rε = R0 on Λl∗ ∪ Λr∗ .

With Rε defined in this manner, it follows that Sε is determined and satisfies

LεSε = 0 in Π Sε = 0 on Π and Sε = −R0 on Π̄.

Now, we can also easily to write of Sε such that

Sε = Sl + Sr,

where Sl and Sr are define by{
LεSl = 0 in Π,
LεSr = 0 in Π{

Sl = −R0 on Λl∗ ,
Sr = −R0 on Λr∗ ,{
Sl = 0 on Λb ∪ Λr∗ ,

Sr = 0 on Λl∗ ∪ Λb
It’s evident that Sl and Sr denote the boundary layers on Λl∗ and Λr∗ , re-

spectively. The theorem following contains the necessary non-classical bounds
on Rε and Sε, along with their derivatives.

Theorem 4. Let’s consider problem (1). We assume that the data b ∈
C2
λ(Π) and f ∈ C4

λ(Π), and that the compatibility conditions of the previous
theorem are met. Under these conditions, the reduced solution R0 exists and
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belongs to C4
λ(Π). Additionally, if the supplementary compatibility conditions

are satisfied, then

(7) ∂2f(0,0)
∂r2 = ∂2f(1,0)

∂r2 = 0
and
(8) ∂f(0,0)

∂θ = ∂f(1,0)
∂θ = 0

are satisfied then R1 and Sε exists and R1, Sε ∈ C4
λ(Π). Also, for all positive

integers i, j, such that 0 ≤ i+ 2j ≤ 4∥∥∥∂i+jRε
∂ri∂θj

∥∥∥
Π

≤ C(1 + ε1−i/2),

and for all (r, θ) ∈ Π, ∥∥∥∂i+jSl(r,θ)
∂ri∂θj

∥∥∥ ≤ Cε−i/2e−r/
√
ε

and ∥∥∥∂i+jRr(r,θ)
∂ri∂θj

∥∥∥ ≤ Cε−i/2e−(1−r)/
√
ε,

where C is a constant independent of ε.

Proof. References for the existence and regularity results can be found in
[12]. The proofs of the bounds on the functions and their derivatives are
presented subsequently.

The reduced solution, denoted as R0, emerges as the solution to a first-order
differential equation. Employing a classical argument, we arrive at an estimate
denoted as

(9)
∥∥∥∂i+jR0
∂ri∂θj

∥∥∥
Π̄

≤ C.

Moreover, the function R1 represents the solution to a problem that con-
forms to the conditions specified in Theorem 3. Consequently, it follows that

(10)
∥∥∥∂i+jR1
∂ri∂θj

∥∥∥
Π̄

≤ Cε−i/2.

Since ∥∥∥∂i+jRε
∂ri∂θj

∥∥∥ =
∥∥∥∂i+jR0
∂ri∂θj

∥∥∥ + ε
∥∥∥∂i+jR1
∂ri∂θj

∥∥∥,
The necessary estimates for the smooth component Rε and its derivatives

can be obtained by employing equations (9) and (10). Similarly, the necessary
bounds on Sl and Sr, as well as their derivatives, are derived in a similar
manner.

Therefore, to simplify the proof, we will focus solely on Sl and its derivatives.
To establish a bound on Sl, we begin by defining

ψ±(r, θ) = Ce−r/
√
εeαθ ± Sl(r, θ).

Then, if C is chosen sufficiently large and α ≥ 0,

ψ±(r, 0) = Ce−r/
√
ε ≥ 0,
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Fig. 4.1. Modified graded mesh in the spatial direction for N = 32 and ε = 10−1.

ψ±(0, θ) = Ceαθ ± R0 ≥ 0,

ψ±(1, θ) = Ce−1/
√
εeαθ ≥ 0

and
Lεψ

±(r, θ) = C(b− 1 + α)e−r/
√
εeαθ ≥ 0

if the value of α is chosen as in Theorem 1 to be α = maxΠ{0, (1 − b)}. It
follows from the maximum principle that for all (r, θ) ∈ Π∣∣Sl(r, θ)∣∣ ≤ Ce−r/

√
εeαθ ≤ Ce−r/

√
ε

as required. □

4. THE MODIFIED GRADED MESH AND MESH DISCRETIZATION

In this section, we have constructed a modified graded mesh for the interval
[0, 1] to address the reaction-diffusion parabolic problem, incorporating the
effects of the perturbation parameter associated with boundary layers on both
sides of the domain-specifically, at r = 0 (left) and r = 1 (right). The modified
graded mesh is generated using a piecewise-defined function within the given
interval [0, 1]. The subintervals [0, ε] and [1 − ε, ε] represent the finer regions
in the spatial direction, forming a uniform grid divided into N/4 segments.
In contrast, the interval [ε, 1 − ε] constitutes the coarser region of the graded
mesh, characterized by a non-uniform grid obtained through the non-linear
equation (12) and subdivided into N/2 segments. The nonlinear equation
(12) itself is derived using the bisection method

η0 = 0,
ηi = 4εi/N, i = 1, 2, ...,N/4
ηi+1 = (1 + σh)ηi, i = N/4, ..., (N/2) − 2
ηN/2 = 1/2,
ηi = 1 − ηN−i, i = (N/2) + 1, ...,N.

(11)

These equations establish a piecewise function for ηi, where η0 is explic-
itly defined as 0, ηN/2 is explicitly set to 1/2, and the rest of the values are
determined based on the specified conditions. This sequence of values for ηi
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varies according to the ranges of i, utilizing a non-linear equation involving
the parameter h and satisfies the following non-linear equation such that

(12) ln(1/ε) = (N/2) ln(1 + σh).

This technique guarantees a precise arrangement of grid points across dis-
tinct subintervals within the range [0, 1]. Within each subinterval [0, ε] and
[1 − ε, 1],N/4 points are evenly distributed with a step length of 4ε/N . Here,
N denotes the total grid point count, and ε represents a small positive value
indicating the width of boundary regions. The selection of h within the central
subinterval [ε, 1 − ε] is established iteratively through a non-linear equation
(12). The mesh length is denoted by hi = ηi − ηi−1 for i = 1, 2, ...,N.

Remark 5. The proposed modified graded mesh adheres to the following
bounds for mesh size.

hi =


4ε/N for i = 1, · · · ,N/4
ρhηi−1 for i = N/4 + 1,N/2 + 2, · · · , 3N/4
4ε/N for i = 3N/4, 3N/4 + 1, · · · ,N.

Lemma 6. The mesh described in equation (11) fulfills the subsequent esti-
mates.

|hi+1 − hi| ≤
{
Ch2 for i = N/2 + 1,N/2 + 2, · · · , 3N/4,
0 otherwise.

Proof. Initially, we investigate the results for i = 0, 1, 2, · · · ,N/2. No fur-
ther establishment is required since the mesh is uniform in this segment.

Now, we have described the following for i = N/2 + 1,N/2 + 2, · · · ,N such
that

|hi+1 − hi| = |ρhηi − ρhηi−1|,
= ρh|ηi − ηi−1|,
= ρ2h2ηi−1,

≤ Ch2.

Here, we have taken 0 < ρ, h < 1. □

Lemma 7. The parameter h for the modified graded mesh defined in Equa-
tion (11) adheres to the following bound:

h ≤ CN−1 ln(1/ε).

Proof. In the mesh partition defined in Equation (11), let Q1 and Q3 denote
the number of points where the mesh spacing remains constant. It is clear that
Q1 andQ3 are bounded above by C/h. Conversely, Q2 represents the count
of points within the same partition where the mesh steps vary, indicating a
non-uniform mesh size. Additionally, we consider ηN/2+1, identified as the
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minimum point for which ηi > ε. Now, we aim to derive an upper limit for
Q2. Under the assumption that ρh ≤ 1, we have

Q2 =
N∑

N/2+1
1 =

N∑
N/2+1

(ηi+1 − ηi)−1
∫ ηi+1

ηi

dη,

=
N∑

N/2+1
(hi+1)−1

∫ ηi+1

ηi

dη,

=
N∑

N/2+1
(hρηi)−1

∫ ηi+1

ηi

dη,

≤
N∑

N/2+1
(2/ρhηi+1)−1

∫ ηi+1

ηj

dη,

because ηi+1 < 2ηi. For any η ∈ [ηi, ηi+1], we have

Q2 ≤
N∑

N/2+1
2(ρh)−1

∫ ηi+1

ηi

1
η
dη,

≤ 2(ρh)−1
∫ 1

ε

1
η
dη,

≤ 2(ρh)−1 ln(1/ε).
Recalling N = Q1 +Q2, we have

N ≤ C/ρh+ 2(ρh)−1 ln(1/ε),
N ≤ 1/h(ρC + 2ρ ln(1/ε)),
N ≤ 1/h(C ln(1/ε)),

Finally, we get
h ≤ CN−1 ln(1/ε),

where N represents grid points in the r-direction. □

Remark 8. From Lemma 6 and Lemma 7 it is clear that the modified graded
mesh satisfies

|hi+1 − hi| ≤ CN−2 ln2(1/ε)
.

4.1. Temporal Discretization. We present mesh with uniform step length
in the time direction since layer phenomenon has no effect on the temporal
variable θ. The following notation and definition apply to the uniform mesh
in the time direction:

ΥM = {θs = s∆θ, s = 0, 1, · · · ,M, ∆θM = T.}
Here M represents the grid points in the temporal direction.
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5. DISCRETIZATION METHOD

Now, we proceed to discretize our domain systematically. We construct a
non-uniform grid ΥN

r on Υr, consisting of N mesh points. This grid is formed
by placing N/2 uniform mesh points within the layer part and N/2 mesh points
outside the layer part. Additionally, we consider an equidistant grid ΥM on
[0,T] with a uniform step length of ∆θ. The discretized domain is then defined
as:

ΠN = ΥN
r × ΥM,

We now discretize our problem using the aforementioned discretized mesh.
We utilize an upwind difference method for spatial derivatives and employ
backward Euler for temporal derivatives.

(13)


(Dθ − εD

+
r −D−

r

ĥi

+ b(i))Ui,j+1 = fi,j+1, i = 1, 2, · · · ,N − 1,
U0,j+1 = ψl(θj+1),
UN,j+1 = ψr(θj+1),
Ui,j = ψb(ri, θj) i = 1, 2, · · · ,N − 1,

by arranging (13), we will get a tri-diagonal system
(14) (αi,j+1)Ui−1,j+1 + (βi,j+1)Ui,j+1 + (γi,j+1)Ui+1,j+1 = hi,j ,

where 

αi,j+1 = −ε∆θ
hiĥi

,

βi,j+1 = 1 + ε∆t
hi+1ĥi

+ ε∆t
hiĥi

+ bi∆θ,
γi,j+1 = −ε∆θ

hi+1ĥi
,

hi,j = fi,j+1∆θ + Ui,j ,

ĥi = hi+1+hi

2 ,

we defined the following parameter of finite difference scheme forward, back-
ward,and central and the mesh function ṽ(ri, θj) = ṽi,j such that

D+
r ṽi,j = ṽi+1,j−ṽi,j

hi+1
, D−

r ṽi,j = ṽi,j−ṽi−1,j

hi
,

δ2
r ṽi,j = (D+

r −D−
r )ṽi,j

ĥi
, D−

θ ṽi,j = ṽi,j−ṽi,j−1
hi+1

.

5.1. Numerical algorithm. The following algorithm provides the grid con-
struction and the corresponding numerical solution:

Step 1. Given the number of mesh points in the temporal and the spatial
direction, M and N, respectively, take uniform mesh points in the temporal
direction, ΥM

j=0 .

Step 2. For the finer part in the spatial direction (i.e., [0, ε], [1 − ε, 1]), we
have the uniform mesh {ηi}N/4

i=0 .
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Step 3. For the coarser part (i.e., [ε, 1 − ε]), the graded mesh parameter h
is obtained by solving the nonlinear equation (12) by the bisection method.

Step 4. Using the graded mesh parameter h, obtain the graded mesh in the
interval [ε, 1 − ε] from (11).

Step 5. Set j = 1.

Step 6. For the value of j, solve the tridiagonal system (14) to obtain the
solution for the time level t = j.

Step 7. j = j + 1 goto Step 6.

Step 8. If j = M, then stop and mark Ui,j , as the required solution.

6. ERROR CONVERGENCE

Lemma 9 (Discrete maximum principle). Suppose that ψ(ri, θj) is the mesh
function which satisfies ψ(ri, θj) ≥ 0 on ΛN. If LN

ε ψ(ri, θj) ≥ 0 on (ri, θj) ∈
ΠN, then ψ(ri, θj) ≥ 0 on ΠN.

Proof. Let us assume that for all (ri, θj) ∈ ΛN, we have ψ(ri, θj) ≥ 0,and for
all (ri, θj) ∈ ΠN,LN

ε ψ(ri, θj) ≥ 0. To contradict we assume that there exists a
point (r0, θ0) ∈ ΠN such that ψ(r0, θ0) < 0, and ψ(r0, θ0) is a minimum of ψ
in ΠN .

Since, we have assumed that ψ(r0, θ0) minimum and also ψ is differentiable,
then by applying a second order differential operator LN

ε on ψ shows that it
has upward concavity, which contradicts our supposition that ψ(r0, θ0) < 0.
Also, if ψ attain its minimum on ΠN , then by assumption that ψ(ri, θj) ≥ 0
for all (ri, θj) ∈ ΛN and hence on ΠN

, ψ must also be non-negative. □

Lemma 10. For any solution U(ri, θj) of (13), we have

(15)
∥∥U(ri, θj)

∥∥ ≤
(
1 + αT

)
max

(∥∥LN
ε

∥∥, ∥∥ψ∥∥
ΠN

)
Proof. By constructing the barrier function

(16) Û±(ri, θj) =
(
1 + αT

)
max

(∥∥LN
ε

∥∥, ∥∥ψ∥∥
ΠN

)
±U(ri, θj).

Now, we can obtained the result (15) with apply the Lemma 9 on the result
which is defined in (16). □

Theorem 11. Assume that u and U be the solution of continuous problem
(1) and discretized problem (13), respectively. Furthermore, both the solutions
meet the corners compatibility requirements. Then, the error estimate is given
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by

(17) max
∣∣(u− U)(ri, θj)

∣∣ ≤ C
[
∆θ + N−2 ln2(1/ε)

]
, (ri, θj) ∈ ΠN.

Here, constant C is free from N, ∆θ and ε.

Proof. We consider the following SPPDEs,(
∂
∂θ − ε ∂

2

∂r2 + b(r)
)
u(r, θ) = f(r, θ),(18)

u(r, θ) = u(r, θl), r ∈ Λb
u(0, θ) = ψ0(θ), u(1, θ) = ψ1(θ), θ ∈ [0,T]

To obtain the numerical solution, we discretize equation (18) employing the
upwind finite difference method for spatial derivatives and the backward-Euler
scheme for the time derivative.

LN
r U(ri, θj) ≡ D−

θ Ui,j − εδ2
rUi,j + biUi, j = f(ri, θj), (ri, θj) ∈ Π,

U(ri, θj) = U1(ri, θj), (ri, θj) ∈ Λb,

U(0, θj) = ψ0(θj),

U(1, θj) = ψ1(θj),

(19)

where U1(ri, θj) is the approximate solution obtained over the interval ΠN.
Presently, we partition the solution u of equation (1) into its regular and

singular constituents, denoted as u = ŷ + ẑ. Additionally, we decompose ŷ as
ŷ = y0 + εy1, where y0 represents the solution to the reduced problem.(

∂
∂θ + b(r, θ)

)
y0(r, θ) = f(r, θ), (r, θ) ∈ ΠN.

y0(r, θ) = u(r, θ),
y0(0, θ) = u(0, θ),

and

LN
r y1(r, θ) = ∂2y0(r,θ)

∂r2

y1(r, θ) = 0, (r, θ) ∈ ΛN
b

y1(0, θ) = y1(1, θ) = 0, (r, θ) ∈ ΛN .

Further ŷ satisfies

LN
r ŷ(r, θ) = f(r, θ), (r, θ) ∈ ΠN

ŷ(r, θ) = u(r, θ), (r, θ) ∈ ΛN
b

ŷ(0, θ) = y0(0, θ), ŷ(1, θ) = y0(1, θ).
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and the singular components z satisfies

LN
r ẑ(r, θ) = 0, (r, θ) ∈ ΠN

ẑ(r, θ) = 0, (r, θ) ∈ ΛN
b

ẑ(1, θ) = 0, ẑ(0, θ) = ψl(θ) − y0(0, θ), on ΛN .

We now decompose the numerical solution U of equation (19) into U =
Y + Z, where Z denotes the singular component of the decomposition, and
Y represents the regular component, which is the solution to the subsequent
non-homogeneous problem

LN
r Y = f(ri, θj), (ri, θj) ∈ ΠN

Y (ri, θj) = U1(ri, θj), (ri, θj) ∈ ΛN
b

Y (0, θj) = ŷ(0, θj), Y (1, θj) = ŷ(1, θj),

and the singular component Z must satisfy,

LN
r Z = 0, (ri, θj) ∈ ΠN

Z(ri, θj) = 0, (ri, θj) ∈ ΠN

Z(1, θj) = 0, Z(0, θj) = ψl(θj) − ŷ(0, θj)on ΛN .

Thus, the error can be expressed as:

U − u = (Y − ŷ) + (Z − ẑ)

We will now derive the bounds for the smooth and the layer components.
To establish the bound for the smooth component, we employ a classical ar-
gument. The smooth error component can be written as:

LN
r (Y − ŷ) = f(ri, θj) − LN

r ŷ

= −U(ri, θj) + LN
r ŷ

thus we obtain

LN
r (Y − ŷ) = −ε( ∂2

∂r2 − δ2
r )ŷ + ( ∂∂θ − δθ)ŷ.

When taking the absolute values on both sides and applying (17), the pre-
ceding inequality becomes,∣∣LN

r (Y − ŷ)
∣∣ ≤ C

(
∆θ + N−2 ln2(1/ε)

)
+ ε

∣∣∣( ∂2

∂r2 − δ2
r

)
ŷ

∣∣∣ +
∣∣∣( ∂
∂θ − δθ

)
ŷ

∣∣∣,
also we used the Taylor series expansion such that

≤ C
(
∆θ + N−2 ln2(1/ε)

)
+ ε

12
(
ri+1 − ri−1

)2
∥∥∥∂4ŷ
∂r4

∥∥∥ +
(
θj−θj−1

)
2

∥∥∥∂2ŷ
∂θ2

∥∥∥.
On using Remark 8, estimates of derivatives, bounds of mesh length and

discrete maximum principle, we have

(20)
∣∣(Y − ŷ

)
(ri, θj)

∣∣ ≤ C
[
∆θ + N−2 ln2(1/ε)

]
.
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Similar to the continuous variable z, the discrete counterpart Z is utilized
to estimate the singular component, we have

LN
r Z = 0, θj) ∈ ΠN

Z(ri, θj) = 0,
Z(1, θj) = 0, Z(0, θj) = ψl(θj) − ŷ(0, θj).

The singular component error can be expressed as,
LN
r (Z − ẑ) = LN

r Z − LN
r ẑ,

= −ε( ∂2

∂r2 − δ2
r )ẑ + ( ∂∂θ − δθ)ẑ

then the classical estimates gives∣∣LN
r (Z − ẑ)(ri, θj)

∣∣ ≤ C
[
∆θ + N−2 ln2(1/ε)

]
The discrete maximum principle is satisfied by the operator LN

r and also,
due to the uniform boundedness of the inverse operator, the above inequality
reduces to,
(21)

∣∣(Z − ẑ)(ri, θj)
∣∣ ≤ C

[
∆θ + N−2 ln2(1/ε)

]
Combining (20) and (21) completes the proof on prescribed domain. □

7. NUMERICAL EXPERIMENTS

This section contains two examples featuring boundary layers to demon-
strate the discussed numerical method. Through tables and graphs, we present
the efficiency of the numerical approach. All numerical computations are con-
ducted with ρ = 0.9. The numerical outcomes validate our theoretical conclu-
sions.

Example 12. Consider the following parabolic IBVP:

(∂u/∂θ) − ε∂2u/∂r2 − 2u(r, θ) = f(r, θ),
(r, θ) ∈ (0, 1) × (0, 1],

u(r, 0) = u0(r), ≤ r ≤ 1

u(0, θ) = exp(−θ), u(1, θ) = exp(−(θ + 1/
√
ε), 0 ≤ θ ≤ 1.

(22)

We select the initial data u0(r, θ) and the source function f(r, θ) to match the
exact solution u(r, θ) = exp (−(θ + r/

√
ε)). Moreover, we define the maximum

point-wise error eN,∆θε corresponding order of convergence pN,∆θε for each ε as:
eN,∆θε = max

∣∣(u− U
)
(ri, θj)

∣∣, (ri, θj) ∈ ΠN,

pN,∆θε =log(eN,∆θ/e2N,∆θ/2)
log 2 ,

where u and U are exact and approximate solution respectively. We compute
the maximum point-wise error eN,∆θε and the order of convergence pN,∆θε for
Example 12 using a modified graded mesh and Shishkin mesh, which includes
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boundary layers at r = 0 and r = 1 on both the left and right sides of the
domain. We apply the upwind finite difference scheme and summarize the
results in Table 1 and Table 2. Our observation from the results in Table 1 and
Table 2 is that the scheme exhibits second-order convergence. Additionally, in
the log-log plot shown in Fig. 7.2(a), it is evident that the maximum point-wise
error of the proposed numerical method exhibits a second-order convergence
with the perturbation parameter ε in space.

Number of Intervals N/∆θ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80

2−4 1.5547E − 03 3.9188E − 04 9.8239E − 05 2.4586E − 05

1.9882 1.9960 1.9985

2−6 1.4792E − 03 3.7299E − 04 9.3163E − 05 2.3317E − 05

1.9876 2.0013 1.9983

2−8 1.4000E − 03 3.5012E − 04 8.7423E − 05 2.1836E − 05

1.9995 2.0018 2.0013

2−10 1.2888E − 03 3.2081E − 04 7.9953E − 05 1.9953E − 05

2.0062 2.0045 2.0025

eN,∆θ
ε 1.2888E − 03 3.2081E − 04 7.9953E − 05 1.9953E − 05

pN,∆θ
ε 2.0062 2.0045 2.0025

Table 1. Maximum point-wise errors and order of convergence on a modified graded
mesh for Example 12.

In order to compare our results with the well established Shishkin mesh [19],
we define the the Shishkin mesh for the problem considered as follows. The
Shishkin mesh is a piecewise uniform mesh, depends on two transition points
which are defined by means of the transition parameter.
(23) σ = min{1/4, σ0

√
ε lnN},

where σ0 is a constant to be fixed later. A uniform mesh is placed in [0, σ],
[σ, 1 − σ] and [1 − σ, 1], such that r0 = 0, rN/4 = σ, r3N/4 = 1 − σ, and rN = 1.
Therefore the mesh points are given by ri = 4iσ/N, for i = 0, 1, ...,N/4, ri =
σ + 2(i − N)(1 − 2σ)/N, for i = N/4 + 1, ..., 3N/4, and ri = 1 − σ + 4(i −
3N/4)σ/N, for i = 3N/4 + 1, ...,N.

Example 13. Consider the following problem
uθ − εurr + ((1 + r2)/2)u = eθ − 1 + sin(πr), (r, θ) ∈ (0, 1) × (0, 1],

with homogeneous initial and boundary conditions.

In Example 13, an exact solution is unavailable. Consequently, to as-
sess the maximum point-wise error and determine the order of convergence
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Number of Intervals N/∆θ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80

2−4 1.6096E − 03 4.0509E − 04 1.0144E − 04 2.5371E − 05

1.9903 1.9975 1.9993

2−6 1.6420E − 03 4.1335E − 04 1.0352E − 04 2.5891E − 05

1.9900 1.9974 1.9993

2−8 1.7637E − 03 4.4458E − 04 1.1138E − 04 2.7862E − 05

1.9881 1.9969 1.9991

2−10 1.8389E − 03 4.8298E − 04 1.2641E − 04 3.3124E − 05

1.9288 1.9339 1.9321

eN,∆θ
ε 1.8389E − 03 4.8298E − 04 1.2641E − 04 3.3124E − 05

pN,∆θ
ε 1.9288 1.9339 1.9321

Table 2. Maximum point-wise errors and order of convergence on a Shishkin mesh
for Example 12.

for the computed solution, we employ the double mesh principle. This in-
volves considering 2N intervals in the spatial direction and 2M intervals in
the temporal direction. We obtain the numerical solution Ũ(ri, θj) on the
mesh Π̄2N = Ῡ2N

r × Ῡ2M , where i = 1, 2, . . . , N . Notably, each ith point of
the mesh ΥN

r coincides with the 2ith point of the mesh Ῡ2N
r .

The maximum point-wise error for each ε is defined by,

eN,∆θε = max
∣∣∣(U − Ũ)(ri, θj)

∣∣∣, (ri, θj) ∈ ΠN ,

and the order of convergence is given by

pN,∆θε = log(eN,∆θ/e2N,∆θ/2)
log 2 .

Similarly, we compute the maximum point-wise error eN,∆θε and the order of
convergence pN,∆θε for Example 13 using a modified graded mesh and Shishkin
mesh, which includes boundary layers at r = 0 and r = 1 on both the left and
right sides of the domain. We apply the upwind finite difference scheme and
summarize the results in Table 3 and Table 4. Our observation from the results
in Table 3 and Table 4. is that the scheme exhibits second-order convergence
with the perturbation parameter ε in space. Additionally, in the log-log plot
shown in Fig. 7.2(b), it is evident that the maximum point-wise error of the
proposed numerical method exhibits a second-order uniform convergence in
the perturbation parameter ε in space.



19 Singularly perturbed parabolic reaction-diffusion problem 135

Number of Intervals N/∆θ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80

2−4 2.7121E − 03 6.7948E − 04 1.6990E − 04 4.2469E − 05

1.9969 1.9997 2.0002

2−6 4.5714E − 03 1.1459E − 03 2.8663E − 04 7.1668E − 05

1.9962 1.9992 1.9998

2−8 5.7130E − 03 1.4323E − 03 3.5830E − 04 8.9590E − 05

1.9960 1.9990 1.9998

2−10 6.3522E − 03 1.5926E − 03 3.9840E − 04 9.9615E − 05

1.9959 1.9991 1.9998

eN,∆θ
ε 6.3522E − 03 1.5926E − 03 3.9840E − 04 9.9615E − 05

pN,∆θ
ε 1.9959 1.9991 1.9998

Table 3. Maximum point-wise errors and order of convergence on a modified graded
mesh for Example 13.

Number of Intervals N/∆θ

ε 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80

2−4 5.7176E − 03 1.6558E − 03 4.2963E − 04 1.0843E − 04

1.7878 1.9463 1.9862

2−6 1.6010E − 02 4.0517E − 03 1.0159E − 03 2.5417E − 04

1.9823 1.9957 1.9989

2−8 2.7172E − 02 6.8564E − 03 1.7181E − 03 4.2978E − 04

1.9865 1.9966 1.9991

2−10 3.3892E − 02 8.5641E − 03 2.1467E − 03 5.3704E − 04

1.9845 1.9962 1.9990

eN,∆θ
ε 3.3892E − 02 8.5641E − 03 2.1467E − 03 5.3704E − 04

pN,∆θ
ε 1.9959 1.9991 1.9998

Table 4. Maximum point-wise errors and order of convergence on a Shishkin mesh
for Example 13.

8. DISCUSSION AND CONCLUSIONS

In this article, for the first time, we propose a modified graded mesh for
reaction-diffusion problems that provides second-order uniform convergence
with respect to the perturbation parameter. We have presented effective nu-
merical approaches in this work that are based on a modified graded mesh. We
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Results by proposed method on the modified graded mesh

Number of Intervals N/∆θ

(ε = 2−4, 2−6, 2−8, 2−10) 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80

eN,∆θ
ε 2.7121E − 03 6.7948E − 04 1.6990E − 04 4.2469E − 05

pN,∆θ
ε 1.9969 1.9997 2.0002

Results by proposed method on the Shishkin mesh

Number of Intervals N/∆θ

(ε = 2−4, 2−6, 2−8, 2−10) 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80

eN,∆θ
ε 3.3892E − 02 8.5641E − 03 2.1467E − 03 5.3704E − 04

pN,∆θ
ε 1.9959 1.9991 1.9998

Results by [19]

Number of Intervals N/∆θ

(ε = 2−4, 2−6, 2−8, 2−10) 128/ 1
10 256/ 1

20 512/ 1
40 1024/ 1

80

eN,∆θ
ε 1.6600E − 03 5.7800E − 04 1.9200E − 04 5.9500E − 05

pN,∆θ
ε 1.5270 1.5900 1.6900

Table 5. Comparison of Maximum uniform errors and order of uniform convergence
for Example 13.

have presented upwind finite difference schemes on modified graded mesh and
Shishkin mesh. In order to verify the theoretical estimation established, we
conduct numerical experiments for two test problems for various values of ε,
and step sizes N and M . In order to find maximum point-wise error and cor-
responding order of convergence, we double the number of mesh points in the
time and spatial direction for the proposed schemes on the modified graded
mesh and Shishkin mesh. Through this procedure we get the second-order
convergence. These can be observed from the results presented in Table 1
and Table 2 for Example 12 and Table 3, Table 4 for Example 13. From
the above tables it can be confirmed that overall second order uniform con-
vergence. Corresponding log-log plot are provided for the Example 12 and
Example 13. Fig. 7.2 shows the overall second order of convergence for var-
ious values of ε with the upwind finite difference scheme on modified graded



21 Singularly perturbed parabolic reaction-diffusion problem 137

102 103

10-4

10-3

10-2

M
ax

 E
rr

o
r

(a)

102 103
10-5

10-4

10-3

10-2

M
ax

 E
rr

o
r

(b)

Fig. 7.2. Log-log plot for Example 12 in Fig. 7.2(a) and for Example 13 in Fig. 7.2(b).

mesh and Shishkin mesh. Table 5 display comparison of the proposed scheme
with the previous works. It is observed the proposed scheme is better than
those considered in [19]. The uniform convergence of the proposed methods is
shown by the numerical results obtained for the test problems. The ability to
build higher-order, more time-accurate numerical schemes using the current
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setting is a feasible extension that may be used to improve accuracy while re-
ducing computing costs. Finally, numerical outcomes supports the theoretical
findings.
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