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UPPER AND LOWER SOLUTION METHOD FOR CONTROL OF
SECOND-ORDER KOLMOGOROV TYPE SYSTEMS

ALEXANDRU HOFMAN†

Abstract. In this paper, an upper and lower solution method for the control of
second-order Kolmogorov systems is introduced. Two iterative algorithms, one
exact and one approximate, are proposed and their convergence is studied. The
technique is based on Perov’s fixed point theorem, matrices convergent to zero,
and the use of Bielecki’s norm.
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1. INTRODUCTION AND PRELIMINARIES

In this paper we consider systems of second-order Kolmogorov type equa-
tions. In paper [5] we discussed a control problem related to first-order Kol-
mogorov systems, with full reference to the Lotka-Volterra system and the
SIR model, with the controllability condition φ(x, y) = 0. Such kind of sys-
tems appear in several fields, such as population dynamics, ecological balance
and medicine (see, for example, [1, 2, 9, 10, 17]). In paper [8], we introduced
the Kolmogorov type second-order equations and using a fixed point approach
we studied various control problems related to them (see also [3, 5, 6, 7, 8, 12]).

In this paper we deal with the control of second-order Kolmogorov type
system,

(1)


(

x′(t)
x(t)

)′
= f(x(t), y(t), λ)(

y′(t)
y(t)

)′
= g(x(t), y(t), λ),

for t ∈ [0, T ], with the initial conditions
(2) x(0) = a, x′(0) = 0, y(0) = b, y′(0) = 0,

where a, b > 0. Here the control λ is a vector from Rm, λ = (λ1, λ2, . . . , λm).
Such kind of problems have applications to various domains, particularly in
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biomathematics. The controllability condition is
Ψ

(
x(T ), y(T )

)
= 0,

where Ψ : R2 → R is a continuous function. For example, we can take
Ψ(s, τ) = s − kτ or Ψ(s, τ) = s − k,

with k a given constant.
First, we introduce the notions of lower and upper solutions of the control

problem (see [11], [5]).
Definition 1. We call a lower solution of the control problem, a triple

(x, y, λ) where (x, y) is a solution of the Cauchy problem with λ = λ and

Ψ
(
x(T ), y(T )

)
< 0.

Definition 2. A triple (x, y, λ) is said to be an upper solution of the control
problem if (x, y) is a solution of the Cauchy problem with λ = λ and

Ψ
(
x(T ), y(T )

)
> 0.

Lower and upper solutions can be obtained with the aid of the computer
by repeated trials giving various control variable values.

The purpose of this paper is to present an algorithm for solving the above
control problem. The convergence of the algorithm is proved. By this algo-
rithm and an iterative method, the controllability of the problem is obtained.

We finish this section by some preliminary notions and results (see, e.g.
[13, 14, 16]).

Theorem 3 (Perov). Let (X, ∥·∥) be a Banach space, D a closed subset of
X ×X and N : D → D, N = (A, B) , A, B : D → X be an operator satisfying
the following vector inequality[

∥A (x) − A (y)∥
∥B (x) − B (y)∥

]
≤ M

[
∥x1 − y1∥
∥x2 − y2∥

]
for all x = (x1, x2) , y = (y1, y2) ∈ D, where M is a matrix of size two that is
convergent to zero. Then N has a unique fixed point in D which is the limit
of the sequence

(
Nk (x)

)
k≥1 of successive approximations starting from any

initial point x ∈ D.

By a matrix that converges to zero we mean a square matrix M with non-
negative entries and the property that its power Mk converges to the zero
matrix as k → ∞. It is well-known (see [13]) that this property is equivalent
to the fact that the spectral radius of M is strictly less than one, and also to
the fact that the matrix I − M (I being the unit matrix of the same size) is
nonsingular and its inverse also has nonnegative entries. We mention that a
square matrix of size two M =

[
a b
c d

]
with nonnegative entries is convergent to

zero if and only if
(3) tr M < min {2, 1 + det M} ,
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that is
(4) a + d < 2 and a + d < 1 + ad − bc.

Note that if M is convergent to zero, then a < 1 and d < 1.
When dealing with Volterra type integral equations it is convenient that

instead of the max-norm ∥x∥∞ = maxt∈[a,b] |x (t)| on the space C [a, b] , to
consider an equivalent norm defined by

∥x∥θ = max
t∈[a,b]

(
|x (t)| e−θ(t−a)

)
,

for some suitable number θ > 0. Such a norm is called a Bielecki norm and
it is equivalent to the max-norm, as follows from the inequalities

e−θ(b−a) ∥x∥ ≤ ∥x∥θ ≤ ∥x∥ (x ∈ C [a, b]) .

The trick of using Bielecki norms consists in the possibility to choose suitable
large enough θ in order to make constants smaller in Lipschitz or growth
conditions.

2. MAIN RESULTS

In order to give the algorithm, we need to guarantee that the Cauchy prob-
lem (1)–(2) has a unique solution for each λ and depends continuously on
parameter λ.

Theorem 4. Let α = ln a, β = ln b and
(5) ρ ≥ exp (1 + max {|α| , |β|}) .

Assume that f, g : R2 × Rm → R with f(0, y, λ) ≡ 0, g(x, 0, λ) ≡ 0, for any
x, y ∈ R, λ ∈ Rm satisfy the Lipschitz conditions

|f(x, y, λ) − f(x, y, µ)| ≤ a11|x − x| + a12|y − y| + a13|λ − µ|,

|g(x, y, λ) − g(x, y, µ)| ≤ a21|x − x| + a22|y − y| + a23|λ − µ|,
for all x, y, x, y ∈ R, λ, µ ∈ Rm and some nonnegative numbers aij (i =
1, 2; j = 1, 2, 3). In addition, assume that the matrix

(6) M = ρT 2

2

[
a11 a12
a21 a22

]
is convergent to zero. Then, for any λ ∈ Rm, the Cauchy problem (1)–(2) has
a unique solution (x, y) satisfying ∥x∥∞ ≤ ρ and ∥y∥∞ ≤ ρ, which depends
continuously on the parameter λ.

Proof. 1. Fixed point formulation of the Cauchy problem.
Making the change of variables x = eu and y = ev yields the system

u′′ (t) = f
(
eu(t), ev(t), λ

)
v′′ (t) = g

(
eu(t), ev(t), λ

)
,
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under the initial conditions u (0) = α, u′ (0) = 0, v (0) = β and v′ (0) = 0.
Successive integrations lead to the integral system

(7)


u(t) = α +

∫ t

0

∫ τ

0
f(eu(s), ev(s), λ)dsdτ

v(t) = β +
∫ t

0

∫ τ

0
g(eu(s), ev(s), λ)dsdτ,

which can be seen as a fixed point equation for the operator N = (A, B),
where

A (u, v) (t) = α +
∫ t

0

∫ τ

0
f(eu(s), ev(s), λ)dsdτ,

B (u, v) (t) = β +
∫ t

0

∫ τ

0
g(eu(s), ev(s), λ)dsdτ.

We shall apply Perov’s fixed point theorem in the set
DR := {(u, v) ∈ C([0, T ];R2) : ∥u∥∞ ≤ R, ∥v∥∞ ≤ R},

where R = ln ρ.

2. Operator N is a Perov contraction.
Let (u, v), (u, v) ∈ DR. One has

|A(u, v)(t) − A(u, v)(t)| ≤
∫ t

0

∫ τ

0

∣∣∣f(eu(s), ev(s), λ) − f(eu(s), ev(s), λ)
∣∣∣ ds dτ

≤
∫ T

0

∫ τ

0

(
a11

∣∣∣eu(s) − eu(s)
∣∣∣ + a12

∣∣∣ev(s) − ev(s)
∣∣∣) ds dτ.

Furthermore, using the Lagrange mean value theorem we deduce that∣∣∣eu(s) − eu(s)
∣∣∣ ≤ ρ |u(s) − u(s)|

and ∣∣∣ev(s) − ev(s)
∣∣∣ ≤ ρ |v(s) − v(s)| ,

and consequently∫ T

0

∫ τ

0

(
a11

∣∣eu(s) − eu(s)∣∣ + a12
∣∣ev(s) − ev(s)∣∣) ds dτ ≤

≤ ρT 2

2

(
a11

∥∥u − u
∥∥

∞ + a12
∥∥v − v

∥∥
∞

)
.

It follows that
∥A(u, v) − A(u, v)∥∞ ≤ ρT 2

2

(
a11 ∥u − u∥∞ + a12 ∥v − v∥∞

)
.

Similarly,

∥B(u, v) − B(u, v)∥∞ ≤ ρT 2

2

(
a21 ∥u − u∥∞ + a22 ∥v − v∥∞

)
.

These two inequalities can be written in the vector form[
∥A(u, v) − A(ū, v)∥∞

∥B(u, v) − B(ū, v)∥∞

]
≤ M

[
∥u − ū∥∞

∥v − v∥∞

]
.
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Since matrix M is assumed to be convergent to zero, the operator N =
(A, B) is a Perov contraction on DR.

3. Invariance of the set DR.

We show that

∥u∥∞ ≤ R, ∥v∥∞ ≤ R imply ∥A(u, v)∥∞ ≤ R, ∥B(u, v)∥∞ ≤ R.

First, note that

|A(u, v)(t)| ≤ |α| +
∫ t

0

∫ τ

0

∣∣∣f(eu(s), ev(s), λ)
∣∣∣ dsdτ.

Since f(0, y, λ) ≡ 0, one has∣∣∣f (
eu(s), ev(s), λ

)∣∣∣ =
∣∣∣f (

eu(s), ev(s), λ
)

− f
(
0, ev(s), λ

)∣∣∣ ≤ a11eu(s) ≤ a11ρ.

Given that the elements from the first diagonal of the matrix M are less
than one, i.e.,

a11ρT 2

2 < 1 and a22ρT 2

2 < 1,

we have
|A(u, v)(t)| ≤ |α| + a11ρT 2

2 < |α| + 1.

Similarly
|B (u, v) (t)| ≤ |β| + a22ρT 2

2 < |β| + 1.

Thus, the set DR is invariant by N provided

1 + max {|α| , |β|} ≤ R,

which is true in virtue of condition (5).
Therefore, the operator N = (A, B) maps DR into itself. Now, Perov’s

fixed point theorem applies and guarantees the existence of a unique fixed
point (u, v) ∈ DR. Then, x = eu, y = ev is the unique solution of the Cauchy
problem (1)–(2).

4. Continuous dependence of the solution on parameter λ.
Denoting S1(λ) = u and S2(λ) = v, we have

|S1(λ)(t) − S1(µ)(t)| ≤

≤
∫ t

0

∫ τ

0

∣∣∣f(eS1(λ)(s), eS2(λ)(s), λ) − f(eS1(µ)(s), eS2(µ)(s), µ)
∣∣∣ ds dτ

≤
∫ t

0

∫ τ

0

(
a11

∣∣eS1(λ)(s) − eS1(µ)(s)∣∣ + a12
∣∣eS2(λ)(s) − eS2(µ)(s)∣∣ + a13|λ − µ|

)
ds dτ.

Using Lagrange’s mean value theorem, we have∣∣∣eS1(λ)(s) − eS1(µ)(s)
∣∣∣ ≤ ρ

∣∣S1(λ)(s) − S1(µ)(s)
∣∣

and ∣∣∣eS2(λ)(s) − eS2(µ)(s)
∣∣∣ ≤ ρ

∣∣S2(λ)(s) − S2(µ)(s)
∣∣.
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Then

|S1(λ)(t) − S1(µ)(t)| ≤
∫ t

0

∫ τ

0

(
a11ρ |S1(λ)(s) − S1(µ)(s)|

+ a12ρ |S2(λ)(s) − S2(µ)(s)| + a13|λ − µ|
)

ds dτ.

Now we introduce the Bielecki norm and obtain

|S1(λ)(t) − S1(µ)(t)| ≤
∫ t

0

∫ τ

0

(
a11ρ|S1(λ)(s) − S1(µ)(s)|e−θseθs

+ a12ρ|S2(λ)(s) − S2(µ)(s)|e−θseθs + a13|λ − µ|
)

ds dτ

≤ a11ρ ∥S1(λ) − S1(µ)∥θ · eθt

θ2 + a12ρ ∥S2(λ) − S2(µ)∥θ · eθt

θ2

+ a13|λ − µ| · T 2

2 .

Multiplying by e−θt and taking the maximum, we obtain

∥S1(λ) − S1(µ)∥θ ≤ a11ρ
θ2 ∥S1(λ) − S1(µ)∥θ + a12ρ

θ2 ∥S2(λ) − S2(µ)∥θ

+ a13|λ − µ| · T 2

2 .

Analogously, we have

∥S2(λ) − S2(µ)∥θ ≤ a21ρ
θ2 ∥S1(λ) − S1(µ)∥θ + a22ρ

θ2 ∥S2(λ) − S2(µ)∥θ

+ a23|λ − µ| · T 2

2 .

Writing the above two inequalities in vector form yields[
∥S1(λ) − S1(µ)∥θ

∥S2(λ) − S2(µ)∥θ

]
≤ Mθ

[
∥S1(λ) − S1(µ)∥θ

∥S2(λ) − S2(µ)∥θ

]
+

[
a13|λ − µ|T 2

2
a23|λ − µ|T 2

2

]
,

where
Mθ = ρ

θ2

[
a11 a12
a21 a22

]
.

If θ is chosen large enough so that the entries of the matrix Mθ become
sufficiently small, then Mθ is convergent to zero. As a result, the matrix
(I −Mθ)−1 exists and belongs to M2×2(R+). Therefore, we can multiply both
sides of the inequality by this inverse matrix without changing the direction
of the inequality. It follows that

(I − Mθ)
[

∥S1(λ) − S1(µ)∥θ

∥S2(λ) − S2(µ)∥θ

]
≤

[
a13|λ − µ|T 2

2
a23|λ − µ|T 2

2

]
,

which is equivalent to[
∥S1(λ) − S1(µ)∥θ

∥S2(λ) − S2(µ)∥θ

]
≤ (I − Mθ)−1

[
a13|λ − µ|T 2

2
a23|λ − µ|T 2

2

]
.

It follows that (S1(λ), S2(λ)) depends continuously on the parameter λ.
Indeed, if µ −→ λ, then (S1(µ), S2(µ)) → (S1(λ), S2(λ)). □
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The following iterative algorithm is designed to approximate the value of
λ corresponding to a solution of the control problem as closely as possible.
We are now prepared to present the iterative procedure for solving the control
problem.

2.1. The algorithm. Let (x, y, λ) and (x, y, λ) be lower and upper solutions
of the control problem with λ < λ.

Step 1. Initialize λ0 := λ, λ0 := λ, x0 := x, y0 := y, x0 := x, y0 := y.
Step 2. At any iteration k ≥ 1, define

λk := λk−1 + λk−1
2 ,

and solve problem (1)–(2) for λ = λk. One obtains the solution
(xk, yk) = (eS1(λk), eS2(λk)).

If Ψ(xk(T ), yk(T )) < 0, then we put
λk := λk, λk := λk−1,

xk := xk, xk := xk−1,

y
k

:= yk, yk := yk−1,

otherwise, for Ψ(xk(T ), yk(T )) > 0, we take
λk := λk−1, λk := λk,

xk := xk−1, xk := xk,

y
k

:= y
k−1, yk := yk

and we repeat Step 2 for k = k + 1. Obviously, if Ψ(xk(T ), yk(T )) = 0, then
we have the solution and we are finished.

The algorithm stops when

|Ψ(xk, yk)| < δ,

for a given error δ > 0.
Using Theorem 4 we can prove the convergence of the above algorithm.

Theorem 5. Under the assumptions of Theorem 4, the algorithm is con-
vergent to a solution of the control problem.

Proof. Assume that the algorithm does not stop in a finite number of steps.
Then it gives a bounded increasing sequence (λk), a bounded decreasing se-
quence (λk), and the sequences of solutions (xk, y

k
), (xk, yk), where

xk = eS1(λk), xk = eS1(λk),

y
k

= eS2(λk), yk = eS2(λk),

with the following properties:
(8) Ψ

(
xk(T ), y

k
(T )

)
< 0, Ψ

(
xk(T ), yk(T )

)
> 0,
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and

(9) |λk − λk|Rm = 1
2k |λ − λ|Rm .

The two sequences (λk) , (λk) being monotone and bounded are convergent.
Moreover, from (9) they have the same limit λ∗. Using the continuity of Ψ
and of S1, S2 with respect to λ, and (8), we deduce that

(10) Ψ
(
x∗(T ), y∗(T )

)
= 0,

where x∗ := eS1(λ∗) and y∗ := eS2(λ∗). Then (10) shows that (x∗, y∗, λ∗) is a
solution the control problem. □

We next assume that the Cauchy problem can be approximately solved with
a desired error ε. In this situation, the algorithm changes as follows.

2.2. The approximate algorithm. Let ε > 0 be an admissible error and
(x̃, ỹ, λ̃), (≃

x,
≃
y,

≃
λ) be approximate lower and upper solutions of the Cauchy

problem with error ε.

Step 1. Initialize λ0 := λ̃, λ0 :=
≃
λ, x̃0 := x̃, ỹ0 := ỹ, x̃0 := x̃, ỹ0 := ỹ.

Step 2. At any iteration k ≥ 1, define

λk := λk−1 + λk−1
2 ,

solve approximatively the Cauchy problem and find the approximate solution
(x̃k, ỹk). If Ψ(x̃k(T ), ỹk(T )) < 0, then put

λk := λk, λk := λk−1, x̃k := x̃k, ỹ
k

:= ỹk, x̃k := x̃k−1, ỹk := ỹk−1,

otherwise, for Ψ(xk(T ), yk(T )) > 0 take

λk := λk−1, λk := λk, x̃k := x̃k−1, ỹ
k

:= ỹ
k−1, x̃k := x̃k, ỹk := ỹk,

and we repeat Step 2 for k = k + 1.
The algorithm stops if

|Ψ(x̃k, ỹk)| < δ,

for a given error δ > 0.

Theorem 6. Under the assumptions of Theorem 4 and if in addition Ψ
satisfies

|Ψ(t, s) − Ψ(t, s)| ≤ L
(
|t − t| + |s − s|

)
,

for all t, t, s, s ∈ R, then the approximate algorithm gives us a triple (x∗, y∗, λ∗),
where λ∗ = limk→∞ λk = limk→∞ λk, the pair (x∗, y∗) is the exact solution of
Cauchy problems for λ = λ∗, and

Ψ
(
x∗(T ), y∗(T )

)
∈ [−2εL, 2εL] .
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Proof. Denote

xk = eS1(λk), y
k

= eS2(λk),

xk = eS1(λk), yk = eS2(λk),

the exact solution pairs of the Cauchy problem corresponding to the numbers
λk, λk generated by the approximate algorithm. Clearly, ∥x̃k − xk∥ ≤ ε and
∥ỹ

k
− y

k
∥ ≤ ε. Also, for any ε′ > 0, there is kε′ such that

∥xk − x∗∥ ≤ ε′, ∥y
k

− y∗∥ ≤ ε′ for all k ≥ kε′ .

Hence

∥x̃k − x∗∥ ≤ ∥x̃k − xk∥ + ∥xk − x∗∥ ≤ ε + ε′, for k ≥ kε′

and similarly, ∥∥∥ỹ
k

− y∗
∥∥∥ ≤ ε + ε′.

Then ∣∣∣Ψ(
x∗(T ), y∗(T )

)
− Ψ

(
x̃k(T ), ỹ

k
(T )

)∣∣∣ ≤ 2L(ε + ε′),
from which it follows that

Ψ
(
x∗(T ), y∗(T )

)
≤ Ψ

(
x̃k(T ), ỹ

k
(T )

)
+ 2L(ε + ε′)

< 2L(ε + ε′).

Analogously, we find∣∣∣Ψ(
x∗(T ), y∗(T )

)
− Ψ

(
x̃k(T ), ỹk(T )

)∣∣∣ ≤ 2L(ε + ε′),

whence

Ψ
(
x∗(T ), y∗(T )

)
≥ Ψ

(
x̃k(T ), ỹk(T )

)
− 2L(ε + ε′)

> −2L(ε + ε′).

In conclusion

Ψ
(
x∗(T ), y∗(T )

)
∈

(
− 2L(ε + ε′), 2L(ε + ε′)

)
.

Letting ε′ → 0 gives the final conclusion.

(11) Ψ
(
x∗(T ), y∗(T )

)
∈ [−2Lε, 2Lε] .

□

Based on the previous results, we can make the following remark.

Remark 7. (a) Estimate (11) shows that the controllability condition is
satisfied with an error of at most 2εL.

(b) If (x̃∗, ỹ∗) is an approximate solution corresponding to λ = λ∗, with
some error ε, then

(12) Ψ(x̃∗(T ), ỹ∗(T )) ∈ [−4εL, 4εL].



10 Upper and lower solution method 109

Indeed, we have
|Ψ

(
x∗(T ), y∗(T )

)
− Ψ

(
x̃∗(T ), ỹ∗(T )

)
| ≤ L

(
|x∗(T ) − x̃∗(T )| + |y∗(T ) − ỹ∗(T )|

)
≤ 2εL.

It follows that
−4εL ≤ Ψ

(
x∗(T ), y∗(T )

)
− 2εL ≤ Ψ

(
x̃∗(T ), ỹ∗(T )

)
≤ Ψ

(
x∗(T ), y∗(T )

)
+ 2εL ≤ 4εL,

which proves (12).
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