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APPLICATIONS OF THE THEORY OF GENERALIZED FOURIER
TRANSFORMS TO TIKHONOV PROBLEMS

FETHI SOLTANI∗ and AKRAM NEMRI†

Abstract. In this paper, we consider the Sturm-Liouville operator

∆SL := d2

dx2 + A′(x)
A(x)

d
dx

, x ∈ R∗
+,

where A is a positive function satisfying certain conditions. This operator was
used to introduce the generalized Weinstein operator

∆GW := d2

dx2
1

+ d2

dx2
2

+ A′(x2)
A(x2)

d
dx2

, (x1, x2) ∈ R × R∗
+.

We define and study the multiplier operators T SL
m and T GW

m associated with the
operators ∆SL and ∆GW , next, we introduce and study the extremal functions
f∗,SL

η,h and f∗,GW
η,h . The special cases f∗,SL

0,h and f∗,GW
0,h are the solutions of a

Tikhonov problems.
We present the numerical results associated with f∗,SL

0,h and f∗,GW
0,h in two

versions. The first is in two dimensions, related to the operator ∆SL, and the
second in three dimensions, related to the operator ∆GW .
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1. INTRODUCTION

Let E be an arbitrary set and let HK be a reproducing kernel Hilbert space
admitting the reproducing kernel K on E. For any Hilbert space H we consider
a bounded linear operator T from HK to H. Then the following problem is a
classical and fundamental problem which is known as best approximate mean
square norm problems

(1) inf
f∈HK

{
∥T (f) − h∥2

H

}
,

where h ∈ H is given. If there exists f∗
h ∈ HK which attains this infimum,

the problem (1) is called solvable otherwise it is called unsolvable. If HK is
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a reproducing kernel Hilbert space admitting a reproducing kernel K(p, q) on
a the set E then whether the problem (1) is solvable or not, the following
problem

(2) inf
f∈HK

{
η∥f∥2

HK
+ ∥T (f) − h∥2

H

}
,

is always solvable for all η > 0 and we obtain a method for determine the
extremal function f∗

η,h ∈ HK which attains the infimum (2).
The problem (2) is called the Tikhonov regularization for the problem (1)

and if the problem (1) is solvable then we have

f∗
η,h −→ f∗

h as η −→ 0+,

in HK and f∗
h is the element which attaints the infimum (1).

In the first part of this paper, we consider the Sturm-Liouville operator
(SL-operator) defined by

∆SL := d2

dx2 + A′

A
(x) d

dx
, x ∈ R∗

+,

where A is a positive function satisfying certain conditions. This operator
is the goal of many works in harmonic analysis [1, 2, 5, 6, 3, 23, 24, 25].
Specifically, we consider the Sturm-Liouville transform (SL-transform)

FSL(f)(λ) :=
∫ ∞

0
φSL

λ (x)f(x)A(x)dx, λ ∈ R+,

where φSL
λ is the Sturm-Liouville kernel (SL-kernel) given in Section 2 below.

The SL-transform can be considered as a generalization of certain generalized
Fourier transforms [4, 7, 8, 10]. Many results have already been demonstrated
for the SL-transform FSL (see [9, 14, 15, 16, 17, 18, 21, 22]).

We define the Paley-Wiener type space PSL
s , s > 0, associated with the

SL-transform FSL, as
PSL

s := F −1
SL (χsL2(ν)),

where L2(µ) and L2(ν) are the Lebesgue spaces defined in Section 2 and
χs := χ(0,1/s) is the characteristic function of the interval (0, 1/s).

In Fourier analysis, a multiplier operator is a type of linear operator, or
transformation of functions. The Fourier multiplier operators gave a gener-
alization of some classical linear transformations like, the Hilbert transform,
the partial sum operator, the Weierstrass transform and the Poisson integral
operator, and recently these operators are the goal of many works [19, 20].
Another fundamental tool in harmonic analysis is the Sturm-Liouville mul-
tiplier operators (SL-multiplier operators) which are the aim of the study of
this paper.

Let m ∈ L∞(ν). We define the SL-multiplier operators T SL
m for f ∈ L2(µ),

by
T SL

m (f) := F −1
SL (mFSL(f)).
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Let m ∈ L∞(ν). The main goal of the paper is to study the Tikhonov
regularization problem

inf
f∈PSL

s

{
η∥f∥2

PSL
s

+ ∥h − T SL
m (f)∥2

L2(µ)

}
,

where h ∈ L2(µ) and η > 0. First this problem has a unique solution (see
[11]) denoted by f∗,SL

η,h and is given by

f∗,SL
η,h (y) := (ηI + T SL,∗

m T SL
m )−1T SL,∗

m (h)(y), y ∈ R+,

where I is the unit operator and T SL,∗
m : L2(µ) → PSL

s is the adjoint of T SL
m .

Next, by using the theory of the SL-transform FSL, we prove that the
extremal function f∗,SL

η,h satisfies the following properties.

(i) T SL
m (f∗,SL

η,h )(y) =
∫
R+

χs(λ)φSL
λ (y)|m(λ)|2FSL(h)(λ)

η+|m(λ)|2 dν(λ),

(ii) T SL
m (f∗,SL

η,h )(y) = f∗,SL
η,T SL

m (h)(y),
(iii) limη→0+ ∥T SL

m (f∗,SL
η,h ) − SSL

s (h)∥L2(µ) = 0,
(iv) limη→0+ T SL

m (f∗,SL
η,h )(y) = SSL

s (h)(y), y ∈ R+,
where SSL

s is the partial sum operator associated with the SL-transform FSL.
In the second part of this paper, we continue the study of the extremal

function associated with the generalized Weinstein operator (GW-operator)

∆GW := d2

dx2
1

+ ∆SL|x2 , (x1, x2) ∈ R × R∗
+.

This operator provides another view of the Tikhonov regularization problem
in two dimensions. Let µ′ and ν ′ the measures on K := R × R+ given by

dµ′(x1, x2) := dx1dµ(x2), dν ′(λ1, λ2) := 1
2π dλ1dν(λ2).

The generalized Weinstein transform FGW (GW-transform) is defined for
f ∈ L1(µ′) by

FGW (f)(λ1, λ2) :=
∫
K

φGW
λ1,λ2(x1, x2)f(x1, x2)dµ′(x1, x2), (λ1, λ2) ∈ K,

where φGW
λ1,λ2

(x1, x2) = e−iλ1x1φλ2(x2) is the generalized Weinstein kernel
(GW-kernel). This transform satisfies a Plancherel and an inversion formula.

Let m ∈ L∞(ν ′). The generalized Weinstein multiplier operators T GW
m

(GW-multiplier operators), are defined for f ∈ L2(µ′) by
T GW

m (f) := F −1
GW (mFGW (f)).

We define the Paley-Wiener type space PGW
s , s > 0, associated with the

GW-transform FGW , as
PGW

s := F −1
GW (χsL2(ν ′)),

where
χs(λ1, λ2) := χ(−1/s,1/s)(λ1)χ(0,1/s)(λ2), (λ1, λ2) ∈ K.
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Let m ∈ L∞(ν ′). For any h ∈ L2(µ′) and for any η > 0, the Tikhonov
regularization problem

inf
f∈PGW

s

{
η∥f∥2

PGW
s

+ ∥h − T GW
m (f)∥2

L2(µ′)

}
,

has a unique solution denoted also by f∗,GW
η,h and is given by

f∗,GW
η,h (y1, y2) := (ηI + T GW,∗

m T GW
m )−1T GW,∗

m (h)(y1, y2), (y1, y2) ∈ K,

where T GW,∗
m : L2(µ′) → PGW

s is the adjoint of T GW
m .

Using the properties of the GW-transform FGW , the extremal function
f∗,GW

η,h satisfies the following properties.
(i) T GW

m (f∗,GW
η,h )(y1, y2) =

=
∫
K

χs(λ1,λ2)φGW
λ1,λ2

(y1,y2)|m(λ1,λ2)|2FGW (h)(λ1,λ2)
η+|m(λ1,λ2)|2 dν ′(λ1, λ2).

(ii) T GW
m (f∗,GW

η,h )(y1, y2) = f∗,GW
η,T GW

m (h)(y1, y2).
(iii) limη→0+ ∥T GW

m (f∗,GW
η,h ) − SGW

s (h)∥L2(µ′) = 0.
(iv) limη→0+ T GW

m (f∗,GW
η,h )(y1, y2) = SGW

s (h)(y1, y2), (y1, y2) ∈ K,
where SGW

s is the partial sum operator associated with the GW-transform
FGW .

In the third part of this paper, we study two examples of Tikhonov problems
and give numerical results associated with f∗,SL

0,h and f∗,GW
0,h in two versions.

The first in two dimensions is related to the Bessel operator

∆B := d2

dx2 + 1
x

d
dx

,

and the second in three dimensions is related to the Weinstein operator

∆W := d2

dx2
1

+ d2

dx2
2

+ 1
x2

d
dx2

.

The paper is organized as follows. In Section 2 we recall some results about
the SL-operator ∆SL and the SL-transform FSL. In Section 3 we study two
Tikhonov regularization problems associated with the SL-operator ∆SL and
the GW-operator ∆GW , respectively. In the last section we give numerical
results related to the Bessel operator ∆B and the Weinstein operator ∆W

when α = 0.

2. THE SL-MULTIPLIER OPERATORS

We consider the SL-operator ∆SL defined on R∗
+ by

∆SL := d2

dx2 + A′(x)
A(x)

d
dx

,

where
A(x) = x2α+1B(x), α > −1/2,
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for B a positive, even, infinitely differentiable function on R such that B(0) =
1. Moreover we assume that A satisfies the following conditions:

(i) A is increasing and lim
x→∞

A(x) = ∞.

(ii) A′

A
is decreasing and lim

x→∞
A′(x)
A(x) = 2ρ ≥ 0.

(iii) There exists a constant δ > 0 such that
A′(x)
A(x) = 2ρ + e−δxD(x), if ρ > 0,

A′(x)
A(x) = 2α+1

x + e−δxD(x), if ρ = 0,

where D is an infinitely differentiable function on R∗
+, bounded and with

bounded derivatives on all intervals [x0, ∞), for x0 > 0.
This operator was studied in [3, 23], and the following results have been

established:
(I) For all λ ∈ C, the equation{

∆SL(u) = −(λ2 + ρ2)u
u(0) = 1, u′(0) = 0

admits a unique solution, denoted by φSL
λ , with the following properties:

• for x ∈ R+, the function λ → φSL
λ (x) is analytic on C;

• for λ ∈ C, the function x → φSL
λ (x) is even and infinitely differentiable

on R.
(II) For nonzero λ ∈ C, the equation

∆SL(u) = −(λ2 + ρ2)u,

has a solution Φλ satisfying

Φλ(x) = eiλx√
A(x)

V (x, λ),

with
lim

x→∞
V (x, λ) = 1.

Consequently there exists a function (spectral function) λ → c(λ), such that
φSL

λ (x) = c(λ)Φλ(x) + c(−λ)Φ−λ(x), x ∈ R+,

for nonzero λ ∈ C.
Moreover there exist positive constants k1, k2, k, such that

k1|λ|2α+1 ≤ |c(λ)|−2 ≤ k2|λ|2α+1,

for all λ such that Imλ ≤ 0 and |λ| ≥ k.
(III) The SL-function φSL

λ (x); λ, x ∈ R+, possesses the following property

(3) |φSL
λ (x)| ≤ 1.

Notation. We denote by
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• µ the measure defined on R+ by dµ(x) := A(x)dx; and by Lp(µ), p ∈
[1, ∞], the space of measurable functions f on R+, such that

∥f∥Lp(µ) :=
[ ∫

R+
|f(x)|pdµ(x)

]1/p

< ∞, p ∈ [1, ∞),

∥f∥L∞(µ) := ess sup
x∈R+

|f(x)| < ∞;

• ν the measure defined on R+ by dν(λ) := dλ

2π|c(λ)|2 ; and by Lp(ν), p ∈

[1, ∞], the space of measurable functions f on R+, such that ∥f∥Lp(ν) < ∞.
The SL-transform is the Fourier transform associated with the operator

∆SL and is defined for f ∈ L1(µ) by

FSL(f)(λ) :=
∫
R+

φSL
λ (x)f(x)dµ(x), λ ∈ R+.

Some of the properties of the SL-transform FSL are collected bellow (see
[3, 23, 24]).

Theorem 1. (i) L1 − L∞-boundedness for FSL. For all f ∈ L1(µ),
FSL(f) ∈ L∞(ν) and

∥FSL(f)∥L∞(ν) ≤ ∥f∥L1(µ).

(ii) Plancherel theorem for FSL. The SL-transform FSL extends uniquely
to an isometric isomorphism of L2(µ) onto L2(ν). In particular,

∥f∥L2(µ) = ∥FSL(f)∥L2(ν).

(iii) Inversion theorem for FSL. Let f ∈ L1(µ), such that FSL(f) ∈ L1(ν).
Then

f(x) =
∫
R+

φSL
λ (x)FSL(f)(λ)dν(λ), a.e. x ∈ R+.

Let s > 0 and χs be the function defined by
χs(λ) := χ(0,1/s)(λ), λ ∈ R+,

where χ(0,1/s) is the characteristic function of the interval (0, 1/s).
We define the Paley-Wiener type space PSL

s , as

PSL
s := F −1

SL (χsL2(ν)).

We see that any element f ∈ PSL
s is represented uniquely by a function

F ∈ L2(ν) in the form
f = F −1

SL (χsF ).
The space PSL

s equipped with the norm

∥f∥PSL
s

:= ∥F∥L2(ν) =
[∫

R+
|F (λ)|2dν(λ)

]1/2

.
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Theorem 2. The space PSL
s satisfies

FSL(PSL
s ) ⊂ L1 ∩ L2(ν),

and has the reproducing kernel

Ks(x, y) =
∫
R+

χs(λ)φSL
λ (x)φSL

λ (y)dν(λ).

Proof. Let f ∈ PSL
s . The inclusion follows from the inequality

∥FSL(f)∥L1(ν) ≤ As∥f∥PSL
s

,

where

As :=
[∫

R+
χs(λ)dν(λ)

]1/2

.

On the other hand, from Theorem 1 (iii), we have
FSL(Ks(., y))(λ) = χs(λ)φSL

λ (y), y ∈ R+.

By (3), we get

∥Ks(., y)∥PSL
s

=
[∫

R+
χs(λ)|φSL

λ (y)|2dν(λ)
]1/2

≤ As < ∞.

Moreover,〈
f, Ks(., y)

〉
PSL

s
=

∫
R+

FSL(f)(λ)φSL
λ (y)dν(λ) = f(y).

This completes the proof of the theorem. □

Let m ∈ L∞(ν). The SL-multiplier operators T SL
m , are defined for f ∈ L2(µ)

by
(4) T SL

m (f) := F −1
SL (mFSL(f)).

Let m ∈ L∞(ν). By Theorem 1 (ii), the operators T SL
m are bounded from

L2(µ) into L2(µ), and
(5) ∥T SL

m (f)∥L2(µ) ≤ ∥m∥L∞(ν)∥f∥L2(µ).

Let m ∈ L∞(ν). By (5), the SL-multiplier operators T SL
m are bounded from

PSL
s into L2(µ), and

∥T SL
m (f)∥L2(µ) ≤ ∥m∥L∞(ν)∥f∥PSL

s
.

For example, the partial sum operator SSL
s defined by

SSL
s (f) := F −1

SL (χsFSL(f)),
is a SL-multiplier operator and satisfies ∥SSL

s (f)∥L2(µ) ≤ ∥f∥PSL
s

.
Let η > 0. We denote by ⟨., .⟩η,PSL

s
the inner product defined on the space

PSL
s by

⟨f, g⟩η,PSL
s

:= η⟨f, g⟩PSL
s

+
〈
T SL

m (f), T SL
m (g)

〉
L2(µ)

.
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Let η > 0 and let m ∈ L∞(ν). The space PSL
s equipped with the norm

∥ · ∥η,PSL
s

has the reproducing kernel

Ks,η(x, y) =
∫
R+

χs(λ)φSL
λ (x)φSL

λ (y)
η + |m(λ)|2 dν(λ).

Therefore, we have the functional equation

(6)
(
ηI + T SL,∗

m T SL
m

)
Ks,η(., y) = Ks(., y), y ∈ R+,

where T SL,∗
m : L2(µ) → PSL

s is the adjoint of T SL
m .

3. TIKHONOV REGULARIZATION PROBLEMS

In this section, building on the ideas of Saitoh et al. [11, 12, 13], we
study and solve the Tikhonov regularization problems associated with the
SL-operator and the GW-operator, respectively.

a) Extremal function associated with the SL-operator. For any
h ∈ L2(µ) and for any η > 0, the Tikhonov regularization problem

inf
f∈PSL

s

{
η∥f∥2

PSL
s

+ ∥h − T SL
m (f)∥2

L2(µ)

}
has a unique solution (see [11]) denoted also by f∗,SL

η,h and is given by

(7) f∗,SL
η,h (y) := (ηI + T SL,∗

m T SL
m )−1T SL,∗

m (h)(y), y ∈ R+.

This function possesses the following integral representation.

Theorem 3. Let m ∈ L∞(ν). Then for any h ∈ L2(µ) and for any η > 0,
we have

(i) f∗,SL
η,h (y) =

∫
R+

χs(λ)φSL
λ (y)m(λ)FSL(h)(λ)

η+|m(λ)|2 dν(λ).

(ii) ∥f∗,SL
η,h ∥PSL

s
≤ 1

2√
η ∥h∥L2(µ).

Proof. (i) From Theorem 2, (6) and (7), we have

f∗,SL
η,h (y) =

〈(
ηI + T SL,∗

m T SL
m

)−1
T SL,∗

m (h), Ks(., y)
〉

PSL
s

=
〈
T SL,∗

m (h),
(
ηI + T SL,∗

m T SL
m

)−1
Ks(., y)

〉
PSL

s

=
〈
T SL,∗

m (h), Ks,η(., y)
〉

PSL
s

.

Hence
f∗,SL

η,h (y) =
〈
h, T SL

m

(
Ks,η(., y)

)〉
L2(µ)

.
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By (3), the function λ → χs(λ)φSL
λ (y)

η + |m(λ)|2 belongs to L1 ∩ L2(ν). Then from

Theorem 1 (ii), it follows that Ks,η(., y) belongs to L2(µ), and

(8) FSL(Ks,η(., y))(λ) = χs(λ)φSL
λ (y)

η + |m(λ)|2 , y ∈ R+.

By Theorem 1 (ii) and (8), we have

f∗,SL
η,h (y) =

∫
R+

FSL(h)(λ)m(λ)FSL(Ks,η(., y))(λ)dν(λ)

=
∫
R+

χs(λ)φSL
λ (y)m(λ)FSL(h)(λ)

η + |m(λ)|2 dν(λ).

(ii) The function

λ → χs(λ)m(λ)FSL(h)(λ)
η + |m(λ)|2 ,

belongs to L1 ∩L2(ν). Then by (i), it follows that f∗,SL
η,h belongs to L2(µ), and

(9) FSL(f∗,SL
η,h )(λ) = χs(λ)m(λ)FSL(h)(λ)

η + |m(λ)|2 .

Since
[
η + |m(λ)|2

]2
≥ 4η|m(λ)|2, we obtain

∥f∗,SL
η,h ∥2

PSL
s

=
∫
R+

|m(λ)|2|FSL(h)(λ)|2

[η + |m(λ)|2]2 dν(λ)

≤ 1
4η

∫
R+

|FSL(h)(λ)|2dν(λ) = 1
4η ∥h∥2

L2(µ).

The theorem is proved. □

In the following we establish some properties for the extremal function f∗,SL
η,h .

Theorem 4. Let m ∈ L∞(ν). For any h ∈ L2(µ) and for any η > 0, we
have

(i) T SL
m (f∗,SL

η,h )(y) =
∫
R+

χs(λ)φSL
λ (y)|m(λ)|2FSL(h)(λ)

η+|m(λ)|2 dν(λ).

(ii) T SL
m (f∗,SL

η,h )(y) = f∗
η,T SL

m (h)(y).

(iii) limη→0+

∥∥∥T SL
m (f∗,SL

η,h ) − SSL
s (h)

∥∥∥
L2(µ)

= 0.

(iv) limη→0+ T SL
m (f∗,SL

η,h )(y) = SSL
s (h)(y), y ∈ R+.

Proof. By (4) and (9), we have

T SL
m (f∗,SL

η,h )(y) = F −1
SL

(
χs(λ) |m(λ)|2FSL(h)(λ)

η+|m(λ)|2
)

(y).

The function
λ → χs(λ) |m(λ)|2FSL(h)(λ)

η+|m(λ)|2
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belongs to L1 ∩ L2(ν). Then by Theorem 1 (iii), we obtain (i).
The (ii) follows from (i) and Theorem 3 (i).
From (i), we have

FSL(T SL
m (f∗,SL

η,h ) − SSL
s (h))(λ) = −η χs(λ)FSL(h)(λ)

η+|m(λ)|2 .

Consequently,

∥T SL
m (f∗,SL

η,h ) − SSL
s (h)∥2

L2(µ) =
∫
R+

η2χs(λ)|FSL(h)(λ)|2
[η+|m(λ)|2]2 dν(λ).

Using the dominated convergence theorem and the fact that
η2χs(λ)|FSL(h)(λ)|2

[η+|m(λ)|2]2 ≤ |FSL(h)(λ)|2,

we deduce (iii).
Finally, from (i) and Theorem 1 (iii), we deduce that

T SL
m (f∗,SL

η,h )(y) − SSL
s (h)(y) = −η

∫
R+

φSL
λ (y)χs(λ)FSL(h)(λ)

η+|m(λ)|2 dν(λ).

Using the dominated convergence theorem and the fact that
ηχs(λ)|FSL(f)(λ)|

η+|m(λ)|2 ≤ χs(λ)|FSL(h)(λ)|,

we obtain (iv). □

b) Extremal function associated with the GW-operator. We con-
sider the GW-operator on R × R∗

+ by

∆GW := d2

dx2
1

+ d2

dx2
2

+ A′(x2)
A(x2)

d
dx2

= d2

dx2
1

+ ∆SL|x2 , (x1, x2) ∈ R × R∗
+.

For any (λ1, λ2) ∈ K := R × R+, the system
∆GW (u)(x1, x2) = −(λ2

2 + ρ2)u(x1, x2),
∂2u

∂x2
1
(x1, x2) = −λ2

1u(x1, x2),

u(0, 0) = 1,
∂u

∂x2
(0, 0) = 0,

∂u

∂x1
(0, 0) = −iλ1.

admits a unique solution φλ1,λ2(x1, x2) given by

φGW
λ1,λ2(x1, x2) = e−iλ1x1φλ2(x2).

For (x1, x2), (λ1, λ2) ∈ K, the kernel φGW
λ1,λ2

(x1, x2) satisfies

|φGW
λ1,λ2(x1, x2)| ≤ 1.

Notation. We denote by:
• µ′ the measure defined on K by dµ′(x1, x2) := dx1dµ(x2); and by Lp(µ′),

p ∈ [1, ∞], the space of measurable functions f on K, such that ∥f∥Lp(µ′) < ∞.
• ν ′ the measure defined on K by dν ′(λ1, λ2) := 1

2π dλ1dν(λ2); and by Lp(ν ′),
p ∈ [1, ∞], the space of measurable functions f on R+, such that ∥f∥Lp(ν) < ∞.
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The generalized Weinstein transform is the Fourier transform associated
with the operator ∆GW and is defined for f ∈ L1(µ′) by

FGW (f)(λ1, λ2) :=
∫
K

φGW
λ1,λ2(x1, x2)f(x1, x2)dµ′(x1, x2), (λ1, λ2) ∈ K.

This transform satisfies the following properties.

Theorem 5. (i) L1 − L∞-boundedness for FGW . For all f ∈ L1(µ′),
FGW (f) ∈ L∞(ν ′) and

∥FGW (f)∥L∞(ν′) ≤ ∥f∥L1(µ′).

(ii) Plancherel theorem for FGW . The Weinstein transform FGW extends
uniquely to an isometric isomorphism of L2(µ′) onto L2(ν ′). In par-
ticular,

∥f∥L2(µ′) = ∥FGW (f)∥L2(ν′).

(iii) Inversion theorem for FGW . Let f ∈ L1(µ′), such that FGW (f) ∈
L1(ν ′). Then

f(x) =
∫
K

φGW
λ1,λ2(x1, x2)FGW (f)(λ1, λ2)dν ′(λ1, λ2), a.e. (x1, x2) ∈ K.

Let s > 0 and χs be the function defined by
χs(λ1, λ2) := χ(−1/s,1/s)(λ1)χ(0,1/s)(λ2), (λ1, λ2) ∈ K.

We define the Paley-Wiener type space PGW
s , as

PGW
s := F −1

GW (χsL2(ν ′)).
We see that any element f ∈ PGW

s is represented uniquely by a function
F ∈ L2(ν ′) in the form

f = F −1
GW (χsF ).

The space PGW
s equipped with the norm

∥f∥PGW
s

:= ∥F∥L2(ν′) =
[∫

K
|F (λ1, λ2)|2dν ′(λ1, λ2)

]1/2
.

The space PGW
s satisfies

FGW (PGW
s ) ⊂ L1 ∩ L2(ν ′),

and has the reproducing kernel

Ks((x1, x2), (y1, y2)) =
∫
K

χs(λ1, λ2)φGW
λ1,λ2(x1, x2))φGW

λ1,λ2(y1, y2)dν ′(λ1, λ2).

Let m ∈ L∞(ν ′). The GW-multiplier operators T GW
m , are defined for f ∈

L2(µ′) by
T GW

m (f) := F −1
GW (mFGW (f)).

Let m ∈ L∞(ν ′). The operators T GW
m are bounded from L2(µ′) into L2(µ′),

and
∥T GW

m (f)∥L2(µ′) ≤ ∥m∥L∞(ν′)∥f∥L2(µ′).
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Let m ∈ L∞(ν ′). The GW-multiplier operators T GW
m are bounded from

PGW
s into L2(µ′), and

∥T GW
m (f)∥L2(µ′) ≤ ∥m∥L∞(ν′)∥f∥PGW

s
.

For example, the partial sum operator SGW
s defined by

SGW
s (f) := F −1

GW (χsFGW (f)),

is a GW-multiplier operator and satisfies ∥SGW
s (f)∥L2(µ′) ≤ ∥f∥PGW

s
.

For any h ∈ L2(µ′) and for any η > 0, the Tikhonov regularization problem

inf
f∈PGW

s

{
η∥f∥2

PGW
s

+ ∥h − T GW
m (f)∥2

L2(µ′)

}
has a unique solution (see [11]) denoted by f∗,GW

η,h and is given by

f∗,GW
η,h (y1, y2) := (ηI + T GW,∗

m T GW
m )−1T GW,∗

m (h)(y1, y2), (y1, y2) ∈ K,

where T GW,∗
m : L2(µ′) → PGW

s is the adjoint of T GW
m .

This function possesses the following properties.

Theorem 6. Let m ∈ L∞(ν ′). For any h ∈ L2(µ′) and for any η > 0, we
have

(i) f∗,GW
η,h (y1, y2) =

∫
K

χs(λ1,λ2)φGW
λ1,λ2

(y1,y2)m(λ1,λ2)FGW (h)(λ1,λ2)
η+|m(λ1,λ2)|2 dν ′(λ1, λ2).

(ii) T GW
m (f∗,SL

η,h )(y1, y2) =

=
∫
K

χs(λ1,λ2)φGW
λ1,λ2

(y1,y2)|m(λ1,λ2)|2FGW (h)(λ1,λ2)
η+|m(λ1,λ2)|2 dν ′(λ1, λ2).

(iii) T GW
m (f∗,SL

η,h )(y1, y2) = f∗,GW
η,T GW

m (h)(y1, y2).
(iv) limη→0+ ∥T GW

m (f∗,GW
η,h ) − SGW

s (h)∥L2(µ′) = 0.
(v) limη→0+ T GW

m (f∗,GW
η,h )(y1, y2) = SGW

s (h)(y1, y2), (y1, y2) ∈ K.

4. NUMERICAL RESULTS FOR THE LIMIT CASE η → 0+

In this section we give numerical applications in the Bessel case and We-
instein case when α = 0. The first application concerning the solution of
Tikhonov problem

inf
f∈PB

s

{
∥h − T B

m (f)∥2
L2(µ)

}
,

where h ∈ L2(µ). The solution of this problem will be denoted by f∗,B
0,h . And

the second application concerning the solution of the Tikhonov problem

inf
f∈PW

s

{
∥h − T W

m (f)∥2
L2(µ′)

}
.

The solution of this problem will be denoted by f∗,W
0,h .
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a) The Bessel operator. In this subsection we consider the operator

∆B := d2

dx2 + 1
x

d
dx

.

In this case ρ = 0 and φB
λ (x) = j0(λx), where j0 is the spherical Bessel

function of order 0 given by

(10) j0(x) = 1
π

∫ π

0
cos(x sin t))dt =

∞∑
n=0

(−1)n

22n(n!)2 x2n.

Hence

FB(h)(λ) :=
∫
R+

j0(λx)h(x)xdx, λ ∈ R+.

In the following we choose h(x) = e−x2 and m(λ) = e−tλ2 , t > 0. Then

FB(h)(λ) = 1
2e− λ2

4 .

Therefore, and by Theorem 3 (i) and Theorem 4 (i) we obtain

f∗,B
η,h (y) = 1

2

∫ 1/s

0

j0(λy)e− λ2
4

ηetλ2 +e−tλ2 λdλ,

and

T B
m (f∗,B

η,h )(y) = 1
2

∫ 1/s

0

j0(λy)e− λ2
4

ηe2tλ2 +1
λdλ.

Next, taking η → 0+ yields

f∗,B
0,h (y) = 1

2

∫ 1/s

0
j0(λy)e(t− 1

4 )λ2
λdλ,

and

T B
m (f∗,B

0,h )(y) = 1
2

∫ 1/s

0
j0(λy)e− λ2

4 λdλ.

From (10) we deduce that

(11) f∗,B
0,h (y) = 1

2π

∫ 1/s

0

∫ π

0
λ cos(λy sin τ)e(t− 1

4 )λ2dτdλ,

and

(12) T B
m (f∗,B

0,h )(y) = 1
2π

∫ 1/s

0

∫ π

0
λ cos(λy sin τ)e− λ2

4 dτdλ.

We calculate f∗,B
0,h (y) and T B

m (f∗,B
0,h )(y) for y ∈ [−10, 10], by using the Gauss-

Kronrod method and Maple.
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Fig. 1. s = 1. Fig. 2. s = 1
2 .

Fig. 3. s = 1
3 . Fig. 4. s = 1

4 .

Fig. 5. s = 1
5 . Fig. 6. s = 1

10 .

In Fig. 1–Fig. 6, we display the plot of f∗,B
0,h (y) for y ∈ [−10, 10], t = 1 and

s = 1, 1
2 , 1

3 , 1
4 , 1

5 , 1
10 .
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Fig. 7. s = 1. Fig. 8. s = 1
2 .

Fig. 9. s = 1
5 . Fig. 10. s = 1

7 .

Fig. 11. s = 1
50 . Fig. 12. s = 1

100 .

In Fig. 7–Fig. 12, we display the plot of f∗,B
0,h (y) for y ∈ [−10, 10], t = 10−7

and s = 1, 1
2 , 1

5 , 1
7 , 1

50 , 1
100 .
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Fig. 13. s = 1. Fig. 14. s = 1
2 .

Fig. 15. s = 1
5 . Fig. 16. s = 1

10 .

Fig. 17. s = 1
50 . Fig. 18. s = 1

100 .

In Fig. 13–Fig. 18, we display the plot of T B
m (f∗,B

0,h )(y) for y ∈ [−10, 10] and
s = 1, 1

2 , 1
5 , 1

10 , 1
50 , 1

100 .

Remark 7. We notice from Fig. 1–Fig. 6 that for a small value of s and
when t is fixed at 1, the stability of the function f∗,B

0,h (y) is reached. However,
when t approaches 0 (Fig. 7–Fig. 12), the stability of f∗,B

0,h (y) is quickly reached
and its maximum is maintained over a specific range of s. Fig. 13–Fig. 18 show
that the desired approximate formulas can be obtained in practice. However,
Theorem 4 is justified; we were able to numerically realize the limiting case
η → 0+ using computers.
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b) The Weinstein operator. In this subsection we consider the operator

∆W := d2

dx2
1

+ d2

dx2
2

+ 1
x2

d
dx2

.

In this case ρ = 0 and φW
λ1,λ2

(x1, x2) = e−iλ1x1j0(λ2x2). Hence

FW (h)(λ1, λ2) :=
∫
K

e−iλ1x1j0(λ2x2)h(x1, x2)x2dx1dx2, (λ1, λ2) ∈ K.

In the following we choose h(x1, x2) = e−(x2
1+x2

2) and m(λ1, λ2) = e−t(λ2
1+λ2

2),
t > 0. Then

FW (h)(λ1, λ2) =
√

π

2 e− 1
4 (λ2

1+λ2
2).

Therefore, and by Theorem 6 (i) and (ii) we obtain

f∗,W
η,h (y1, y2) = 1

4
√

π

∫ 1/s

−1/s

∫ 1/s

0

e−iλ1y1j0(λ2y2)e− 1
4 (λ2

1+λ2
2)

ηet(λ2
1+λ2

2) + e−t(λ2
1+λ2

2) λ2dλ1dλ2,

and

T W
m (f∗,W

η,h )(y1, y2)) = 1
4
√

π

∫ 1/s

−1/s

∫ 1/s

0

e−iλ1y1j0(λ2y2)e− 1
4 (λ2

1+λ2
2)

ηe2t(λ2
1+λ2

2) + 1
λ2dλ1dλ2.

Next, taking η → 0+ yields

f∗,W
0,h (y1, y2) = 1

4
√

π

∫ 1/s

−1/s

∫ 1/s

0
e−iλ1y1j0(λ2y2)e(t− 1

4 )(λ2
1+λ2

2)λ2dλ1dλ2

= f∗,1
0,h(y1).f∗,2

0,h(y2),

where

f∗,1
0,h(y1) = 1

2
√

π

∫ 1/s

−1/s
e−iλ1y1e(t− 1

4 )λ2
1dλ1

and

f∗,2
0,h(y2) = 1

2

∫ 1/s

0
j0(λ2y2)e(t− 1

4 )λ2
2λ2dλ2.

Furthermore

T W
m (f∗,W

0,h )(y1, y2) = 1
4
√

π

∫ 1/s

−1/s

∫ 1/s

0
e−iλ1y1j0(λ2y2)e− 1

4 (λ2
1+λ2

2)λ2dλ1dλ2

= T W
m f∗,1

0,h(y1).T W
m f∗,2

0,h(y2),

where

T W
m (f∗,1

0,h)(y1) = 1
2
√

π

∫ 1/s

−1/s
e−iλ1y1e− 1

4 λ2
1dλ1

and

T W
m (f∗,2

0,h)(y2) = 1
2

∫ 1/s

0
j0(λ2y2)e− 1

4 λ2
2λ2dλ2.
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From (11) and (12) we deduce that

f∗,2
0,h(y2) = 1

2π

∫ 1/s

0

∫ π

0
λ cos(λ2y2 sin τ)e(t− 1

4 )λ2
2dτdλ2,

and

T W
m (f∗,2

0,h)(y2) = 1
2π

∫ 1/s

0

∫ π

0
λ2 cos(λ2y2 sin τ)e−

λ2
2

4 dτdλ2.

We calculate f∗,W
0,h (y1, y2) and T W

m f∗,W
0,h (y1, y2) for (y1, y2) ∈ [−10, 10] ×

[0, 10], by using the Gauss-Kronrod method and Maple.

Fig. 19. s = 1. Fig. 20. s = 1
2 .

Fig. 21. s = 1
3 . Fig. 22. s = 1

4 .

Fig. 23. s = 1
5 . Fig. 24. s = 1

10 .
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In Fig. 19–Fig. 24, we display the plot of f∗,W
0,h (y1, y2) for (y1, y2) ∈ [−10, 10]×

[0, 10], t = 1 and s = 1, 1
2 , 1

3 , 1
4 , 1

5 , 1
10 .

Fig. 25. s = 1. Fig. 26. s = 1
2 .

Fig. 27. s = 1
3 . Fig. 28. s = 1

10 .

Fig. 29. s = 1
50 . Fig. 30. s = 1

100 .

In Fig. 25–Fig. 30, we display the plot of T W
m (f∗,W

0,h )(y1, y2) for (y1, y2) ∈
[−10, 10] × [0, 10] and s = 1, 1

2 , 1
3 , 1

10 , 1
50 , 1

100 .
Remark 8. We notice from Figures Fig. 19–Fig. 24 that for a small value of

s and when t is fixed at 1, the stability of the function f∗,W
0,h (y1, y2) is reached.

Fig. 25–Fig. 30 show that the desired approximate formulas can be obtained in
practice. However, Theorem 6 is justified; we were able to numerically realize
the limiting case η → 0+ using computers.
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