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A COMPARATIVE STUDY ON BALANCED TRUNCATION AND
PROJECTION ONTO THE DOMINANT EIGENSPACE OF THE
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Abstract. This paper presents a comparative analysis of two model reduction
techniques: balanced truncation and projection onto the dominant eigenspace
of the Gramian. Both methods are evaluated through the lens of Laguerre
functions which is a reduction technique based on Laguerre function expansion,
that approximates the low-rank factors of the Controllability and Observability
Gramians to produce approximately balanced systems without solving Lyapunov
equations. We demonstrate the effectiveness of each approach in reducing the
complexity of linear time-invariant (LTT) systems while preserving system dy-
namics. Numerical experiments highlight the strengths and weaknesses of both
methods, showcasing their applicability to large-scale systems. By thoroughly
analyzing both methods in conjunction with Laguerre functions, we contribute
to the ongoing discourse in the field and lay the groundwork for future advance-
ments in model reduction techniques.
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1. INTRODUCTION

We consider a first-order generalized LTI continuous-time dynamical sys-
tem:

W {E:‘U(t):Ax(t)—i—Bu(t), z(to) =z, t > to;

y(t) = Cx(t)

where A € R™" B € R™P and C € R™*" represent the system, input,
and output matrices, respectively. We also have z(t) € R", u(t) € RP, and
y(t) € R™, which are the vectors of system states, inputs, and outputs, respec-
tively. Due to the limitations of computational time and computer memory,
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simulation and analysis for large-scale systems like system (1) are difficult. To
avoid these complexities, reducing the system is indispensable. Model order
reduction (MOR) [1, 11, 7] is a critical aspect of control systems design, par-
ticularly for large-scale linear time-invariant (LTI) systems [1, 4]. In MOR
techniques, we replace system (1) with a significantly low-dimensional system

as below:
E,i.(t) = Ayz,(t) + Bru(t),
® {yxt) — Coa(t)

where E,, A, € R™", B, € R™™, (C, € RP*" are the reduced-dimensional
matrices corresponding to the above system (1).

Our goal is to make the approximation error |G — G, || sufficiently small,
where G and G, are the transfer functions [10] of the initial large system and
reduced system, respectively. The transfer functions are given by:

(3) G(s)=C(sE—A)™'B, G,(s)=C.(sE, — A,)"'B,.

Traditional MOR techniques [6, 14, 17] often rely on solving Lyapunov
equations [4, 5] to compute the solution matrices called Controllability and
Observability Gramians [16]. However, for large-scale systems, solving the
Lyapunov equations is computationally intensive. Our approach circumvents
this by employing Laguerre functions, which allow the direct construction
of low-rank factors of the matrix exponential functions [19, 18]. This method
reduces computational complexity and maintains high accuracy in the reduced-
order models.

Among the various methods available, balanced truncation (BT) [11, 8] and
projection onto the dominant eigenspace of the Gramian (PDEG) [9, 15] are
two widely studied approaches that offer distinct advantages depending on the
application context.

BT method is a well-established method that leverages the controllability
and observability Gramians to identify and retain the most significant states
of the system. By focusing on the dominant modes, balanced truncation en-
sures that the reduced model maintains the essential dynamics of the original
system. This approach is particularly useful when dealing with systems where
maintaining stability and transient response is paramount.

On the other hand, PDEG method provides a more direct method for re-
ducing model complexity. By utilizing the eigenvectors corresponding to the
largest eigenvalues of the Gramian, this technique effectively captures the pri-
mary dynamics of the system in a lower-dimensional space [12]. This pro-
jection method can be particularly advantageous for systems where compu-
tational efficiency is critical [2, 3] as it allows for rapid computations with
minimal loss of accuracy. Among these two methods, BT provides compara-
tively better approximation [13]. In this paper, we undertake a comparative
analysis of these two model reduction techniques, specifically examining their
performance when integrated with Laguerre functions. Laguerre functions
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have garnered attention due to their ability to represent system dynamics
compactly and efficiently making them an ideal choice for model reduction
tasks.

In this study, we contribute to system order reduction by utilizing BT and
PDEG for continuous-time systems, utilizing the Laguerre function expan-
sion—an aspect not previously explored. While the BT method has been
applied alongside the Laguerre function in [18] for discrete-time systems, our
approach is the first to extend this concept to continuous-time systems. Ad-
ditionally, we conduct a comparative analysis of both methods to identify the
most effective approach for system reduction. Specifically, the study presents a
detailed evaluation showing that BT, when combined with Laguerre expansion,
results in better performance in terms of model reduction compared to PDEG.
By providing a thorough comparison of the two methods, the paper demon-
strates that the Laguerre expansion can enhance the accuracy and efficiency
of the reduction process, especially for large-scale systems. This comparative
study and the conclusion that BT outperforms PDEG in certain contexts is a
novel aspect of the paper that distinguishes it from existing research.

To validate the effectiveness of our approach, we conduct a series of numeri-
cal experiments on two different models. These experiments aim to assess how
accurately and efficiently the reduced-order models (ROMs) perform relative
to the original model. The residue of this paper is synchronized as follows.
We provide a brief framework of matrix exponential approximation using La-
guerre functions in Section 2. The decomposition of gramian matrices P and
Q@ using Laguerre expansion is derived in Section 3. Section 4 and Section 5
provide the BT and PDEG methods applying Laguerre function. Basic algo-
rithms for both methods are presented in Section 6. Section 7 presents the
results and discussion showcasing the performance and accuracy of the meth-
ods using numerical tables and graphical displays. Finally, Section 8 concludes
our discussion by providing a comprehensive overview of our discoveries, of-
fering insights, and proposing avenues for future research.

2. MATRIX EXPONENTIAL FUNCTION APPROXIMATION USING LAGUERRE
FUNCTIONS

Laguerre functions are a set of orthogonal polynomials that are solutions
to Laguerre’s differential equation. The generalized (or associated) Laguerre

polynomials LY () can be defined using the following generating function:

> —wt/(1—1)
n=0

where L&A) (z) is the n-th generalized Laguerre polynomial.
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The standard Laguerre polynomials can be expressed explicitly using Ro-

drigues’ formula:

633 n

Ly(a) = — =2 (
These polynomials are used to define the scaled Laguerre functions as fol-
lows:

oM (1) = V2re M Li(2)1).

In this definition, A serves as a scaling coefficient that governs the atten-
uation rate of the exponential term e~ and L;(2\t) denotes the Laguerre
polynomial computed at 2At.

Within the framework of frequency domain analysis, the Laplace transforms
of scaled Laguerre functions are formulated as follows:

oV (s) = LoV (1) = YA (3R) fori=0,1,...

For values of a where R(a) < 0, the expansion of e in terms of Laguerre
functions is given by:

N =Y ae (1), =0,
k=0
where the coefficients {a;}72, are defined by:
oo A\ " k
ay = /0 e’\tgb;C )(t) dt = E (afﬁ)

= (=1 V2x(a + NP\ — a)~+D),
For R(a) < 0, eA? is expressed as

et = > Akﬁb;@)\) (t),
k=0

where {A}72, are coefficient matrices defined by:
Ap = (=1)PV2A + A)F (AT — A)~ kD)

where I denotes the unit matrix.
Then A; can be found using the recursive formula as follows, applying dif-
ferent values of k in the expression for Ay described earlier.

Ag = (=1)V2AAL + A)°(A — A)~F = V2A(M — A)~!

Ap = (“1)V2AM 4+ A)(M — A)72 = VoA — A) '+ A)(A = A\D)7!
= (M + A) (A - \)"1Ag

Ay = V2AN + A2\ — A)~3
= V2AN — A) YA+ A) (A=) TTM + A) (A= AD)7!
=M+ A)(A-N)"TA,
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Similarly, we can write,
Aj= M+ A)(A-N)'A;,_1,i=1,2,..N — 1.

3. DECOMPOSITION OF GRAMIAN MATRICES P AND Q USING LAGUERRE
EXPANSION

We introduce an approximation of the Grampians P and @ utilizing La-
guerre expansion. Initially, we express e !B using a finite set of Laguerre
functions in the following approximate manner:

N-1
B~ Y AiBMb),
i=0
Then, P can be expressed as:

A T AT
P:/ At BBT ATt gy
0

-/ (M B)(eMB)Tdt
oo N—1 N-1 T
~ / Aqub?(t)(Z Aqubﬁ(t)) dt
0 =0 i=0
(1)
[T loB AB .. Ayam | Y
0 :
o1 (t)
(AoB)"
AB)T
TR0 dw .. aaw]| M e
(An-1B)"

Given the orthogonal property of the Laguerre functions, the matrix P can
be approximated as P ~ FFT, where

(4) F=[40B AiB...Ay1B7]

Analogously to the factorization of P, the observability Gramian () can be
represented in a low-rank format as follows: Q ~ GG ,where

(5) G =[afcT aTcT.. AL CT]
4. LAGUERRE-BASED BALANCED TRUNCATION METHOD

The objective of BT is to derive a ROM by eliminating states that pose
challenges in terms of both control and observation. In that case, the state
according to the smaller singular values is hard to control and observe, and
truncating the smaller singular values makes the system easily controllable and



162 I. Shafiqul, S. Sayed, M. Uddin and O. Gani 6

observable. The solutions corresponding to the system (1), known as the Con-
trollability Gramian (P) and the Observability Gramian (@), are calculated
from equations (4) and (5) respectively.

Now, we perform the Singular Value Decomposition (SVD) on the product
GTF:

SVD(G'F) =Uxv?

Here, U and V are the left and right singular vectors, and ¥ is the diagonal
matrix of singular values. Next, retain the first r columns of U and V' and the
first r x r block of X:

U-=U(1:r), V,=V(E1:r), X, =%1:r1:r)

Then we compute the projection matrices Tr and 17, based on the truncated
singular vectors:

T := FV,x Y2 Ty :=GU %, /2

Finally, the projection matrices, construct the reduced-order model (ROM)
by computing the reduced system matrices as:

E, =TIETg, A,=T[ATr, B,=T{B, C,=CTg

The complete reduction procedure is provided in Algorithm 1.

5. PROJECTION ONTO THE DOMINANT EIGENSPACE OF THE GRAMIAN USING
LAGUERRE FUNCTION EXPANSION

In PDEG method we project the system onto the dominant eigenvalues
of the system’s Gramians. At first we calculate the Controllability Gramian
factor F, and the Observability Gramian factor G, using (4) and (5) respec-
tively. Once we have computed the Gramians as P = FLFLT or Q=G LG%,
we perform a Singular Value Decomposition (SVD) to obtain the orthogonal
vectors U and V', where:

P=UxU" o Q=VAV"

Here, U and V are orthogonal matrices containing the left and right sin-
gular vectors, respectively, and > and A are diagonal matrices containing the
singular values.

After performing the SVD, we truncate the vectors corresponding to the
smaller singular values, as they are deemed less significant to the system dy-
namics. This step reduces the rank of the system, focusing on the dominant
modes that contribute significantly to the system’s behavior. We retain the
first » dominant singular values and the corresponding orthogonal vectors.

Using the truncated orthogonal vectors, we form the low-rank factors that
define the reduced-order model.

Let W denote the matrix containing the first » dominant vectors (columns
of U or V):

W:=U(G,1:r) or W:=V(,1:7)
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With W constructed, we can now project the original system onto the re-
duced subspace to obtain the ROM as:

E.=WTEW, A, =WTAW, B,=W'B, C,=CW

Here, E,., A, B,, and C, represent the system matrices of the reduced-order
model, and the rank r determines the reduced system’s order. Algorithm 2
presents the whole process.

6. BASIC ALGORITHMS

Two essential algorithms underpin the Laguerre-based approach, providing
distinct yet complementary functionalities. The first algorithm focuses on the
BT method, where a square-root process is integral to the simulation. This
technique efficiently handles transformations critical to achieving stable and
accurate results within the framework of the Laguerre function. By addressing
potential numerical instabilities, Algorithm 1 ensures the robust implemen-
tation of the square-root process, thereby enhancing overall computational
reliability.

Algorithm 1: Laguerre-based Square-root Balanced Truncation (BT)
Method
Input: Matrices F, A, B, C; desired reduced order r
Output: Reduced-order model matrices E,, A, B, C;
1: Compute the controllability Gramian F' and observability Gramian G
using equations (4) and (5)
2: Perform the singular value decomposition (SVD):

SVD(G'F)=UxV"

3: Extract the leading r singular components:
U-=U(1:r), V,=V(E1:r), X, =%X1:r1:r)

4: Compute the projection matrices:
Tr = FV,x7Y2 Ty = GU, /2

5: Construct the reduced-order model (ROM):
E, =T/ ETg, A, =T ATy, B,=1T/B, C,=CTy

The second algorithm caters to the PDEG method, tailored specifically for
the Laguerre function expansion. This approach is designed to optimize the
representation of functions or solutions by leveraging the orthogonal proper-
ties of Laguerre polynomials. Algorithm 2 systematically incorporates this
expansion, making it especially suitable for problems requiring high precision
in solving differential equations.



164 I. Shafiqul, S. Sayed, M. Uddin and O. Gani 8

Algorithm 2: Laguerre-based Proper Orthogonal Decomposition with
Energy Gramians (PDEG) Method

Input: Matrices F/, A, B, C; desired reduced order r
Output: Reduced-order model matrices E,., A,, B;, C,
1: Compute the controllability Gramian P and observability Gramian
using equations (4) and (5)
2: Compute the singular value decomposition (SVD) of either P or Q:

SVD(P)=UXU" or SVD(Q)=VXV'

3: Select the dominant » modes:
W=U(1:r) or W=V(,1:71)

4: Construct the reduced-order model (ROM):
E.=W'EW, A, =WTAW, B, =W'B, C,=CW

7. RESULTS AND DISCUSSION

This section provides a detailed summary of the experimental results. The
algorithms were implemented using MATLAB (R2021a), ensuring robust com-
putational efficiency and accuracy.

Two data models were selected for evaluation: the CD player model, also
known as the classical CD player (CDP) model, which has been widely used
in various literature over the years to test the efficiency of MOR methods for
LTT dynamical systems. The task in this model is to construct a controller
that ensures the laser stays pointed at the track of pits on a rotating CD. The
system consists of a swing arm with a lens mounted on it via two horizontal leaf
springs. The rotation of the arm in the horizontal plane enables reading of the
spiral-shaped disc tracks, and the suspended lens focuses the laser on the disc.
The challenge arises from the disc’s imperfect flatness and irregularities in the
spiral track, requiring a low-cost controller that improves the servo-system’s
speed and makes it less sensitive to external shocks.

The second model is the ISS model, known as the International Space Sta-
tion (ISS) model, which is used in model order reduction to represent the
dynamic behavior and control of the space station, capturing its complex in-
teractions with external forces such as gravity and atmospheric drag. This
model is often simplified in model order reduction techniques to improve com-
putational efficiency while retaining the essential dynamics for control and
simulation purposes.

Both the CDplayer and ISS models are formulated as linear time-invariant
(LTT) systems in standard state-space form as (1). For the CDplayer model,
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which originates from a second-order mass-spring-damper mechanical system,
the equations are initially:

M(t) + Dq(t) + Kq(t) = Bu(t), y(t) = Cq(t),

and are converted into first-order form for reduction.

The ISS model is directly modeled in first-order LTI form, representing the
space station’s dynamic behavior under external forces.

For both models, the same algorithmic inputs were used: damping param-
eter « = 0.1002, 10 iterations, a reduced order of 6 for the CDplayer model,
and 15 for the ISS model. Model reduction was performed using Balanced
Truncation, which retains the most energetically significant states based on
Hankel singular values. Specifically, the top 6 dominant singular values were
retained for the CDplayer model, and the top 15 for the ISS model, corre-
sponding to the chosen reduced dimensions. These values represent the most
significant dynamic modes of each system.

For the reduction process applied to the CDplayer model, the parameter
a = 0.1002 was used, with 10 iterations and a target reduced dimension of
6. The same parameter and number of iterations were applied to the ISS
model, but the reduced dimension was set to 15. These settings were chosen
to ensure consistency in the experimental framework while addressing the
specific characteristics of each data model.

The errors derived from the BT and PDEG methods for both models are
summarized in Table 1 and Table 2. The results clearly demonstrate that the
BT method consistently delivers superior accuracy compared to the PDEG
method across both models. This trend is evident from the numerical error
values, which highlight the BT method’s effectiveness in achieving precise
dimensional reductions while minimizing inaccuracies.

To complement the tabular results, graphical representations were gener-
ated to illustrate the reduction process and the associated error estimations.
Fig. 1 and Fig. 2 showcase the transfer functions and corresponding error
distributions for the CDplayer model using both BT and PDEG methods.
Similarly, Fig. 3 and Fig. 4 present these graphical insights for the ISS model.
These visualizations not only confirm the numerical findings but also offer an
intuitive means to compare the performance of the two methods. Overall, the
experimental results underscore the efficiency and reliability of the BT method
in achieving optimal model reduction and error minimization. The graphical
and tabular analyses together provide a comprehensive validation of the BT
method’s superiority over the PDEG approach.

Error BT PDEG
Absolute Error | 3.4649 x 10~ % | 2.204 x 1071
Relative Error | 7.3858 x 107Y | 4.6978 x 10~°

Table 1. Error comparison between BT and PDEG method for CDplayer Model.
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Error BT PDEG
Absolute Error 6.0 x 107 1.7 x 1072
Relative Error | 1.926 x 107" | 5.484 x 107!

Table 2. Error comparison between BT and PDEG method for ISS Model.
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8. CONCLUSION

This study explored MOR for large-scale linear time-invariant (L.TT) continuous-
time systems using the Laguerre function expansion. We analyzed two reduc-
tion methods: BT and the PDEG exploiting the Laguerre function expan-
sion,a previously unexplored area, aiming to improve computational efficiency
by avoiding direct Lyapunov equation solutions. Our comparative analysis
showed that while both methods effectively reduced system complexity, BT
combined with the Laguerre function expansion provided better accuracy and
stability preservation. The Laguerre functions enabled efficient low-rank ap-
proximations, making the reduction process more computationally feasible.
Numerical experiments on two models confirmed that BT achieved superior
approximation quality with lower errors and better system dynamics retention.
Although PDEG offers computational efficiency, it performed slightly worse in
preserving transient responses and overall accuracy. These findings highlight
the advantage of integrating Laguerre functions with BT for continuous-time
MOR. Future research may focus on optimizing these techniques, hybrid ap-
proaches, and applying them to high-dimensional systems. Additionally, ex-
ploring alternative basis functions and adaptive Laguerre parameter selection
could further enhance MOR efficiency and applicability.
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