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A STABLE FINITE DIFFERENCE SCHEME FOR FRACTIONAL
VISCOELASTIC WAVE PROPAGATION IN SPACE-TIME DOMAIN

MOHAMED AIT ICHOU∗ and ABDELAAZIZ EZZIANI†

Abstract. This work focuses on the numerical approximation of the one-dimensional
wave propagation equation in a viscoelastic medium modeled by the fractional
Zener model. First, we propose an explicit centered finite difference scheme.
Then, we prove a sufficient stability condition for this scheme using an energy
technique. Furthermore, we demonstrate that this condition is numerically nec-
essary. Finally, we present various numerical simulations to validate the proposed
scheme.
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1. INTRODUCTION

This work is devoted to the mathematical modeling of wave propagation in
dissipative media based on the fractional Zener model. A related study ad-
dressing the propagation of viscoelastic waves using an integer-order derivative
was previously carried out in [1]. The study of these phenomena is important
in the fields of seismology and geophysics, as well as in other applications such
as medical imaging [2] and polymer modeling [3, 4].

In their current research, the researchers have demonstrated that mathe-
matical models constructed using fractional operators are often more precise
and reliable than those constructed using integer-order operators. Fractional-
order models have a memory property that allows more historical knowledge
to be incorporated, enabling them to predict and translate models more accu-
rately. These concepts have found applications in the work of mathematicians
and physicists, as documented in references [5, 6, 7, 8, 9].

Fractional derivatives are an excellent tool for describing the memory and
hereditary properties of various materials and processes [10, 11]. There are
many different approaches to defining fractional derivatives. The most com-
monly used are the Riemann-Liouville approach [12] and the Caputo approach
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[13]. In our study, we use the latter because it is more suitable for numerical
simulation [14, 7].

Numerous authors have explored the numerical analysis of such problems.
Konjik et al. [15] investigated the one-dimensional fractional viscoelastic wave
equation using an explicit finite difference scheme, though without a com-
prehensive stability analysis. Xu and Stewart [16] also studied viscoelas-
tic wave propagation, but did not detail the numerical method employed.
Other contributions, such as those by Brono and Moczo [17, 18], focused on
frequency-domain simulations, which are generally less appropriate for cap-
turing the transient dynamics inherent to time-dependent problems. The
Grünwald–Letnikov approximation has been widely used for discretizing Ca-
puto derivatives in time (see, e.g., [19, 20]). However, this method can be
computationally expensive for long time simulations due to the storage of his-
torical data and the lack of energy-based stability analysis. Haddar et al. [21]
proposed a method based on diffusive representations, offering strong model-
ing capabilities but involving significant analytical complexity. Afshari et al.
[22] developed a finite difference scheme for a spatio-temporal fractional wave
model and established its unconditional stability and convergence; however,
their formulation does not account for relaxation parameters that are essential
for accurately modeling viscoelastic media.

In recent years, several advanced numerical techniques have been proposed
to solve time-fractional wave equations with improved accuracy and compu-
tational efficiency. Dehghan and Abbaszadeh [23] introduced a meshless col-
location method based on radial basis functions (RBFs), which avoids the
complexities of grid generation and is particularly well-suited for problems in
irregular domains. More recently, Wang et al. [24] proposed a fast and ac-
curate algorithm designed to reduce the computational cost associated with
memory effects in time-fractional models, while maintaining the desired ac-
curacy and stability properties. These contributions highlight the growing
interest in efficient numerical methods for fractional wave equations and rein-
force the relevance of our approach.

In this work, we address these limitations by proposing a simple and efficient
explicit finite difference scheme for the space-time fractional viscoelastic wave
equation in one spatial dimension. Unlike Grünwald–Letnikov-type methods,
we reformulate the Caputo derivative using a weakly singular integral that
we approximate via the trapezoidal rule, allowing for a compact and accurate
implementation. Furthermore, we prove a discrete energy decay result and
establish a sufficient stability condition, which closely matches that of the
integer-order case. Our approach also includes the influence of relaxation
parameters τ0 and τ1, which are not accounted for in several earlier works.
Numerical experiments illustrate the impact of the fractional order α and the
relaxation parameters on wave attenuation.
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2. MODEL PROBLEM

We consider the fractional Zener model for waves propagation in dissipative
media (see [25]):
(1)

ρ∂2u
∂t2 (x, t) − ∂σ

∂x (x, t) = f(x, t), (x, t) ∈ R×]0, T ],

σ(x, t) + τ0
∂ασ
∂tα (x, t) = µ

[
∂u
∂x(x, t) + τ1

∂α

∂tα

(
∂u
∂x(x, t)

)]
, (x, t) ∈ R×]0, T ],

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x), σ(x, 0) = µ∂u

∂x(x, 0), x ∈ R.

Where
• Displacement field u(x, t): Represents movement of particles in the medium

at position x and time t.
• σ is the stress, represents the internal forces per unit area within the ma-

terial caused by deformation.
• f is the source terms or forcing functions: External inputs or forces applied

to the system.
• µ is the dynamic viscosity coefficient, represents the measures the material’s

resistance to shear deformation.
• ρ Represents the mass per unit volume of the medium.
• τ0 and τ1 are the relaxation parameters, characterizing how quickly the

material responds to and recovers from stress or deformation. (with the
ratio θ = τ1/τ0 > 1 which guarantees the dissipation condition see [25]).

For all 0 < α < 1, the Caputo derivative of order α (see [12]) is defined as
follows:

dαg

dtα
(t) = 1

Γ(1−α)

∫ t

0
1

(t−τ)α
∂g
∂τ (τ) dτ,

where Γ(1 − α) is the classical gamma function.
We rewrite the model problem (1) in a form that is more adaptable for

numerical approximation. To do this, we introduce the following variable
s = σ − µ∂xu (the difference between the viscoelastic stress and the purely
elastic one: τ0 = τ1 = 0). Then, by deriving the second equation from the
β-derivative with β = 1 − α, we obtain:
(2)

ρ∂2u
∂t2 (x, t) − ∂σ

∂x (x, t) = f(x, t), (x, t) ∈ R×]0, T ],
∂β

∂tβ s(x, t) + τ0
∂s
∂t (x, t) − µ(τ1 − τ0) ∂

∂t

(
∂u
∂x(x, t)

)
= 0, (x, t) ∈ R×]0, T ],

σ(x, t) = s(x, t) + µ∂u
∂x(x, t), (x, t) ∈ R × [0, T ],

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x), s(x, 0) = 0, x ∈ R.

The following equation is added for the approach of ∂β

∂tβ (see [25]):

(3)
∂φ
∂t (x, t, ξ) = −ξφ(x, t, ξ) + s(x, t), (x, t, ξ) ∈ R×]0, T ] × [0, +∞[,

φ(x, 0, ξ) = 0,
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(4) ∂βs
∂tβ (x, t) =

∫ +∞

0
∂φ
∂t (x, t, ξ) dMα(ξ),

with dMα(ξ) = sin(απ)
π ξ−α dξ.

Using the equations (3) and (4), we can rewrite the model problem as
follows:

ρ∂2u
∂t2 (x, t) − ∂σ

∂x (x, t) = f(x, t), (x, t) ∈ R×]0, T ],(5)

τ0
∂s
∂t (x, t) +

∫ +∞

0
∂φ
∂t (x, t, ξ) dMα(ξ)−

− µ(τ1 − τ0) ∂
∂t

(
∂u
∂x(x, t)

)
= 0, (x, t) ∈ R×]0, T ],

∂φ
∂t (x, t, ξ) = −ξφ(x, t, ξ) + s(x, t), (x, t) ∈ R×]0, T ], ξ ∈ [0, +∞[,

σ(x, t) = s(x, t) + µ∂u
∂x(x, t), (x, t) ∈ R × [0, T ],

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x),

s(x, 0) = 0, φ(x, 0, ξ) = 0, (x, ξ) ∈ R × [0, +∞[.

3. FINITE DIFFERENCE SCHEME

We use a numerical approximation scheme based on the solution of ordinary
differential equations to approximate the model problem (5).

We use the trapezium rule to approximate the integral in the second equa-
tion of the system (5). We introduce a geometric grid on the ξ axis, defined
by the lower limit ξm, the upper limit ξM and the number of discretisation
points Nξ. We note that:

∆ξ = ξM −ξm

Nξ−1 ,∫ +∞

0
∂φ
∂t (x, t, ξ) dMα(ξ) ≃

∫ ξM

ξm

∂φ
∂t (x, t, ξ) dMα(ξ) ≃

Nξ∑
j=1

wj
∂φ
∂t (x, t, ξj),

with
w1 = sin(απ)

2π ξ−α
m ∆ξ, wNξ

= sin(απ)
2π ξ−α

M ∆ξ

and
wj = sin(απ)

π ξ−α
j ∆ξ, ∀j = 2, . . . , Nξ − 1.

The system (5) then becomes:

ρ∂2u
∂t2 (x, t) − ∂σ

∂x (x, t) = f(x, t),(6a)

τ0
∂s
∂t (x, t) +

Nξ∑
j=1

wj
∂φ
∂t (x, t, ξj) = µ(τ1 − τ0) ∂2u

∂x∂t(x, t),(6b)

∂φ
∂t (x, t, ξj) = −ξjφ(x, t, ξj) + s(x, t), j = 1, . . . , Nξ,(6c)

σ(x, t) = s(x, t) + µ∂u
∂x(x, t),(6d)
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u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x), s(x, 0) = 0, φ(x, 0, ξj) = 0,(6e)

3.1. Space discretization. We introduce a regular mesh of the domain Ω =
[a, b] with edges h = b−a

Nx
consisting of the segments [xi, xi+1], i = 1, . . . , Nx,

xi = a + (i − 1)h.

Fig. 1. Space discretization.

We approach the equation (6a) in the point xi and the equation (6b), (6c)
and (6d) in the point xi+1/2 = (xi +xi+1)/2. We propose the centered scheme:

ρd2ui(t)
dt2 −

σ
i+ 1

2
(t)−σ

i− 1
2

(t)
h = fi(t),(7a)

τ0
ds

i+ 1
2

(t)
dt +

Nξ∑
j=1

wj

dφi+ 1
2 ,j(t)

dt
= µ(τ1 − τ0)

(
d
dt

(
ui+1(t)−ui(t)

h

))
,(7b)

dφ
i+ 1

2 ,j
(t)

dt = −ξjφi+ 1
2 ,j(t) + si+ 1

2
(t), j = 1, . . . , Nξ,(7c)

σi+ 1
2
(t) = si+ 1

2
(t) + µui+1(t)−ui(t)

h ,(7d)

ui(0) = u0(xi), dui
dt (0) = u1(xi), si+ 1

2
(0) = 0, φi+ 1

2 ,j(0) = 0,(7e)

with ui(t) ≈ u(xi, t), σi+ 1
2
(t) ≈ σ(xi+1/2, t), si+ 1

2
(t) ≈ s(xi+1/2, t), φi+ 1

2 ,j(t) ≈
φ(xi+1/2, t, ξj) and fi(t) ≈ f(xi, t).

3.2. Space-time discretization. We consider a regular time grid with a step
size of ∆t and we set

tn = n∆t, tn+1/2 = tn + ∆t
2 , ∀ n.

In order to approximate the system (7), we use a centered finite difference
scheme in time by approaching the first equation at tn, the second and third
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equations at tn+1/2, and the last equation at tn. The resulting centred scheme
is as follows:

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

ρ
un+1

i −2un
i +un−1

i
∆t2 −

σn

i+ 1
2

−σn

i− 1
2

h = fn
i ,

τ0
sn+1

i+ 1
2

−sn

i+ 1
2

∆t +
Nξ∑
j=1

wj

φn+1
i+ 1

2 ,j
−φn

i+ 1
2 ,j

∆t =

µ(τ1−τ0)
h

(
un+1

i+1 −un
i+1

∆t − un+1
i −un

i
∆t

)
,

φn+1
i+ 1

2 ,j
−φn

i+ 1
2 ,j

∆t = −ξj

φn+1
i+ 1

2 ,j
+φn

i+ 1
2 ,j

2 +
sn+1

i+ 1
2

+sn

i+ 1
2

2 , j = 1, . . . , Nξ,

σn
i+ 1

2
= sn

i+ 1
2

+ µ
un

i+1−un
i

h ,

u0
i = u0(xi), u1

i = u0
i + ∆t u1(xi) + ∆t2

2ρ

(
f0

i +
σ0

i+ 1
2

−σ0
i− 1

2
h

)
,

s0
i+ 1

2
= 0, φ0

i+1/2,j = 0,

with un
i ≈ u(xi, tn), σn

i+ 1
2

≈ σ(xi+1/2, tn), sn
i+ 1

2
≈ s(xi+1/2, tn), φn

i+ 1
2 ,j

≈
φ(xi+1/2, tn, ξj) and fn

i ≈ f(xi, tn).
By using the equation (8d), we have

φn+1
i+ 1

2 ,j
= 2−ξj∆t

2+ξj∆tφ
n
i+ 1

2 ,j
+ ∆t

2+ξj∆t(s
n+1
i+ 1

2
+ sn

i+ 1
2
),

after injecting this last equality into (8b), we obtain:

ρ
un+1

i −2un
i +un−1

i
∆t2 −

σn

i+ 1
2

−σn

i− 1
2

h = fn
i ,

τ0
sn+1

i+ 1
2

−sn

i+ 1
2

∆t + λ(sn+1
i+ 1

2
+ sn

i+ 1
2
) −

Nξ∑
j=1

w̃jφn
i+ 1

2 ,j
= µ(τ1−τ0)

h

(
un+1

i+1 −un
i+1

∆t − un+1
i −un

i
∆t

)
,

φn+1
i+ 1

2 ,j
= 2−ξj∆t

2+ξj∆tφ
n
i+ 1

2 ,j
+ ∆t

2+ξj∆t(s
n+1
i+ 1

2
+ sn

i+ 1
2
), j = 1, . . . , Nξ,

σn
i+ 1

2
= sn

i+ 1
2

+ µ
un

i+1−un
i

h ,

u0
i = u0(xi), u1

i = u0
i +∆t u1(xi)+ ∆t2

2ρ

(
f0

i +
σ0

i+ 1
2

−σ0
i− 1

2
h

)
, s0

i+ 1
2

= 0, φ0
i+1/2,j = 0,

with

w̃j = ξjwj
2

2+ξj∆t and λ =
Nξ∑
j=1

wj

2+ξj∆t .
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Finally, we obtain the fully explicit scheme:

un+1
i = ∆t2

ρ

(
fn

i +
σn

i+ 1
2

−σn

i− 1
2

h

)
+ 2un

i − un−1
i ,

sn+1
i+ 1

2
= ∆t

τ0+λ∆t

(
µ(τ1−τ0)

h

[
un+1

i+1 −un
i+1

∆t − un+1
i −un

i
∆t

]
+

Nξ∑
j=1

w̃jφn
i+ 1

2 ,j

)
− λ∆t−τ0

λ∆t+τ0
sn

i+ 1
2
,

φn+1
i+ 1

2 ,j
= 2−ξj∆t

2+ξj∆tφ
n
i+ 1

2 ,j
+ ∆t

2+ξj∆t

(
sn+1

i+ 1
2

+ sn
i+ 1

2

)
, j = 1, . . . , Nξ,

σn
i+ 1

2
= sn

i+ 1
2

+ µ
un

i+1−un
i

h ,

u0
i = u0(xi), u1

i = u0
i + ∆t u1(xi) + ∆t2

2ρ

(
f0

i +
σ0

i+ 1
2

−σ0
i− 1

2
h

)
,

s0
i+ 1

2
= 0, φ0

i+1/2,j = 0.

We note that the number of unknowns can be reduced by replacing the ex-
pression for σn

i+ 1
2

in the first equation of the final system. This yields:

un+1
i =∆t2

ρ

(
fn

i + µ
un

i+1−2un
i +un

i−1
h2 +

sn

i+ 1
2

−sn

i− 1
2

h

)
+ 2un

i − un−1
i ,

sn+1
i+ 1

2
= ∆t

τ0+λ∆t

(
µ(τ1−τ0)

h

[
un+1

i+1 −un
i+1

∆t − un+1
i −un

i
∆t

]
+

Nξ∑
j=1

w̃jφn
i+ 1

2 ,j

)
− λ∆t−τ0

λ∆t+τ0
sn

i+ 1
2
,

φn+1
i+ 1

2 ,j
=2−ξj∆t

2+ξj∆tφ
n
i+ 1

2 ,j
+ ∆t

2+ξj∆t

(
sn+1

i+ 1
2

+ sn
i+ 1

2

)
, j = 1, . . . , Nξ,

u0
i =u0(xi), u1

i = u0
i + ∆t u1(xi) + ∆t2

ρ

(
f0

i +
σ0

i+ 1
2

−σ0
i− 1

2
h

)
,

s0
i+ 1

2
=0, φ0

i+1/2,j = 0.

3.3. Discrete energy and stability analysis. We will use an energy tech-
nique to prove the stability of the scheme (see (8)). We introduce discrete
normed spaces.

(9) L2
h,0 =

{
uh = (ui)i∈Z ,

∑
i

|ui|2 < +∞
}

,

(10) L2
h,1/2 =

{
σh =

(
σi+1/2

)
i∈Z

,
∑

i

∣∣∣σi+1/2

∣∣∣2 < +∞
}
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With the scalar products:

(uh, ũh)0 = h
∑

i

ui ũi, (σh, σ̃h)1/2 = h
∑

i

σi+1/2 σ̃i+1/2, (φh,j , φ̃h,j)1/2

= h
∑

i

φi+1/2,jφ̃i+1/2,j , j = 1, . . . , Nξ,

where
uh = (ui)i∈Z ∈ L2

h,0, σh = (σi+1/2)i∈Z ∈ L2
h,1/2

φh,j = (φi+1/2,j)i∈Z ∈ L2
h,1/2, j = 1, . . . , Nξ,

and associated norm:

∥uh∥2
0 = h

∑
i

|ui|2 , ∥σh∥2
1/2 = h

∑
i

∣∣∣σi+1/2

∣∣∣2 ,

∥φh,j∥2
1/2 = h

∑
i

∣∣∣φi+1/2,j

∣∣∣2 , j = 1, . . . , Nξ.

We recall that the results for energy decay in the continuous case are given
by (see [25]):

E(t) =1
2

(∫
R

ρ|∂u
∂t |2dx +

∫
R

µ|∂u
∂x |2dx + τ0

µ(τ1−τ0)

∫
R

|s|2dx

+ 1
µ(τ1−τ0)

∫
R

∫ +∞

0
ξ|φ|2 dMα(ξ)dx

)
,(11)

and it satisfies:
dE(t)

dt =
(
f, ∂u

∂t

)
− 1

µ(τ1−τ0)

∫
R

∫ +∞

0
|s − ξφ|2dMα(ξ) dx,

with
s = σ − µ∂u

∂x .

We write the system (8) in vector form:
(12)
ρ

un+1
h

−2un
h+un−1

h
∆t2 − Bσn

h = 0,

τ0
µ(τ1−τ0)

sn+1
h

−sn
h

∆t + 1
µ(τ1−τ0)

Nξ∑
j=1

wj
φn+1

h,j
−φn

h,j

∆t + B∗ un+1
h

−un
h

∆t = 0, j = 1, . . . , Nξ,

φn+1
h,j

−φn
h,j

∆t = −ξj
φn+1

h,j
+φn

h,j

2 + sn+1
h

+sn
h

2 , j = 1, . . . , Nξ,

µ−1σn
h − µ−1sn

h + B∗un
h = 0.

with

(13)

 B : L2
h,1/2 −→ L2

h,0

σh 7−→
(

σi+1/2−σi−1/2
h

)
j∈Z
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Lemma 1. The norm of the operator B satisfies the inequality:

(14) ∥B∥ ≤ 2
h .

Proof.(
Bσh, uh

)
0 =

(
σh, B∗uh

)
1/2

= 1
h

∑
i∈𭟋

h σi+1/2 (ui+1 − ui).

≤ 1
h

∑
i∈𭟋

h σi+1/2(ui+1 − ui).

≤ 1
h

(∑
i∈𭟋

h|σi+1/2|2
)1/2(∑

i∈𭟋
h|ui+1 − ui|2

)1/2

.

However, as
∑
i∈𭟋

h|ui+1 − ui|2 verifies the inequality:

∑
i∈𭟋

h|ui+1 − ui|2 =
∑
i∈𭟋

h|ui+1|2 − 2
∑
i∈𭟋

h uiui+1 +
∑
i∈𭟋

h|ui|2,

≤ 2
∑
i∈𭟋

h|ui+1|2 + 2
∑
i∈𭟋

h|ui|2 = 4∥uh∥2
0,

it implies that
(Bσh, uh) ≤ 2

h∥uh∥0∥σh∥1/2,

and we get
∥B∥ ≤ 2

h .

□

Definition 2. We define the discrete energy by:

En+1/2 =ρ
2
∥∥un+1

h
−un

h
∆t

∥∥2
0 + µ

2 (B∗un+1, B∗un)0

+ τ0
4µ(τ1−τ0)

[
∥sn+1

h ∥2
1/2 + ∥sn

h∥2
1/2

]
+ ∆t2

4 (B∗ un+1
h

−un
h

∆t ,
sn+1

h
−sn

h
∆t )1/2(15)

+ 1
4µ(τ1−τ0)

Nξ∑
j=1

wjξj

[∥∥φn+1
h,j

∥∥2
1/2 +

∥∥φn
h,j

∥∥2
1/2

]
.

Remark 3. The discrete energy can be decomposed as the sum of four terms.

- The first term, ρ
2
∥∥un+1

h
−un

h
∆t

∥∥2
0+ 1

2(B∗un+1, µB∗un)1/2 corresponds to the clas-
sical discrete energy in the purely elastic case (i.e., when τ0 = τ1 = 0),
which corresponds to the approximation of the first and second part of the
continuous energy (11).

- The second term, τ0
4µ(τ1−τ0)

[
∥sn+1

h ∥2
1/2 + ∥sn

h∥2
1/2
]

due to the viscoelasticity,
which approaches the third parts of the continuous energy.
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- The third term, ∆t2

2

(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

−sn
h

∆t

)
1/2

is a small term of order O(∆t2),
which is due to the finite difference approximation.

- The last term, 1
4µ(τ1−τ0)

Nξ∑
j=1

wjξj

[
∥φn+1

h,j ∥2
1/2 + ∥φn

h,j∥2
1/2

]
depends on α the

fractional derivative order corresponds to the approximation of the last part
of the continuous energy.

The following theorem proves an energy decay result.

Theorem 4. The discrete energy verifies:

(16) En+1/2−En−1/2

∆t = − 1
2µ(τ1−τ0)

Nξ∑
j=1

wj

[∥∥∥φn+1
h,j

−φn
h,j

∆t

∥∥∥2

1/2
+
∥∥∥φn

h,j−φn−1
h,j

∆t

∥∥∥2

1/2

]
.

Proof. We use the variational formulation associated with the discrete scheme
(12):

(
ρ

un+1
h

−2un
h+un−1

h
∆t2 , ũh

)
− (Bσn

h , ũh) = 0,

(
τ0

µ(τ1−τ0)
sn+1

h
−sn

h
∆t , s̃h

)
+
(

1
µ(τ1−τ0)

Nξ∑
j=1

wj
φn+1

h,j
−φn

h,j

∆t , s̃h

)
+
(
B∗ un+1

h
−un

h
∆t , s̃h

)
= 0,

(17)

φn+1
h,j

−φn
h,j

∆t = −ξj
φn+1

h,j
+φn

h,j

2 + sn+1
h

+sn
h

2 ,

µ−1σn
h − µ−1sn

h + B∗un
h = 0.

If we take ũh = un+1
h

−un−1
h

2∆t (the centered approximation of duh
dt in time tn)

and s̃h = sn+1
h

+sn
h

2 (the centered approximation of sh in time tn+1/2), equation
(17) becomes:
(18) (

ρ
un+1

h
−2un

h+un−1
h

∆t2 ,
un+1

h
−un−1

h
2∆t

)
−
(
B∗ un+1

h
−un−1

h
2∆t , σn

h

)
= 0,(

τ0
µ(τ1−τ0)

sn+1
h

−sn
h

∆t ,
sn+1

h
+sn

h
2

)
+
(

1
µ(τ1−τ0)

Nξ∑
j=1

wj
φn+1

h,j
−φn

h,j

∆t ,
sn+1

h
+sn

h
2

)
+

+
(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

+sn
h

2

)
= 0,

φn+1
h,j

−φn
h,j

∆t + ξj
φn+1

h,j
+φn

h,j

2 = sn+1
h

+sn
h

2 ,

µ−1σn
h − µ−1sn

h + B∗un
h = 0.
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Substituting sn+1
h

+sn
h

2 into equation (3) and then into equation (2) gives:

(19)

i)
(
ρ

un+1
h

−2un
h+un−1

h
∆t2 ,

un+1
h

−un−1
h

2∆t

)
−
(
B∗ un+1

h
−un−1

h
2∆t , σn

h

)
= 0,

ii)
(

τ0
µ(τ1−τ0)

sn+1
h

−sn
h

∆t ,
sn+1

h
+sn

h
2

)
+
(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

+sn
h

2

)
+

+
(

1
µ(τ1−τ0)

Nξ∑
j=1

wj
φn+1

h,j
−φn

h,j

∆t ,
φn+1

h,j
−φn

h,j

∆t + ξj
φn+1

h,j
+φn

h,j

2

)
= 0.

which becomes:
(20)
i)
(
ρ

un+1
h

−2un
h+un−1

h
∆t2 ,

un+1
h

−un−1
h

2∆t

)
0

−
(
B∗ un+1

h
−un−1

h
2∆t , σn

h

)
1/2

= 0,

ii)
(

τ0
µ(τ1−τ0)

sn+1
h

−sn
h

∆t ,
sn+1

h
+sn

h
2

)
1/2

+
(

1
µ(τ1−τ0)

Nξ∑
j=1

wj
φn+1

h,j
−φn

h,j

∆t ,
φn+1

h,j
−φn

h,j

∆t

)
1/2

+

+
(

1
µ(τ1−τ0)

Nξ∑
j=1

wj
φn+1

h,j
−φn

h,j

∆t , ξj
φn+1

h,j
+φn

h,j

2

)
1/2

+
(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

+sn
h

2

)
1/2

= 0.

We get:

i) ρ
2∆t

[∥∥un+1
h

−un
h

∆t

∥∥2
0 −

∥∥un
h−un−1

h
∆t

∥∥2
0

]
−
(
B∗ un+1

h
−un−1

h
2∆t , σn

h

)
1/2

= 0.

ii)

τ0
2∆tµ(τ1−τ0)

[∥∥sn+1
h

∥∥2
1/2 −

∥∥sn
h

∥∥2
1/2

]
+ 1

µ(τ1−τ0)

Nξ∑
j=1

wj

∥∥∥φn+1
h,j

−φn
h,j

∆t

∥∥∥2

1/2
+

+ 1
2∆tµ(τ1−τ0)

Nξ∑
j=1

wjξj

[∥∥φn+1
h,j

∥∥2
1/2 −

∥∥φn
h,j

∥∥2
1/2

]
+
(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

+sn
h

2

)
1/2

= 0.

Using the last equation of (18), we obtain:(
B∗ un+1

h
−un−1

h
2∆t , σn

h

)
1/2

=
(
B∗ un+1

h
−un−1

h
2∆t , σn

h − sn
h

)
1/2

+
(
B∗ un+1

h
−un−1

h
2∆t , sn

h

)
1/2

= − 1
2∆t

[
(B∗un+1

h , µB∗un
h)1/2 − (B∗un−1

h , µB∗un
h)1/2

]
+
(
B∗ un+1

h
−un−1

h
2∆t , sn

h

)
1/2

.

We use that σn
h − sn

h = −µB∗un
h, which allows us to rewrite (i) in the form:

(21)
ρ

2∆t

[∥∥∥un+1
h

−un
h

∆t

∥∥∥2

0
−
∥∥∥un

h−un−1
h

∆t

∥∥∥2

0

]
+

+ 1
2∆t

[(
B∗un+1

h , µB∗un
h

)
0

−
(
B∗un−1

h , µB∗un
h

)
0

]
−
(
B∗ un+1

h
−un−1

h
2∆t , sn

h

)
1/2

= 0.
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If we average the equation (ii) between the two moments tn+ 1
2 and tn− 1

2 ,
we obtain:
(22)

τ0
4∆tµ(τ1−τ0)

[∥∥sn+1
h

∥∥2
1/2 − ∥sn

h∥2
1/2

]
+ τ0

4∆tµ(τ1−τ0)

[
∥sn

h∥2
1/2 −

∥∥∥sn−1
h

∥∥∥2

1/2

]
+ 1

2µ(τ1−τ0)

Nξ∑
j=1

wj

∥∥∥φn+1
h,j

−φn
h,j

∆t

∥∥∥2

1/2
+ 1

2µ(τ1−τ0)

Nξ∑
j=1

wj

∥∥∥φn
h,j−φn−1

h,j

∆t

∥∥∥2

1/2

+ 1
4∆tµ(τ1−τ0)

Nξ∑
j=1

wjξj
[ ∥∥∥φn+1

h,j

∥∥2
1/2 −

∥∥φn
h,j

∥∥2
1/2

]

+ 1
4∆tµ(τ1−τ0)

Nξ∑
j=1

wjξj

[∥∥φn
h,j

∥∥2
1/2 −

∥∥φn−1
h,j

∥∥2
1/2

]
+1

2

(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

+sn
h

2

)
1/2

+ 1
2

(
B∗ un

h−un−1
h

∆t ,
sn

h+sn−1
h

2

)
1/2

= 0.

Equation (22) is equivalent to:

τ0
4∆tµ(τ1−τ0)

[∥∥sn+1
h

∥∥2
1/2 + ∥sn

h∥2
1/2

]
− τ0

4∆tµ(τ1−τ0)

[∥∥sn
h

∥∥2
1/2 +

∥∥sn−1
h

∥∥2
1/2

](23)

+ 1
2µ(τ1−τ0)

Nξ∑
j=1

wj

∥∥∥φn+1
h,j

−φn
h,j

∆t

∥∥∥2

1/2
+ 1

2µ(τ1−τ0)

Nξ∑
j=1

wj

∥∥∥φn
h,j−φn−1

h,j

∆t

∥∥∥2

1/2

+ 1
4∆tµ(τ1−τ0)

Nξ∑
j=1

wjξj

[∥∥φn+1
h,j

∥∥2
1/2 +

∥∥φn
h,j

∥∥2
1/2

]

− 1
4∆tµ(τ1−τ0)

Nξ∑
j=1

wjξj

[∥∥φn
h,j

∥∥2
1/2 +

∥∥φn−1
h,j

∥∥2
1/2

]

+1
2

(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

+sn
h

2

)
1/2

+ 1
2

(
B∗ un

h−un−1
h

∆t ,
sn

h+sn−1
h

2

)
1/2

= 0.

We decompose the last two terms of this formula as follows:
(24)

1
2

(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

+sn
h

2

)
1/2

= 1
2

(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

−sn
h

2

)
1/2

+ 1
2

(
B∗ un+1

h
−un

h
∆t , sn

h

)
1/2

.

1
2

(
B∗ un

h−un−1
h

∆t ,
sn

h+sn−1
h

2

)
1/2

= −1
2

(
B∗ un

h−un−1
h

∆t ,
sn

h−sn−1
h

2

)
1/2

+ 1
2

(
B∗ un

h−un−1
h

∆t , sn
h

)
1/2

.

Substitute (24) in (23), we get
(25)
−
(
B∗ un+1

h
−un−1

h
2∆t , sn

h

)
1/2

= 1
2∆t

(
T

n+1/2
1 − T

n−1/2
1

)
+ 1

2∆t

(
T

n+1/2
2 − T

n−1/2
2

)
+ 1

4∆t

(
T

n+1/2
3 − T

n−1/2
3

)
+ T n,
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with

T
n+1/2
1 = τ0

2µ(τ1−τ0)

[∥∥sn+1
h

∥∥2
1/2 + ∥sn

h∥2
1/2

]
,

T
n+1/2
2 =1

2

(
B∗un+1

h − un
h, sn+1

h − sn
h

)
1/2

,

T
n+1/2
3 = 1

2µ(τ1−τ0)

Nξ∑
j=1

wjξj

[∥∥φn+1
h,j

∥∥2
1/2 +

∥∥φn
h,j

∥∥2
1/2

]
,

T n = 1
2µ(τ1−τ0)

Nξ∑
j=1

wj

∥∥∥φn+1
h,j

−φn
h,j

∆t

∥∥∥2

1/2
+ 1

2µ(τ1−τ0)

Nξ∑
j=1

wj

∥∥∥φn
h,j−φn−1

h,j

∆t

∥∥∥2

1/2
≥ 0.

After substitution of the quantity (25) in (21), we will find (4):

En+1/2−En−1/2

∆t = −T n ≤ 0,

which is the desired identity. □

Thanks to Theorem 4, in order to establish a sufficient stability condition it
suffices to show that the energy En+1/2 is a positive quadratic form (see [26]).
The same condition applies as in the integer derivative model discussed in [1]
because the final term in the energy En+1/2 does not affect the positivity of
the form.

Theorem 5. The numerical scheme (12) is L2 stable under the sufficient
CFL condition:

(26) ∆t ≤ 1
c∞

h,

where c∞ = c
√

τ1
τ0

, which corresponds to the velocity of viscolastic wave s in

height frequency and c =
√

µ
ρ , which corresponds to the velocity of viscolastic

waves in low frequency.

Proof. We look for a condition in which the discrete energy is positive. To
achieve this, we use the equivalent vector form of En+1/2:
(27)
En+1/2 = ρ

2

∥∥∥un+1
h

−un
h

∆t

∥∥∥2

0
+ µ

2 (B∗un+1, B∗un)0 + τ0
4µ(τ1−τ0)

[∥∥sn+1
h

∥∥2
1/2 + ∥sn

h∥2
1/2

]
+∆t2

4

(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

−sn
h

∆t

)
1/2

+ 1
4µ(τ1−τ0)

Nξ∑
j=1

wjξj

[∥∥φn+1
h,j

∥∥2
1/2 +

∥∥∥φn
h,j

∥∥∥2

1/2

]
.
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As the following quantities verify:
∥sn+1

h ∥2
1/2 + ∥sn

h∥2
1/2 = 1

2

(
∥sn+1

h + sn
h∥2

1/2 + ∥sn+1
h − sn

h∥2
12

)
(
B∗un+1

h , B∗un
h

)
0

= 1
4

∥∥∥B∗(un+1
h + un

h)
∥∥∥2

0
− 1

4

∥∥∥B∗(un+1
h − un

h)
∥∥∥2

0
,

we can rewrite En+1/2 in the form: En+1/2 = E
n+1/2
1 + E

n+1/2
2 , where

E
n+1/2
1 =µ

8

∥∥∥B∗ un+1
h

+un
h

2

∥∥∥2

0

+ 1
4µ(τ1−τ0)

 τ0
2

∥∥∥ sn+1
h

+sn
h

2

∥∥∥2

1/2
+

Nξ∑
j=1

wjξj

[∥∥φn+1
h,j

∥∥2
1/2 +

∥∥φn
h,j

∥∥2
1/2

] ⩾ 0.

E
n+1/2
2 =ρ

2

∥∥∥un+1
h

−un
h

∆t

∥∥∥2

0
− µ∆t2

8

∥∥∥B∗ un+1
h

−un
h

∆t

∥∥∥2

0
+ τ0

µ(τ1−τ0)
∆t2

8

∥∥∥ sn+1
h

−sn
h

∆t

∥∥∥2

1/2

+ ∆t2

4

(
B∗ un+1

h
−un

h
∆t ,

sn+1
h

−sn
h

∆t

)
1/2

.

Moreover, the quantity E
n+1/2
2 satisfies

E
n+1/2
2 ⩾

⩾1
2

([
ρI − µ∆t2

4 BB∗
]

un+1
h

−un
h

∆t ,
un+1

h
−un

h
∆t

)
+ τ0

µ(τ1−τ0)
∆t2

8

∥∥∥ sn+1
h

−sn
h

∆t

∥∥∥2

1/2

− µ(τ1−τ0)
τ0

∆t2

8

(
BB∗ un+1

h
−un

h
∆t ,

un+1
h

−un
h

∆t

)
0

− τ0
µ(τ1−τ0)

∆t2

8

∥∥∥ sn+1
h

−sn
h

∆t

∥∥∥2

1/2
,

=1
2

(
ρ

un+1
h

−un
h

∆t ,
un+1

h
−un

h
∆t

)
−
(
µ + µ(τ1−τ0)

τ0

)
∆t2

8

(
BB∗ un+1

h
−un

h
∆t ,

un+1
h

−un
h

∆t

)
,

=1
2

(
ρ

un+1
h

−un
h

∆t ,
un+1

h
−un

h
∆t

)
− µτ1

τ0
∆t2

8

(
BB∗ un+1

h
−un

h
∆t ,

un+1
h

−un
h

∆t

)
.

The positivity of En+1/2 is ensured under the inequality
µτ1
τ0

∆t2

4 (BB∗uh, uh)0 ⩽ (ρuh, uh)0 , ∀uh.

this is equivalent to:(√
µτ1
τ0

∆t
2

)2
(Buh, Buh)0 ⩽ (ρuh, uh)0 , ∀uh,(√

µτ1
τ0

∆t
2

)2
∥B∥2∥uh∥2

0 ⩽ρ∥uh∥2
0,(√

µτ1
τ0

∆t
2

)2
∥B∥2 ⩽ρ,

we use Lemma 1, we get the stability sufficient condition:

∆t ≤ h/c∞, with c∞ = c
√

τ1
τ0

and c =
√

µ
ρ .

□
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Remark 6. We observe that:
• The stability condition (26) is also necessary. Indeed, if we set ∆ t = h

c∞
(1+

10−3) the numerical scheme will be unstable.

4. NUMERICAL SIMULATION

We validate the numerical scheme suggested in the previous section, since
we have an exact solution for a particular choice of initial conditions. We
consider the model problem in the segment ]0, 1[ with the following data:
(28)
ρ∂2u

∂t2 − ∂σ
∂x = 0, (x, t) ∈]0, 1[×]0, T ],

σ + τ0
∂ασ
∂tα = µ

[
∂u
∂x + τ1

∂α

∂tα

(
∂u
∂x

)]
, (x, t) ∈]0, 1[×]0, T ],

u(x, 0) = sin(πx), ut(x, 0) = 0, σ(x, 0) = µ τ1
τ0

π cos(πx), x ∈]0, 1[,

u(0, t) = u(1, t) = 0 t ∈ [0, T ]

and the coefficients:

ρ = 1, µ = 1, τ0 = 1, τ1 = 1.2.

The exact solution (u, σ) of the problem:

(29)
{

u(x, t) = U(t) sin(πx),
σ(x, t) = Σ(t)π cos(πx).

Substituting (29) in (28) we find U is solution of:

(30)
dα+2U
dtα+2 + dU

dt + π2τ1
dαU
dtα + π2U = 0

U(0) = 1, dU(0)
dt = 0.

The solution of this system is of the form:
U(t) = eηt(cos(ωt) − η

ω sin(ωt)),
where η ∓ iω is the solution of:

Xα+2 + X2 + τ1π2Xα + π2 = 0,

For the computation of the numerical solution, we use h = 0.1 and ensure
that the stability condition (∆t = h/c∞) is satisfied.

Fig. 2 shows a comparison of the exact solution (uex) and the numerical
solution (unum) at the point x = 0.5 as a function of time for different values
of α.

We observe that the numerical solution coincides with the exact solution
for all values of α. The figure also shows that, for a large value of α, the waves
are more damped.
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Fig. 2. The numerical and the exact solutions as a function of time for different α.

Numerical stability: The stability condition is given by CFL = 1
c∞

=
1

c
√

τ1/τ0
, c∞, where c denotes the velocity of a high-frequency wave and CFL

is the Courant–Friedrichs–Lewy number.
For numerical stability, if we perturb the stability condition to be CFL +

10−5 and even by changing the value of α, we will still have Fig. 3.
Fig. 4 shows the evolution of the numerical error, ∥uexa − unum∥∞ as a

function of step h for two values of the parameter α, namely α = 0.5 (left-
hand panel) and α = 0.9 (right-hand panel).
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Fig. 3. The numerical solution as a function of time following the perturbation is
stability 10−5.

h ∥uexa − unum∥∞
10−1 3.2083 10−03

5 10−2 7.1497 10−04

2.5 10−2 1.7204 10−04

1.25 10−2 4.2436 10−05

6.25 10−3 1.0553 10−05

3.125 10−3 2.6326 10−06

h ∥uexa − unum∥∞
10−1 1.629 10−03

5 10−2 3.0609 10−04

2.5 10−2 6.8340 10−05

1.25 10−2 1.6344 10−05

6.25 10−3 4.01139 10−06

3.125 10−3 9.94608 10−07

Fig. 4. Error for α = 0.5 and α = 0.9.

We observe that the error decreases steadily as h decreases, and that for
the same step, the error is smaller when alpha is larger.

To study the convergence of our scheme, we change the discretisation pa-
rameters h with ∆t = h

c∞
. Fig. 6 shows the L∞-norm of the corresponding

error with respect to the space step h (on a log-log scale). Fig. 5–Fig. 6 shows
that there is convergence and that the error is of order 2, regardless of the
values of α.
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Fig. 5. Convergence for value of α = 0.4; 0.5; 0.6.

Fig. 6. Convergence for value of α = 0.7; 0.8; 0.9.

We conduct an experiment in the domain [−5, 5] with a point source located
at the centre of the domain and verify:

f(t) =
{

−2π2f2
0 (t − t0) e−π2f2

0 (t−t0)2
, if t ⩽ 2t0

0, otherwise.
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t0 = 1
f0

, f0 = 1 central frequency ,

with the following data:

u(x, 0) = 0, ut(x, 0) = 0, σ(x, 0) = 0, x ∈] − 5, 5[,

u(−5, t) = u(5, t) = 0, t ∈ [0, T ],
and the coefficients:

ρ = 1, µ = 1.

The parameters of the discretization are h = 5.10−2 and ∆t = h
c∞

satisfies
the stability condition (26).

To demonstrate the impact of relaxation parameters, such as τ0 and τ1, on
the attenuation and propagation velocity of fractional viscoelastic waves, we
present a numerical solution in Fig. 7, where we vary the ratio, θ = τ1/τ0,
with values of: 4, 2 and 1.2.
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Fig. 7. Damping and propagation quality with α = 0.8.

We can see that absorption and velocity of propagation are related to the
ratio θ: the larger the value of θ, the greater the damping and the faster the
velocity of propagation.

Fig. 8 shows that, after the source f is extinguished, the viscoelastic energy
decreases exponentially, which confirms our predictions (see (4)).

Fig. 9 shows the influence of the ratio θ on the discrete energy.
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Fig. 8. Discrete energy with θ = 1.2 and α = 0.5.
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Fig. 9. Discrete energy with α = 0.5.

We observe that, when θ = 1.8, the discrete energy converges more quickly
to zero. However, when θ = 1.0001 (θ ≈ 1), energy conservation occurs and
the viscoelastic model converges to the elastic one.

4.1. Parameter Selection for Diffusive Representation. The diffusive
representation introduces a continuous variable, denoted by the symbol ξ,
which must be discretised over the interval [ξm, ξM ] with Nξ points. Through
systematic numerical experimentation (see Fig. 10), we determine the optimal
parameter ranges.

• ξm ≈ 0.01/T (characteristic timescale)
• ξM ≈ 10/∆t (inverse time step)
• Nξ = 50-100 points (logarithmic spacing)
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Fig. 10. Sensitivity analysis showing the effect of (a) ξm, (b) ξM , and (c) Nξ on
solution accuracy. Errors plateau when ξm ≤ 10−2, ξM ≥ 103, and Nξ ≥ 50.

Fig. 10 illustrates the effect that diffusive scheme parameters have on the
accuracy of the solution, as measured by the relative L∞ error. Three clear
trends emerge.

(1) Sensitivity to ξm (see Fig. 10(a)):
• Error decreases exponentially as ξm → 0.
• Stabilises for ξm ≤ 10−2 (error < 10−4 ).
• Confirms that the slow dynamics must be captured by the value of the

parameter.
(2) Influence of ξM (see Fig. 10(b)):

• High-frequency truncation: Errors exceed 10−2 when ξM < 102 due to
loss of spectral resolution in the fractional kernel t−α

• Convergence threshold: Numerical convergence (error < 10−5) is achieved
for ξM ≥ 103/∆t, where ∆t is the time step

• Optimal choice: Our selection ξM = 103/∆t ensures:

(31)
∫ ∞

ξM

sin(απ)
π ξ−αdξ < 0.1% of total weight

(3) Effect of Nξ (see Fig. 10(c)):
• Spectral convergence is typical of fractional methods.
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• Negligible gain beyond 50 Nξpoints.
• An error platform at approximately 5 × 10−5.

5. CONCLUSION

In this study, we developed and analysed a second-order, explicit, finite-
difference scheme for a fractional wave propagation model. Using energy
methods, we derived a stability condition that is consistent with the classical
(integer-order) case. Our analysis yielded a criterion that is both theoretically
sufficient and numerically precise. A variety of numerical experiments demon-
strated the impact of the fractional order α and the relaxation parameters τ0
and τ1 on wave attenuation. Future work will focus on extending the method
to higher dimensions and improving the efficiency of adaptive time-stepping
schemes. Furthermore, this approach can be applied to more complex mod-
els in poroelastic media, in which fractional effects are crucial for capturing
memory and dissipation phenomena.
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