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APPLICATIONS OF THE THEORY OF GENERALIZED FOURIER
TRANSFORMS TO TIKHONOV PROBLEMS

FETHI SOLTANT* and AKRAM NEMRI'
Abstract. In this paper, we consider the Sturm-Liouville operator

& A d
As Ao &

=17 z € R},
where A is a positive function satisfying certain conditions. This operator was
used to introduce the generalized Weinstein operator
d? d? A(z2) d «
dil'% dimg A((CL‘;))TIQ’ (1’1,3}2) ERXR+.
We define and study the multiplier operators T5% and TG associated with the
operators Agr, and Agw, next, we introduce and study the extremal functions
f;;? L and f;,? W The special cases fgy‘hs L and fg,’hc W are the solutions of a
Tikhonov problems.

We present the numerical results associated with fgf L and fgf Y in two
versions. The first is in two dimensions, related to the operator Agsyr, and the
second in three dimensions, related to the operator Agw .

Agw =

MSC. 42B10, 44A05, 44A20.
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1. INTRODUCTION

Let E be an arbitrary set and let Hx be a reproducing kernel Hilbert space
admitting the reproducing kernel K on E. For any Hilbert space H we consider
a bounded linear operator T from Hg to H. Then the following problem is a
classical and fundamental problem which is known as best approximate mean
square norm problems

. 2
(1) Jnf {I7(f) ~ bl
where h € H is given. If there exists f; € Hy which attains this infimum,
the problem (1) is called solvable otherwise it is called unsolvable. If Hy is
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a reproducing kernel Hilbert space admitting a reproducing kernel K(p,q) on
a the set E then whether the problem (1) is solvable or not, the following
problem

(2) nt (e +1T(F) = Bl }

is always solvable for all > 0 and we obtain a method for determine the
extremal function f;, € Hy which attains the infimum (2).

The problem (2) is called the Tikhonov regularization for the problem (1)
and if the problem (1) is solvable then we have

fon — fr as m— 07,

in Hi and f; is the element which attaints the infimum (1).

In the first part of this paper, we consider the Sturm-Liouville operator
(SL-operator) defined by

2 A d

ASL :@"‘Z(Jf)a, JIER*,
where A is a positive function satisfying certain conditions. This operator
is the goal of many works in harmonic analysis [1, 2, 5, 6, 3, 23, 24, 25].
Specifically, we consider the Sturm-Liouville transform (SL-transform)

Fsi(HN) = [ T oS @) f(2)A(x)dz, AeER,,

where 31 is the Sturm-Liouville kernel (SL-kernel) given in Section 2 below.
The SL-transform can be considered as a generalization of certain generalized
Fourier transforms [4, 7, 8, 10]. Many results have already been demonstrated
for the SL-transform Zgy, (see [9, 14, 15, 16, 17, 18, 21, 22]).

We define the Paley-Wiener type space L@;% , s > 0, associated with the

SL-transform .%gy,, as

Pt = T (GLAY)),
where L?(p) and L?(v) are the Lebesgue spaces defined in Section 2 and
Xs '= X(0,1/s) 1S the characteristic function of the interval (0,1/s).

In Fourier analysis, a multiplier operator is a type of linear operator, or
transformation of functions. The Fourier multiplier operators gave a gener-
alization of some classical linear transformations like, the Hilbert transform,
the partial sum operator, the Weierstrass transform and the Poisson integral
operator, and recently these operators are the goal of many works [19, 20].
Another fundamental tool in harmonic analysis is the Sturm-Liouville mul-
tiplier operators (SL-multiplier operators) which are the aim of the study of
this paper.

Let m € L®°(v). We define the SL-multiplier operators T>% for f € L2(u),
by

T (F) = Fap (mFsi(f))-
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Let m € L*(v). The main goal of the paper is to study the Tikhonov
regularization problem

A 2 SL 2
L, Dl + = TS )

where h € L?*(u) and n > 0. First this problem has a unique solution (see
[11]) denoted by f; ;? L and is given by
*,SL ok - ;
Lot ) = + T TRl T T () (y), v € Ry,
where I is the unit operator and T55* : L?(u) — 2% is the adjoint of T3%.
Next, by using the theory of the SL-transform .#g;, we prove that the
extremal function f;,‘? L satisfies the following properties.

. * s(N)SL m\)|2.Zsr (h)(\
(i) TSL(f ,SL)(y) :/R Xs(N) s () ImN)]? Fsr (h)( )dy(/\),
+

m \Jn,h n+mA)[?
. *,SL *,SL
(i) TEE(FE59 () = Ik 0 ),
ey s SL
(i) lim, o+ [| 73" (f;;;i ) = STEM) L2y = 0,
(iv) limg o Tt (fo )W) = S5 (W) (y), y € Ry,
where S SSL is the partial sum operator associated with the SL-transform Fsr..
In the second part of this paper, we continue the study of the extremal
function associated with the generalized Weinstein operator (GW-operator)
2
Aow = @+ASL|$2> (.1‘1,:E2) GRXRi.
1

This operator provides another view of the Tikhonov regularization problem
in two dimensions. Let ¢’ and v/ the measures on K := R x R given by
dp (z1, 22) := dzydp(ze),  dV/ (A1, Ag) i= s=dAidv(Ag).
The generalized Weinstein transform Zgyw (GW-transform) is defined for
fe L) by
Faw (f)( M1, A2) :== /K@?Kz(xl,wz)f(xl,xz)dul(ﬂil,332), (A1, A2) € K,

where cp?l‘f[ﬁ\z(:pl,xg) = e MT1p, (29) is the generalized Weinstein kernel
(GW-kernel). This transform satisfies a Plancherel and an inversion formula.

Let m € L>(v'). The generalized Weinstein multiplier operators T.G"
(GW-multiplier operators), are defined for f € L(i') by

TV (f) = Faw(mFaw(f))-
We define the Paley-Wiener type space 2%, s > 0, associated with the
GW-transform Zqw, as
PV = ol (GL)),
where
Xs(A1; A2) 1= X(—1/5,1/5) (A1) X(0,1/5)(A2)s (A1, A2) € K.
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Let m € L®(V). For any h € L?(i') and for any n > 0, the Tikhonov
regularization problem

. 2 GW 2
et A g+ 1= T () )

has a unique solution denoted also by f; ’,?W and is given by

*,G —
fon Y oye) = oI + TSV TS TV (W) (y1,92), (1, 10) €K,

where TGW* 2 L2(p') — 25W is the adjoint of TGW.

Using the properties of the GW-transform %gyp, the extremal function

f;; ,? W satisfies the following properties.

@) TSV ) ) =

/ Xs(A1,A2 SDAI,AQ(yLyz)lm()\w\z)l w (h)(A1,A2)

MO A2 dv/ (A1, Ag).

*,GW
17h )(ylayQ) = fn,TgW(h)(ylay2)~

(111) llmn_>0+ HTSW(f;:;?W) - SsGW(h)HLQ(u’) =0.

. . GW

(iv) lim, o+ TgW(f;’h YW1, y2) = SSGW(h)(yhyz), (y1,92) € K,
where SSGW is the partial sum operator associated with the GW-transform
Fow -

In the third part of this paper, we study two examples of Tikhonov problems

*,SL *GW . .

and give numerical results associated with f;7’ and f;3"" in two versions.
The first in two dimensions is related to the Bessel operator
& 1d
dz?2 " zdz’
and the second in three dimensions is related to the Weinstein operator
d? d2 1.d

2 +
dx de T9 dxz

The paper is organized as follows. In Section 2 we recall some results about
the SL-operator Agy, and the SL-transform .#gr. In Section 3 we study two
Tikhonov regularization problems associated with the SL-operator Agy, and
the GW-operator Agy, respectively. In the last section we give numerical
results related to the Bessel operator Ap and the Weinstein operator Ay,
when a = 0.

Ap =

Ay =

2. THE SL-MULTIPLIER OPERATORS
We consider the SL-operator Agy, defined on R* by
@A)
dz?  A(z) dz’

ASL =

where

A(z) = 2**TB(z), o> —1/2,
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for B a positive, even, infinitely differentiable function on R such that B(0) =
1. Moreover we assume that A satisfies the following conditions:
(i) A is increasing and 1Lm A(z) = .
x o0

A A
(ii) =X is decreasing and xhﬁ\rglo A((af)) =2p>0.
(iii) There exists a constant 6 > 0 such that
A'(x)

=2p+e %D if
A() p+e (x), ifp>0,

A(2) a4 —bx e
Alz) @ +e °"D(z), ifp=0,

where D is an infinitely differentiable function on R*, bounded and with
bounded derivatives on all intervals [xg, 00), for zg > 0.

This operator was studied in [3, 23], and the following results have been
established:

(I) For all A € C, the equation

Agr(u) = —(A2 + p?)u
uw(0) =1, «/(0)=0
admits a unique solution, denoted by gofL, with the following properties:
e for z € R, the function A — ¢§7(x) is analytic on C;
e for A\ € C, the function z — @3 (z) is even and infinitely differentiable
on R.
(IT) For nonzero A € C, the equation
ASL(U) = —(>\2 + p2)u,

has a solution ®) satisfying

(I))\(.%') =

(2N
——V 7A )
with
lim V(z,\) =1.
T—00
Consequently there exists a function (spectral function) A — ¢(X), such that
P (@) = c(N)@a(2) + (A P_x(2), x € Ry,

for nonzero \ € C.
Moreover there exist positive constants ki, ko, k, such that

kAP < Je(V)] 72 < ko AP,
for all A such that Im\ < 0 and |A| > k.
(IIT) The SL-function pY%(x); A,z € Ry, possesses the following property
(3) |8 (2)] < 1.
Notation. We denote by
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e 1 the measure defined on Ry by du(z) := A(z)dx; and by LP(u), p €
[1, 0], the space of measurable functions f on Ry, such that

1/p
£l = | [ +|f<ac>|pdu<as>} <00, pell,oo),

£l zoo(uy = ess sup |f(z)] < oo
zeRy

dX
e v the measure defined on R} by dv()) := W; and by LP(v), p €
i

[1, 00], the space of measurable functions f on R, such that || f[|zr() < co.
The SL-transform is the Fourier transform associated with the operator
Agy, and is defined for f € L'(u) by

Fs(NW = [ ef @) @dutz), A eR..

Some of the properties of the SL-transform Zgy, are collected bellow (see
[3, 23, 24]).

THEOREM 1. (i) L' — L*°-boundedness for Fgr. For all f € L*(p),
Fsr(f) € L*(v) and
1 ZsL(P)llLeey < N llpa -

(ii) Plancherel theorem for Fsr. The SL-transform Fgy extends uniquely
to an isometric isomorphism of L*(u) onto L?(v). In particular,

1 llz2uy = 1FsL() |20
(iii) Inversion theorem for Fsy. Let f € L*(n), such that Zsr(f) € L*(v).
Then

f@) = | @ TN, ae xRy

Let s > 0 and x5 be the function defined by
XS()‘) = X(O,l/s)(A)a AERy,

where X(q,1/5) i the characteristic function of the interval (0,1/s).
We define the Paley-Wiener type space WSSL , as
Pl = F5p (L2 W).
We see that any element f € QZfL is represented uniquely by a function
F € L*(v) in the form
f=Zsp (6 F)-
The space @SSL equipped with the norm

1/2
£l 2= 1Fll2) = [ i \F(A)Pduu)] .

+
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THEOREM 2. The space 251 satisfies
For (2L ¢ L0 L2 (v),

and has the reproducing kernel

K@) = [ aMe @ mao.
+
Proof. Let f € 251, The inclusion follows from the inequality
| Fsr(lerw) < Asll fll pse
where

1/2
A= Xs()\)dy()\)] .
Ry

On the other hand, from Theorem 1 (iii), we have

FsL(Ks(y)(A) = xs(NeRE(y), vy € Ry
By (3), we get

1/2
IKs(o9) || sz = /+ XsW]eX () Pdv(N) / < Ay < oo
Moreover,
) gsn = [ PN GWO) = (),
This completes the proof of the theorem. O

Let m € L™ (v). The SL-multiplier operators T>%, are defined for f € L?(p)
by
(4) Tt (f) = Zsp (mFsi(f)).

Let m € L*®(v). By Theorem 1 (ii), the operators T/5* are bounded from
L?(p) into L?(p), and

(5) 1T 5 Pl 2y < llmll oo o) 11l 2 )
Let m € L>=(v). By (5), the SL-multiplier operators 7>~ are bounded from
P23 into L?(u), and

ITE P 22y < llmll ooy |1 £l s

For example, the partial sum operator S2% defined by

SSE(f) = Fai (s Fsilf)),
is a SL-multiplier operator and satisfies HSEL(f)HLQ(u) < |[fllzsc-
Let n > 0. We denote by (., '>n, st the inner product defined on the space
P25t by

(. 0hnpsr = 0f.0) s+ (Tl (D, Tak9))
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Let 7 > 0 and let m € L>®(v). The space 251 equipped with the norm
| Il sc has the reproducing kernel

[ xsWeRF @) (y)
Ksﬂ](x?y) _/]R+ T]‘i‘)\‘m()\)’)é d

v(A).
Therefore, we have the functional equation
(6) (0l + T3 TR Ko (o y) = Ko(oy), g € Ry,

where T5E* : L2(u) — 2251 is the adjoint of T)3%.

3. TIKHONOV REGULARIZATION PROBLEMS

In this section, building on the ideas of Saitoh et al. [11, 12, 13], we
study and solve the Tikhonov regularization problems associated with the
SL-operator and the GW-operator, respectively.

a) Extremal function associated with the SL-operator. For any
h € L?(p) and for any 1 > 0, the Tikhonov regularization problem

: 2 SL 2
Ll W+ h = TEE () }

has a unique solution (see [11]) denoted also by f;ﬂ’,‘jL and is given by

(7) Font(y) = (I + TEE Tk T T5B* (h) (y), v € Ry

This function possesses the following integral representation.

THEOREM 3. Let m € L®(v). Then for any h € L*(u) and for any n > 0,
we have

. * s\ SL A&, h)(A\
(1) fn:}fL(y) _ /R X ( )‘pA n(i)‘mg)\ipsL( )( )dl/()\)
+

.. *,SL
@) 1f55 Nwse < gimllhllzagu-

Proof. (i) From Theorem 2, (6) and (7), we have
*,SL % -1 %
font ) = (O + TRE TR TR (), Koow) s,

= (TSE(n), (] + TS TS Kol w) )

= (TSP (h), Kuy(o)

pPSL

s
y
25

Hence

f;:sL(y) = <h, T£L<Ks,n(~ay))>L2(“)'
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y)

SL
By (3), the function A — % belongs to L' N L?(v). Then from
(-

Theorem 1 (ii), it follows that K, (.,y) belongs to L?(y), and

7 _ xR ()
(8) FsL(Ksn(-,9))(A) = W?/\)P
By Theorem 1 (ii) and (8), we have

yER+

it = / Fs1 ()N Fsr (B ) V()

Xs(Ne3E(y)m(N) Fsr(h)(N)
Ry n+[m(A)[?

dv(A).
(ii) The function
o LOTIZ5 (),
1+ [m(A)]
belongs to L' N L%(v). Then by (i), it follows that f* 5L pelongs to L2 (1), and

S ~ Xs(W)m(N)FsL(h)(N)
(9) FsL(n IV = 222

2
Since [77 + ]m()\)ﬂ > 4nm(N\)|?, we obtain

*SL _ Im(A\) 2| Zsr(h) (M) 2
e A TE

< & J, | FseBOPA) = Gkl

The theorem is proved.

0

In the following we establish some properties for the extremal function f *SL

THEOREM 4. Let m € L*(v). For any h € L?(u) and for any n > 0, we
have

*, sN)pSL m\)|2Zsr(h)(A
(l) TSL( SL)(y) _ /RJr xs(Ne3 (gJ)rl|m(()?)|‘2JSL( )( )dl/()\)
(i) TSHE W) = £ per 1)
)

*,S
(i) Lm0+ || TSEC") = SEE(R)

L2(p)
(iv) lim, v TSE(f75) (y) = SSE(R)(y), y € Ry

Proof. By (4) and (9), we have

* — m 2z
TSR )W) = Zat (xs () AL ZLBIA)) ().

The function

m 2
N\ Xs()\)‘ (i\?)_l_|«i?§)(|’2l)(>\)
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belongs to L' N L?(v). Then by Theorem 1 (iii), we obtain (i).
The (ii) follows from (i) and Theorem 3 (i).

From (i), we have

Fsp (TS0 — SSE(R))(N) = —pXeQTse (A,

n+mN)[2
Consequently,
*,SL 2xs(N)|Fsp(h) (W)
TS = S5 gy = [, ey,

Using the dominated convergence theorem and the fact that

2 P 2
: xs[%)%(s;)('g]);x)\ < | Zsr(h)(V)]%,

we deduce (iii).
Finally, from (i) and Theorem 1 (iii), we deduce that

* s y
L) =S50 = = [ o8 W) TR

Using the dominated convergence theorem and the fact that

s(MIZ A
meONZSL DO < ()] Fs(h)(N)],

we obtain (iv). O

b) Extremal function associated with the GW-operator. We con-
sider the GW-operator on R x R* by
A2 d®  Al(zy) d d?
— = A € R x RY.
@2 T T Aoy dey — agg T Ot (T122) ERXRY
For any ()\1, A2) € K:=R x R4, the system
Acw (u)(z1,22) = —(A5 + p*)u(z1, 22),
62

AGW =

8 2(1:1,1'2) = —)\%U(l'l,l'g),
ou ou
0,0)=1, —(0,0)=0, 0,0 —iA.
w0.0=1, FL0,0=0, 20,0 =\
admits a unique solution ¢y, »,(z1,2) given by
S, (21, m9) = €M1y, (39).

For (z1,22), (A1, A2) € K| the kernel gofK\Q (x1,x2) satisfies

S (21, 22) < 1.
Notation. We denote by:
e i/ the measure defined on K by du/(x1, z2) := dzydu(zs); and by LP(u'),
p € [1, 00], the space of measurable functions f on K, such that || f||z»() < oc.
e 1/ the measure defined on K by dv/ (A1, A2) := 5=dA\idv(A2); and by LP(V/),
p € [1, 00], the space of measurable functions f on R+, such that || f|| z»(,) < 00.
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The generalized Weinstein transform is the Fourier transform associated
with the operator Agy and is defined for f € L' (y') by

Faw (f) (M, A2) == /K@fl,VKQ(xl,xz)f(xhxz)d//(wh902)7 (A1, A2) € K.
This transform satisfies the following properties.

THEOREM 5. (i) L' — L*®-boundedness for Faw. For all f € L' (i),
Faw (f) € L>(V) and
| Faw (e < NNz
(ii) Plancherel theorem for Faw. The Weinstein transform Fagw extends
uniquely to an isometric isomorphism of L*(u') onto L*(V'). In par-
ticular,
122y = 1 Faw ()20
(iii) Inversion theorem for Fgw. Let f € L'(i'), such that Faow(f) €
LY (V). Then

f(z) :/K<Pf\;1v}§\2($1,332)ycw(f)()\1,)\2)d1/(/\17)\2)a a.e. (r1,x2) € K.

Let s > 0 and xs be the function defined by
Xs(A1, A2) 1= X(<1/6,1/5) (A1) X (0,1/5)(A2), (A1, A2) € K.

We define the Paley-Wiener type space QSG W as

PV = Ty (GLAV)).
We see that any element f € 25W is represented uniquely by a function

F € L2(V) in the form
= Zaw(x:F).

The space ,@SG W equipped with the norm

1/2
[ fllpew = [Fllr20 = [/K |F (A1, A2)[Pdv/ (A1, Az)

The space 225V satisfies
Fow(2EV) c L' 0 LA(V),

and has the reproducing kernel

Ky((z1,22), (y1,92)) :/Kxs(AbAz)g@fﬁ‘ﬁz(ml,wz))sog’lv,KQ(yl,yz)dV’(/\l,>\2).

Let m € L*(v'). The GW-multiplier operators T, nC,fW, are defined for f €
L*(y) by
() = Faw(mFaw (f)).
Let m € L>®(v'). The operators TG are bounded from L2(y/) into L?(u'),
and

TS (2 ury < Nmllzoo @ |1 L2 -
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Let m € L>®(v/). The GW-multiplier operators TG are bounded from
PEW into L2('), and

T (D)l 2y < lmllpoe@nll £l pgmw-
For example, the partial sum operator SV defined by
STV = Faw (xsFaw (1),

is a GW-multiplier operator and satisfies ||SSGW(f)HL2(”/) < |[fll paw .
For any h € L?(i') and for any n > 0, the Tikhonov regularization problem

i 2 GW 2
fe%ﬁsgw{””fu%w +h =Ty (f)”LQ(W)}

has a unique solution (see [11]) denoted by f; f W and is given by

*,G * — *
Fon o) o= I + TV TS ) T LS () (w1, w2), (01, 92) €K,

where TS L2(1') — 2EW is the adjoint of TGW.
This function possesses the following properties.

THEOREM 6. Let m € L>(v'). For any h € L*(i) and for any n > 0, we
have

N %, GW Xs()q,)\z)@cuf (y1,92)m(A1,22) Faw (h)(A1,A2)
(1) f777h (y1,y2) = / 2 nHim(A1, )2
.. *,SL

(i) T (Fyh )y we) =
- Xs(A1:>\2)<Pf1W,A2 (y1,92)Im(A1,22) 12 Faw (h) (A1,A2)
ok nHm(A1,A2)?

*,SL *GW

(111) Trgw(fn,h )(y17y2) = fn,TTCn"W(h) (ybyZ)-

(iv) lim,or [TGY (£0") = SEW (R) | p2(uy = 0.

(v) lim, o TSW (57 ) (01, 92) = SEW (R) (w1, w2), (w1, 12) € K.

dV/()\l, )\2).

v/ (A1, Aa).

4. NUMERICAL RESULTS FOR THE LIMIT CASE n — 0t

In this section we give numerical applications in the Bessel case and We-
instein case when o = 0. The first application concerning the solution of
Tikhonov problem

. B 2
fggg{”h - Tm(f)”L?(u)}’

where h € L?(p). The solution of this problem will be denoted by fo ’,? . And
the second application concerning the solution of the Tikhonov problem

: w 2
it =3 () |

The solution of this problem will be denoted by fg:,gv .
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a) The Bessel operator. In this subsection we consider the operator

d? 1d
Api=—_ 4 -4,
B dz?  zdz

In this case p = 0 and p¥(z) = jo(Az), where jj is the spherical Bessel
function of order 0 given by

o

(10) jo(z) = L /0 cos(asin))dt = 3 gl o2
n=0
Hence

Fp(h)(\) = A Jjo(Az)h(x)zdx, X e R4.

In the following we choose h(z) = e~*" and m()\) = e=*, ¢ > 0. Then
Fp(h)(\) = 3¢~ 1.

Therefore, and by Theorem 3 (i) and Theorem 4 (i) we obtain

netr? fe—

) [ ot
=4 [ 2,
and

1/s . _Aa2
* B Ay)e
TEU ) =4 [ BB

Next, taking n — 07 yields

* 1/8 . _1
fo,’f?(y) — %/o Jo(Ay)e(t 4)A2>\d)\,
and
B/ px,B 1 1/s . _Aa?
AW =4 [ doOwe adn

From (10) we deduce that

«B 1/s rm 1)y2
(11) fon () = i/ / Acos(Aysin 7)™ DN drd),
’ 0 0
and
B 1/s pm A2
12 T =L Acos(AysinT)e” + drdA.
( ) m\Jo,n ¥ o 0 0 Y

We calculate fgf(y) and Tﬁ(fg”,?)(y) for y € [—10, 10], by using the Gauss-
Kronrod method and Maple.
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1.= 10

\unvf\v/\vf\vﬁv{\v/\u/\uﬂv% ﬂUﬂUﬂUﬂv/\UﬂUf\vﬂ\}/\Uﬁ

—1.% 10

—a. = 10°4H

Fig. 5. s = £. Fig. 6. s = {5.

In Fig. 1-Fig. 6, we display the plot of f&’f(y) for y € [-10,10],t = 1 and

¢—1.1 1111
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Fig. 11. s = =5.




16 Applications of the theory of generalized Fourier transforms to Tikhonov problems 185

002+

—To s ) H Yo

Fig. 17. s = . Fig. 18. s =

1
50 100
In Fig. 13-Fig. 18, we display the plot of T,f(f&’f)(y) for y € [-10,10] and

g—1 111 1 1

REMARK 7. We notice from Fig. 1-Fig. 6 that for a small value of s and
when t is fived at 1, the stability of the function fg’,?(y) is reached. However,

when t approaches 0 (Fig. 7-Fig. 12), the stability of fg”f(y) 1s quickly reached
and its mazimum is maintained over a specific range of s. Fig. 13-Fig. 18 show
that the desired approximate formulas can be obtained in practice. However,
Theorem 4 s justified; we were able to numerically realize the limiting case
n — 0% using computers.
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b) The Weinstein operator. In this subsection we consider the operator
d? d? 1 d
Ay = + o5+ —
w dx 2 dx2 X9 dﬂ?g
In this case p = 0 and go/\w\Q (x1,22) = e~ 5o (Aax2). Hence

w(h) (A1, A2) 1:/]K€_l/\1x1 o(A2x2)h(z1, x2)xeda1dme, (A1, A2) € K.

In the following we choose h(z1, 2) = e~ @122 and m(Ag, Ag) = e tOTHAD),
t > 0. Then
Fw(h)( A1, o) = \fe—i@?%).

Therefore, and by Theorem 6 (i) and (ii) we obtain

/s 1/s g—iAiy1 g T3+
/ Jo(Aay2)e™ 41 NodAr s,

fnh (y17y2 4f/1/5 t()\ +)\2 +€—t(A2+)\2)

and

. /s r1/s ¢ Mlyl][} )\23/2)6 %(Af—&-)\g)
T3 (Fn Y1, y2) 4f/1/s/ oy T edhdde

Next, taking n — 07 yields

* /s r1/s ) ) 1
fo,’}‘;v(yl,?ﬁ) = 4f/1/ /0 6_”\1%]0()\21/2)6“ }1)(>‘?+)\§))\2d)\1d)\2
= fo,’h(yl)-fg,’f(w),
where /
1/s
*1 — _1 —iy1 (1= 1)A2
= 5= e e\'7a)Md\
fO,h(yl) 2/ ‘/_1/8 1
and
*,2 1 1/8 . (t—l))\Q
fo,’h(y2):§/0 Jo(Aay2)e 172 Nod Ay,
Furthermore
w * W 1/8 1/5 —iX . 7;()\24,’»)\2)
T (Fo Y1) = 4f/1// e~ MY o (Aaya)e” TATHA2) Nod A1 d s
= TWf w () T foh(y2)
where
T () = g [ e ay,
™ MOR 2v/m —1/s
and

1/s
TV (fom)(2) = 3 /0 Jo(Aaya)e” T8 AgdNs.
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From (11) and (12) we deduce that

1/s pm
fip) =2 [ [ NeosOuagasin et D¥darar,
and
W, k2 0 1/s rm ‘ _ﬁ
T (fon)(y2) = 27 /0 /O A2 cos(AgyasinT)e” 4 drdAs.

We calculate fg,’,gv(yl,yg) and TT‘,/LVf&’ZV(yl,yQ) for (y1,y2) € [-10,10] x
[0, 10], by using the Gauss-Kronrod method and Maple.

/
s

b
]
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In Fig. 19-Fig. 24, we display the plot of fg’;:v(yl, y2) for (y1,y2) € [—10, 10]x

_ _ 111111
[0,10], t=T1and s =1,35,3, 4,5 19-

In Fig. 25-Fig. 30, we display the plot of TWVY(fJ’ZV)(yhyz) for (y1,y2) €

[_10a 10] X [07 10] and s =1, %7 %7 %()a %7 ﬁio

REMARK 8. We notice from Figures Fig. 19-Fig. 2/ that for a small value of
s and when t is fized at 1, the stability of the function fg”;:v(yl, y2) is reached.
Fig. 25-Fig. 30 show that the desired approximate formulas can be obtained in
practice. However, Theorem 6 is justified; we were able to numerically realize
the limiting case n — 0% using computers.
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