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PRODUCTS OF PARAMETRIC EXTENSIONS: REFINED ESTIMATES'

HEINER H. GONSKA*

Abstract. We present pointwise estimates on approximation by bounded linear
operators of real-valued continuous functions defined on the cartesian product
of d compact intervals. The main purpose is to provide a unified theory to deal
with pointwise estimates on approximation processes of the above type which are
generated by the tensor product method. This will constitute an extension and
a refinement of earlier work of Haussmann and Pottinger. As an example a new
estimate for approximation by multivariate positive linear operators is given.

MSC. 41A65, 47A58.
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1. INTRODUCTION

In the present paper we deal with pointwise estimates on approximation by
bounded linear operators of real-valued continuous functions defined on the
cartesian product of d compact intervals I5. This space will be denoted by
C( xgzl I5). The main purpose is to provide a unified theory to deal with
pointwise estimates on approximation processes of the above type which are
generated by the tensor product method. Thus it constitutes an extension
and a refinement of papers of W. Haussmann and P. Pottinger [3], [4], [5] who
treated the case of uniform estimates. Since all function to be approximated
are defined on a rectangular domain in d dimensions, it is possible to take
full advantage of refined estimates for the univariate case, many of which were
obtained only recently. This is exemplified for the case of positive operators.

While Section 2 will deal with the case of products of arbitrary bounded lin-
ear operators, several more instructive pointwise inequalities on tensor product
of positive linear operators will be given in Section 3.

See for instance W. Haussmann and P. Pottinger [5] for references concern-
ing among other things existence and uniqueness theorems or non-quantitative
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assertions on convergence. Throughout the paper we write I5 = [as,bs],1 <
0 < d € N, where [ag, bs] are compact intevals with non-empty interior. The
space of continuous functions on such an interval will be C' (I5). The definition
of some further notation used in this paper may be found in Haussmann’s and
Pottinger’s article.

2. ESTIMATES ON APPROXIMATION BY BOUNDED LINEAR OPERATORS

The following is a modification of a result due to W. Haussmann and P.
Pottinger [5, Proposition 1].

THEOREM 1. Letd € N. Let I5 be a non-trivial compact interval, 1 < § < d,
and oy € {1,...d} be fizred. If u: C(Is5,) — R is a continous linear functional,
then for each h € C (xgzlfg) we have

&

|(id'® ... & id ' @p@id TG .. &id") (h)

= sup {)M(hao (331,...,:350,17:350“7_.,,zd))‘ tws € 15,1 <0< d, 0 # 50}-
Here for 1 < 6 < d the symbol id® denotes the identity of C (I5),
id'® ... ®id° ' @u@id° & ... &id*
s the extension of

id'®...@id ' @pe xid @ ... ©id": @c5qC (Is) = @5—y 525,C (I5)

to the space @ig(ggdC(Ig), and hg, " s the 8o-th partial map-
ping of h belonging to the fized points x1,...,Ts5y—1,%00 . .., xq, which is defined
by

150 S > h(xl, ey Ty —15 Ty TS5 - - - l’d) € R.

d
Proof. As usual, we consider the linear hull < II C (L;)> of the complex
6=1

d
product [] C (Is) as a realization of the tensor product ®¢_,C (I5). Let g €
6=1

d
<5H10 (Is) ). Then g = 27 Gitwg, , With g;5 € C (I;) and

/N

z’d1®...®z‘d‘50‘1®u®z’d5°+1®...®idd) (9) =

n
= (idl ®..0id" 'eoueidt ... z’dd) <Z gi1- -gi,d>
=1

Il

id" (gi1) ® ... @ 11 (gisy) @ - - @ id® (gia)

(2

1
(®i<s<6,-1C (I5)) ® R ® (@g041<6<aC (Is)) -
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If as a realization for the last product we also choose the linear hulls of the
corresponding complex product, this yields

n

d
(id'®...0id opeidt e i) (o) =D ulos) [ g
i=1 5=1,5-50

If we equip ®g:1C'(L;) with the e-norm, that is, if for g € ®§:10(L;),
g=2i19i1" - gid

5 (g) = sup o sup Z H ¢5 (91,6) :
breomyy Gl i1 521
l#1]]<1 llpall <1

and if we do the same in (®1<5<5,-1C (I5) ) @ R®(®s,+|<s<aC (I5) ), then (e, €)
are uniform Crossnorms with respect to the pair

{®§:10 (Is), (®1§5§50_1C (Is) )®R®(®50+1§5§d0 (I5) )} see W. Haussmann
and P. Pottinger [5, Theorem 2]. Thus the tensor product operator

id'®...@id 'oueid T ®... @i @idl_ C (I5)
— (®1g5§50—1 C (Ls)) ®R® <®60+1§6§d C (Ls))

is continuous. ~

We now consider the dp-th partial mappings f§0 belonging to f,dg and the
fixed (d —1) tuples & = (x1,...,T5,—1,Tso+1;- - -»&d) - The mapping f,L :
xgl:m 25,16 — R (where p is the linear functional from above), given by

F. (&) = u(ffo) is continuous, since for € := (1, ..., 251,255 +1,- - -, Tq) and
£ =341,... yB5g—1, Tso4+1s---»2d) € xg:l,d;ééo[év one has
_ =V £ E
£ (8) = £ )] = |u (45) — (45
< Jall- |15 - 55| o) Is)
<||p 5, — f5,|| (I5)  (max norm on Is,
- HMH - sup {’f (xly sy LeH—1, Ly Lo+1, - - - ,$d) -
= F (@1, Boy 1, By s - 8a) | @ € D )
where ||p|| denotes the norm of 1 with respect to ((C’ (I5), Ils) » R I ) This

and the uniform continuity of f imply the continuity of f,.
We now define

Hy: C(x§115) 3 fr— fu € C (X§=r2515) -
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The fact that H, is continuous is a consequence of the following chain of
(in)equalities showing that the operator norm || H,|| is bounded:

| Hyll = sup {1 Hu(F)lloo < 1 Flloo <1}
= sup { || fulloo : 1flloc < 1}
sup {Sup{’u (ffo) €€ X g}t Iflleo < 1
< sup {sup {Jlull - |15, €€ xdorsza s} : 1l <1}

< sup el 7o < 11l < 1}

= [l < oc.

d n
Ifge <5]:[1 C’(L;)>, g= ;gm ..... gi.q for some n € N, then

n n
H#(g) =H, (Zgi,l """ gi,d> = ZHM(gi,l """ gi,d)
=1 =1

n
Z (gi,l,”"gi,d>u = ng ----- 9i,50—1 1(Gido) " Gibo+1 -+ Gid
i=1

S
Il
—

d
w(gis) [ 9is-

1 5=1,6#80

Il
NE

.
Il

Hence the mappings H, and (id' ® --- ® id® ™! @ p ® id**' @ - -+ @ id?)
d

coincide on ®%_,C(I5) = < I1 C(L;)>. Since the Chebyshev norm || - ||oc on
5=1

®f5[=1,6¢600 (I5) induces the e-norm, both norms also coincide on the comple-
tion ®i§5§d75¢JOC(Ig), which is thus isometrically isomorphic to C'( x§:175¢50
I5). From this and from the continuity of both mappings considered above, it
follows for each h € C(x¢_,Is) that

0o’

|(id'® ... Gid™ ' @u@id™ e .. @idd>(h)HE = || H,(h)]|

Here || - ||¢ is the e-norm on ®i§5§d75¢600(16), and || -||co denotes the Cheby-
shev norm on C(Xgﬂ,a#ao[&) Furthermore,

VE ()0 = Iulloo = sup { [i(hS,)] + € € xEy 545,05}
= Sup{‘,U/(h((;gl7---,:1:60—171'50+17---7l‘d))’ cxs € 15,5 % 50}

LEMMA 2. For 1 < § < d, let (Xs,] - ||s) be normed vector spaces. If
us : X5 — R are continuous linear functionals, and if A5 : X5 — X5 are



78 H. H. Gonska 5

continuous linear mappings, then on the space ®51§5§dX5, the equality
®e1<s<d(ps 0 As) = (@1<s<atts) © (D1<5<d4s)
holds.
Proof. Let h € ®g:1X5. Then h = i i1 ® - @ x;4, where n € N and
x;5 € Xs5. Thus =
n
(R p15) ((Als®...®Ad)(h)> = ®%_1 115 (Z A(zin) ® -+ ® Ad(%d))

=1

I

-
I
—

M1 (A1($¢,1)> ® - @ pg(Ad(ziq))

Il

.
I
—

(10 A1) (wi1) @ -+ @ (g © Aa)(i,a)

|

.
Il
—_

[(Ml 0A1)® - ® (ugo Ad)] (Zig®- - @ xiq)

n
1(ps 0 As) (Z i1 Q- ® xi,d)
=1

= ®%_1 (15 0 As)(h).
]

Since by Haussmann’s and Pottinger’s [5, Theorem 2] (e,¢) are uniform
cross norms with respect to the couple (®§:1X5, ®§:1R = R), the mappings
®F_14s : R <5<aXs = Ol<scaXs

and
d
RF—1s * D<s<aXs = Bl<s<aR
are continuous. This implies the continuity of
d d

[®5:1M6} ° [®5=1A6} :

For the same reason we also have continuity of
31 (15 0 As)-

Together with the observation made at the beginning of the proof this also
yields equality of the extensions of the two mappings considered above, i.e.,

~d -5
©s—1(1; 0 As) = [®3_ 1s] 0 ®F_; As.
An analogous density argument shows the validity of
~d ~d
(@4 5] o [¢ [®5-145] = [®5:1M6] ° [®5:1A5} -

From this the claim of the lemma immediately follows.
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LEMMA 3. For 1 <6 < d let the normed vector spaces (Xs, || - ||s) be given

and let ps : Xs — R be continuous linear functionals. If h € @igng(;, then
for each 69 € {1,...,d} one has

[ (&zims) )| <( Il sl (id'& ... & Gpug, Bid™ 1B .. Bid?) (h)
§=1,6#60

)

Proof. We write
@gzlua = @?Zl (idR o 15 © id‘s) =
= [(idR o1 0 id1>® . @id}z@ o @(idR o lig © idd)}o

o [id'® ... Bpg, 0 id™F .. Hid?].

If h € ®)<5<qXs, then

| (@5=1ms) (h)

_ < H(idRo,ul oid1>®...®id3®...® (idRo,udoidd)He

| Gd'E . g, 0 i .. Bid?)(h)

&€

The uniform cross norm property of (g,¢) with respect to the couple
(X1 ®..0 X5 1OR® X5,41®...0 X5, ®§:11R<)

(see W. Haussmann and P. Pottinger [5, Theorem 2]) first implies

|((idnomoid) ... (idpopoid))| =
~{ TT [idnonsoid]}-tidel =TT sl
5=1,6%6¢ 5=1,6#8

For density reasons the extension of (idg o s 0id') ®...®idp®...®idgo
pq © id?) has the same norm; hence

| (@) 0] <

d
< < 11 Hml!) - H(z‘dleé..@id%*l@%@id%“@.@z‘dd)(h)
§=1,0£4¢ e

Since dg € {1,...,d} was arbitrarily chosen, the claim of the lemma follows.

THEOREM 4 (cf. W. Haussmann and P. Pottinger [5, Theorem 5]). Consider
the normed vector spaces (Xs, || - |ls), 1 < d < d, and the continuous linear
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functionals pus : X5 — R. Let P? : X5 — X5 be continuous linear operators.
Then for each h € @iSanXg we have

|(@5=1s) (n = (@51 PO ()

({1

< min
€ ogESy

d
ol {1 Jos][ ]}

Nd @ ... Eptp(a—siry © (1d7 @D — PrAID) G Gid?) (h)
(d-v+1)

)

Here Sy is the symmetric group of all permutations of {1,...,d}.
Proof. We investigate
Bi_1is (b — (B3, PY)(R)) = [@5_1ps 0 (B5rid’ — &5 P*)] (B).

Let 0 € S; be an arbitrary permutation. A decomposition of ®§:1¢d5 —

69;‘:1 P? analogous to the one employed by Haussmann and Pottinger together
with a density argument yields the equality

®g:1id6—®g:1P6 =

= (id1®id2® . @z’dd) - (P1®P2® o @Pd)

= (id'®... @id"D71& (1" — prD)@ia DG . &id)
+id'@. & (id7 @) — prmD)@igr DG GprdE . Gid!

+... +P3P%. .. @(id"(l) - P"(l))®P"(U“® ..ep?

d
= Z Og—s+41-

y Lemma 2 for all h € ®i§6§dX57 one obtains
~d ~d
<®5=1M5> (h - ®5=1P5) (h) =

= Zd: (@gzma) o Od—6+1) (h)
o=1
- (m o z'd1> ® ... Opo o (z‘d"<d) - P"“)) 8.8 (ud o idd) (h)+ ...+
N (m OPI) s (m opz) B ... Bioq) 0 (ida(l) _ pau)) 8.8 (ud oPd) (h) .

From Lemma 3 we conclude that the difference considered above may be
estimated as follows:
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|(605) (- (P ) <

< H(moidl)@...@(%(d) o (1”@ — P”(d)))® & (g 0 id®) () et

+H(M10Pl)®-~-®(ﬂa() (id”®) — po) ) Mdopd)(h)HE

g{ ﬁ ||u5||}Hid1®...@(ug(d)o<id”(d)—P”(d))>®...@idd(h) o+
5=1,0#0(d) €

+ f[ |]u5|]-\|P5H}-Hz'd1®...@(ug(l))o(z’d“(l)—P"(l)))@...@z’dd(h)
6=1,0%0(1) ¢

—i{ﬁuug@u}{ 1 |mg<5)u-HP°'<5>H}-

d=d—v+2

. Hld1® L ®<M0(d—u+1) o (Z'dU(d—z/—i-l) PU(d u+1)))® ®’de(h)

8

In the above, we have used the convention that an empty product equals 1.
Since this is true for all permutations ¢ € Sy, we may pass to the minimum
over all o € Sy on the right-hand side of the last inequality. We shall show
that for all h € ®§:1X5 and all ps : Xs — R (us linear and continuous), the
equality

|(@zins) || = |(&5=ims) (1)

holds; this will suffice to prove the theorem. Let h € ®g:1X5. Hence h =
n
> %1 ® ... Qx4 for some n € N. Thus

=1

n

( ®—, Mé) (h) = p(win) ® pa(wi2) ® -+ @ pa(wiq)
i—1

and

[CEEymIO)

€ a1 ER ag€ER i=1
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n
Z/ﬂ(ﬂﬁi,l) ® po(2i2) @ -+ @ pa(ziq)
i=1

= ‘(®g:1 Mé)(h)‘ .

For density reasons this equality also holds for all h € ®§:1X5 and for the

extension @gzl ugs of ®g:1 ps. Thus Theorem 4 is proved. O
In the sequel we shall discuss the case where (Xg, | - |ls) = (C(Is), || - llso)-

THEOREM 5. For 1 < § < d, let continuous linear functionals us : C(Is5) —
R, and continuous linear operators P° : C(I5) — C(Is) be given. If h €

C( x4, 15), then

(B8 (1 - ELP ) <

d d—v d o
< min { 2:1{ ||ua(5)||} : { IT ool HP (5)H}'
v= 1

5= S=d—v+2
- g0(d—v+1) _ po(d—v+1 3
xsélél;é ‘(,U«a(dfwrl °© (ld P )) (ha(d—r/—i-l)‘ }
d0#o(d—v+1)
Here hg(d_uﬂ) is the partial mapping belonging to fixed & € ngl,(i;«éa(dflﬂrl)]fs‘

Proof. Recall Theorem 4 This yields our claim if we disregard the term
H,Ldl@) LB (Ma(d—u+1)) o (idU(d—V-‘rl) _ PU(d—V+1)))® o @idd (h) H _
15
Using Theorem 1 the above may be replaced by
sup ‘(/’[/U(d*’lﬁi’l) °© (idd(d*UJrl) o Pa(dierl))) (hi(d—u—i—l))‘

zs€ls
1<6<d
0#0(d—v+1)
where £ is a point in ngl 5#07(617”“)]5. Plugging this upper bound into the
estimate of Theorem 4 gives our claim. O

If we neglect to pass to the min over o € S; and use o = id in the proof of
Theorem 5 we obtain the somewhat weaker

COROLLARY 6. Under the assumptions of Theorem & the following are true:

(i)
d d—v d
(®§l1ua)(h—(®§1P5)(h))‘§2{ﬂlluall}'{ I1 ||u5||'|P5||}-
=1

v=1 o=d—v+2

sup
rs€ls
o#d—v+1

(Udfz/+1 o (iddﬂH — Pd_y“) )(hg—u-i-l) :
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(ii) If, moreover, |us|| = 1 and if for some constant A > 1 the inequality
|P?|| < A holds for 1 < § < d, then the inequality of (i) simplifies
further to

d
|(@oans) (h = (@5 PP)(W) | < 30 AT sup
N

d
< At Z sup
v=1%d€el;

oFv
A particularly important consequence of Corollary 6 is given in the following
theorem. It shows how certain univariate inequalities may be directly used
when striving for error estimates on approximation by the tensor product of
d univariate operators. For the definition of the (higher order) modulus of
continuity wy, (f;-) and that of the partial moduli wy,(h;0,...,0,...,0), see,
e.g., the books by Timan [8] and Schumaker [7].

(100 0 (id” = P*)) 1|

o o (id” - Pv))(hg)].

THEOREM 7. Let linear operators PO : C(Is) — C(Is), 1 < § < d, be given
such that for f € C(Is) and x € Iy,

[F@) = PP(f52)] < To(a) - wry (5 85(x)), 75 € No fized,

and with bounded functions I's and nonnegative real-valued functions As. Then
for any h € C(x4_,I5) and & = (x1,...,24) € x¢_,Is, there holds:

d
[0(€) = B5a P (1, )] < ATV Y Tulwy) - wr, (10,0, Ay (), ;... 0).
v=1

Here A may be chosen as max{l, [P)|:1<6< d} .
Proof. From Corollary 6 (ii) it follows that with

~d
Ks=1Ms = €¢

(point evaluation functional) that

)

d
~d _
(€)= &5 PO (n, )] < 30 AT sup
v=1 zsels
dF#v
where A > 1 is such that HP‘sH <Aforl<é§<d.
Note that the constant A indeed exists because the I's are bounded and
wr(f,8) < 27||flloo- By the above assumption on P?, 1 < § < d , and the fact

that for fixed & = (x1,...,%y_1,Zoi1,...,2q) the function hg is given by

(id” = P*) (h; )

B L, > x s h(21,. ., Tye1, T, Ty, - - -, Tq) € R,
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it is seen that

sup (id“ — P”)(hg,xy) < sup |Ty(zy) ~wru(h§;Av(a;V))‘
zsE€Els rs€ls
oAV 0#v

=T, (z,) -wry(h;O,...,O,A,, (JJV),O,...,O).
Hence because A > 1,

[h(€) — @5, P*(h,€)| < 4! i To(a) - wr, (B3 0,0, A(2,),0,....,0).
v=1

g

COROLLARY 8. If d operators P°, 1 < § < d , are given as in Theorem 7 ,
and if h is a function in C”""”"d(xgzlfg) , €€ ><§:1I5 , then for 0 < a5 < rj,
1 <6 <d, we have

[1(&) = &5 PP (h,6)| <

d
<AL SN TDy(2) - AN (@) - wry—a, ((82v)°‘“h;0, 0, A0(2),0,... 70).
v=1

Proof. The inequality to be used in order to get from Theorem 7 to the
inequality of the corollary is

wr (h;0,...,0,¢,0,...,0) < € wy_q ((a%)ah;o,...,o,a,o,...,o) 0<a<r
where ¢ figures in the v-th component of
(0,...,0,£,0,...,0).
O

3. EXAMPLES: POINTWISE INEQUALITIES FOR PRODUCTS OF POSITIVE LINEAR
OPERATORS

In the above we mainly considered continuous linear mappings us : C(I5) —
R and P° : C(I5) — C(I5). We shall assume throughout this section that yg
is a point evaluation functional and that P9 is positive. The assertions proved
here will be based upon a special instance of a theorem by the author (see
[1, Theorem 4.6]) and of an improvement of part of the same theorem due to
Paltanea [6]. We summarize as follows.

THEOREM 9. Let L : Cla,b] — Cla,b] be a positive linear operator with
L(eo) = eg, and let f € Cla,b], x € [a,b].
(i) For each h,e >0 one has
(1) |L(f,2) = f(2)| < max {1, Ller — al3) - A7} - (L hee™) wn(fre),

where e : [a,b] 25—t € R.
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(ii) For each 0 < h < 3(b— a) there also holds
(2)
|L(f,2)=f(2)] < A7V | L(er—zs @)l wn (f: )+ [145-h 2L (e1—2)” @) | walf5 ).

These inequalities will now be combined with the results from Section 2
The following theorem gives an estimate in terms of first order partial moduli
of continuity.

THEOREM 10. Let positive linear operators P° : C(I;) — C(Is) be given
such that P°(eq) = ep, 1 < & < d. Then for k € C(X{_,Is) and & =
(z1,...,24) € XI5 the following inequality holds:

d
‘k(g) ®6 1P6k€‘§2 P;h’lME’U;xl/)'wl(k;07'"70751}707”'70)7

where (hy,e,) > (0,0) may be arbitrarily chosen, and the function « is given
by
a(P;h,e;x) = max {LP( leg — x| ;) - h_l} (1+he™).

Proof. Because ji5 = £, with ||e]| = 1, |[P°|| = 1, and @gzlug = g¢ with
&= (z1,...,2q), Corollary 6 (ii) shows that

d
k(&) = E5_1 P (k,€)| < Y sup

—1%s5€ls
N 0Fv

~

(2, 0 (id” = P)) (hS)] .

For ¢ fixed, the expression
(20, © (10" = P)) (k5)

is a univariate difference which may be estimated from above using (1). Note
that for each coordinate we may choose a separate couple (h,,e,) > (0,0).
Hence

(=2, 0 (Gd” = PY)) (k)| <
< max {1,P”(|el — a:V];:c,,) . h;l} . (1 + hye;l) -wl(kf:,ey)

= a(PV; h,/,é‘,/;l‘,/) : Wl(kg, 81,).

(Here e; simultaneously denotes the functions I, 5 z, — z, € R, 1 <v < d).
Thus

U

k(€)= B51 P2 (k&) < D sup {a(PYih,evimy) - wi(k,e) -

v=1 906616
0F#v
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Since the function a(P";h,,e,;x,) does not depend on & € Xg:l,#v[‘s’ the
latter sum may be rewritten as

d _
Z a(P”; hy,sy;a;V) - sup wi(kS,e,) =
=1 zs€Els
6F#v
d

= Za(P”;hl,,sl,;xy) ~wi(k;0,...,0,6,,0,...,0),

v=1

which is the upper bound of Theorem 9 in terms of a sum of first order partial
moduli of continuity. O

We also have

THEOREM 11. Under the assumptions of Theorem 10 the following is true:
d
‘k(f) B Po(k,¢) ‘ gz (PY;hyi ) - wa (k3 0,...,0, ks 0, ..., 0)
B d
Z B(P";hy;x,) - wi(k;0,...,0,h,,0,...,0).

Here 0 < h, < %[b,, — ay] may be arbitrarily chosen, and the functions «
and B are given by:

Ol(P;h;l‘):1+%'h_2'P((61*$)2;$),(1/n,d
B(Pih;x) =h-|P(e1 —z;2) |.

Proof. Asin the proof of Theorem 10 one observes that for all £ € C( x‘gzll(;)
we have

M:“
2
T

k(&) = 851 P (k. ©))| < {| (50, o GGa” = P)) (k)

3

The univariate differences figuring in the sups may now be estimated using
(2) from which we get

zs€ls
v=1 piy

£4, 0 (id” — PV)(KS)

< {1 + $hy? - PY ((61 — )% x,,)} “Wo (kg, hy)

wi (K, ho)

= a (P hyi ) - wy (S, by ) + B (PYs hos ) - wr (KS, b ) -

+hyt [P (61 — 25 wy)
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Note again that for each coordinate a separate h, may be chosen. Since
both a and 8 do not depend on £ we may write

[k(€) — &5 P (k, €)| < Z_: (P hs o) - sup ws (KS, )

zs€ls
0F#v
- ¢
v, .
+vz::1ﬁ(P ah’l}axv) 'ws(sléll)éwl (k;znhll)
dF#V
d
— Za(P”;hU;xv> cwy (k3 0, ..., 0, 1y, 0, . .., 0)
v=1
d
+ Zﬁ(P”;hv;xU) - w1 (k;0, ..., 0, 1y, 0, . .., 0).
v=1

0

COROLLARY 12. If in addition to the assumptions of Theorem 9 the oper-
ators PO satisfy P’(e1) = e1,1 < § < d , then the inequality of Theorem 11
simplifies to

d
]k(g)—@% 1P51<:5‘ Z (PY; hy; 2y) - wo (30, ..., 0, hy, 0, ..., 0).

Proof. Since P’(e;) = ep for i = 0,1, 0 < § < d, we have 3 (P’; hy;z,) = 0
for 1 <o <d. O

COROLLARY 13. If the operators P° satisfy the assumptions of Corollary 12
and if f € 061;1.,1( x4_, I5), then for £ € x$_,I5; we have

N

d
k(&) = 851 Pk, ) < 33 (P ((e0 = 20)%20))

w1 (agv;k;o,...,(), (P” ((61 —xv)z;xv))% 70a"'70> .
Proof. Here we use the inequality
ws (k30,...,0,1,,0,...,0) < hy - wy (%k;o,...,o,h,,,o,...,o) .
Making appropriate choices for h,, 1 < v < d, gives the above inequality. [
4. CONCLUDING REMARK

All fundamental estimates given in Section 2 and Section 3 are those con-
cerning the differences ‘k(ﬁ) — ®5_,P°(k,€)|, where k € C(x¢_,,Is). Tt is
also possible to modify the assumptions made in Theorem 7 by assuming that
similar inequalities hold in order to arrive at somewhat improved estimates
for subspaces of smooth functions.
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Furthermore, no assertions were made concerning the pointwise degree of
simultaneous approximation of partial derivatives. While this is also possible,
we decline to do so for the sake of brevity. Related material can be found in
the author’s “Habilitationsschrift” [2].
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