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STABILITY OF PIECEWISE FLAT RICCI FLOW
IN THREE DIMENSIONS
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Abstract. For a recently developed piecewise flat approximation of the Ricci
flow, numerical instabilities are seen to arise for a particularly useful class of
mesh-types. Here, a geometrically motivated adaptation to these meshes is in-
troduced, and a linear stability analysis and numerical simulations are used to
show that the instability is then suppressed. These adapted meshes have also
been successfully used in a recently published paper to show the convergence of
the piecewise flat Ricci flow to known smooth Ricci flow solutions for a variety
of manifolds.
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1. INTRODUCTION

The Ricci flow is a uniformizing flow on manifolds, evolving the metric
to reduce the strength of the Ricci curvature. It was initially developed by
Richard Hamilton to help prove the Thurston geometrization conjecture [1],
and it remains an important tool for analysing the interplay between geom-
etry and topology. Recently, its use has expanded further, with numerical
evolutions finding applications in facial recognition [2], cancer detection [3],
and space-time physics [4, 5, 6].

Piecewise flat manifolds, formed by joining flat Euclidean segments in a con-
sistent manner, provide a remarkably useful approach for numerically evolving
geometry. In particular, setting the piecewise flat segments to be simplices (tri-
angles, tetrahedra, etc.) results in a notable separation of the topology, which
is fixed by the graph structure, from the geometry, which is completely deter-
mined by a discrete set of edge-lengths. This conveniently leads to a piecewise
flat Ricci flow as a rate of change of the edge-lengths. Since the graph deter-
mines the topology, there is also no need for additional boundary conditions,
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avoiding issues with coordinate singularities or transformations between coor-
dinate charts. In other approaches, these have required careful consideration
[7, 8,9, 10], or the use of ambient coordinates from an embedding in a higher-
dimensional Euclidean space [11, 12]. These advantages have led to extensive
use of a piecewise flat Ricci flow in two dimensions [2, 3], and a piecewise flat
approach in three-dimensions for manifolds with a high degree of symmetry
[13, 14, 15].

A new three-dimensional piecewise flat approach, that does not require any
symmetry restrictions, was introduced in [16] and has been shown to converge
to known smooth Ricci flow solutions for a variety of different manifolds and
piecewise flat approximations [16, 17, 18]. In this approach, the rate of change
of edge-lengths is determined by an approximation of the smooth Ricci curva-
ture at the edges, which is given in an easily computable combinatoric form,
depending only on the edge-lengths and a choice of dual tessellation.

This paper concerns an instability that arises when a particularly useful
mesh of cube-like blocks, each composed of six tetrahedra, is used with this
new approach. A method for suppressing the instability is developed, using
blocks that are internally flat instead of just being composed of flat tetrahdera.
This is implemented by constraining the length of an edge in the interior of
each block to make the interior flat, while retaining the simplicial structure
of the graph. A linear stability analysis and numerical simulations are then
used to demonstrate both the initial instability and the effectiveness of its
suppression.

Computations using these adapted piecewise flat manifolds can already be
seen in [17], where they have successfully been used in the piecewise flat Ricci
flow of a variety of manifolds, from those with non-trivial topologies to man-
ifolds with no continuous symmetries, showing convergence to known Ricci
flow solutions and behaviour. This is particularly impressive, since most nu-
merical Ricci low computations in three dimensions have been restricted to
single-parameter spherically-symmetric models [7, 8, 9, 10, 12, 14, 15].

The rest of the paper begins with an introduction to the piecewise flat
manifolds used in this paper and the piecewise flat Ricci low, summarizing the
main results from [16]. The numerical instabilities are described in Section 3,
along with a motivation and explanation of the suppression method. A linear
stability analysis in Section 4 shows the exponential growth to arise from
the numerical errors in the length measurements, with numerical simulations
matching the growth rates. In Section 5, the same linear stability analysis no
longer indicates an exponential growth when the suppressing method is used,
with numerical simulations also showing stable behaviour.

2. BACKGROUND

2.1. Piecewise flat manifolds and triangulations. In three dimensions,
the most simple of piecewise flat manifolds are formed by joining Euclidean
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tetrahedra together, with the triangular faces between neighbouring tetrahedra
identified. The resulting graph encodes the topology of the manifold, with the
geometry completely determined by the set of edge-lengths. Piecewise flat
approximations of smooth manifolds can be constructed by first setting up a
tetrahedral graph on the smooth manifold, using geodesic segments as edges.
A piecewise flat manifold can then be defined using the same graph, with the
edge-lengths determined by the lengths of the corresponding geodesic segments
on the smooth manifold. Such a piecewise flat approximation is known as a
triangulation of the smooth manifold.

In order to test for convergence to smooth curvature and Ricci flow, a set of
triangulations which can be scaled in some regular way must be used. Three
such triangulation-types were defined in [17], using building blocks which can
be tiled to form a complete tetrahedral graph. These building blocks are
defined below, in terms of a set of coordinates z, y, and z, with each block
covering a unit of volume. Diagrams of each block are also shown in Fig. 1.

1. The cubic block forms a coordinate cube composed of six tetrahedra, with
three independent edges along the coordinate directions, three indepen-
dent face-diagonals and a single internal body-diagonal. The tetrahedra
are specified so that the face-diagonals on opposite sides are in the same
directions.

2. The skew block has the same structure as the cubic block, but with its
vertices skewed in the = and z directions, with v, = (1,—1/3,0) and v, =
(—1/3,-2/9,1).

3. The diamond block is constructed from a set of four tetrahedra around
each coordinate axis, with edges in the outer rings formed by the remaining
coordinate directions.

Cubic Skew Diamond

>4 :
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Fig. 1. The three different block types, with the six tetrahedra of the cubic block on
the far left, and a slight separation of the three diamond shapes forming the diamond
block.

These blocks can be used to triangulate manifolds with three-torus (7°)
topologies, using a cuboid-type grid of blocks to cover the fundamental do-
main, identifying the triangles, edges and vertices on opposite sides. The
resulting triangulations have computational domains that are compact with-
out boundary. Manifolds with other topologies can also be triangulated using
these blocks but require slightly more complicated tetrahedral graphs, see for
example the Nil manifold in [17]. Since the stability should depend on the
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local structure of the piecewise flat manifold, only T2 topology triangulations
will be considered here.

2.2. Piecewise flat curvature and Ricci Flow. While any neighbouring
pair of tetrahedra in a piecewise flat manifold still forms a Euclidean space,
a natural measure of curvature arises from the sum of the dihedral angles 6;
around an edge ¢, see Fig. 2, with the difference from 27 radians known as a
deficit angle,

(1) € 1= 27T—Z€t.

Triangulations of smooth manifolds are deemed good approximations if the
deficit angles are uniformly small. The resolution of a piecewise flat approxi-
mation can then be increased by having a higher concentration of tetrahedra,
or a finer grid of the blocks defined above.

Fig. 2. The deficit angle € at an edge, and the edge-region V; formed from the dual
vertex regions V,, at either end of the edge.

Conceptually, the deficit angles correspond to surface integrals of the sec-
tional curvature orthogonal to each edge. However, a number of examples show
that a single deficit angle does not carry enough information to approximate
the smooth curvature directly, see Section 5.1 of [16] for example. Instead,
this correspondence is used to construct volume integrals of both the scalar
curvature at each vertex and the sectional curvature orthogonal to each edge,
which can then be used to give the Ricci curvature along the edges.

Volumes V,, associated with each vertex v are defined to form a dual tessel-
lation of the piecewise flat manifold, with barycentric duals used here, where
the volume is just a quarter the sum of the volumes of the tetrahedra meeting
at v. Edge-volumes V; are then defined as a union of the volumes V,, for the
vertices on either end, capped by surfaces orthogonal to the edges at each
vertex, as shown in Fig. 2. For the triangulations used here, this can be ef-
fectively approximated by averaging the barycentric volumes at either end of
each edge. From [16], piecewise flat approximations of the scalar curvature R,
at each vertex v, sectional curvature K ZL orthogonal to each edge ¢, and the
Ricci curvature Rey along each edge ¢, are given by the expressions:

(2a) R, = |le,
i
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(Qb) KZL = V% <|€| 6g+Z%|€Z’|COS2(91’)EZ’> ,

(2c) Rey = Y(Ry, + Ry,) — Kf-,

with the indices ¢ labelling the edges intersecting the volumes V,, and V, 6;
representing the angle between the edge ¢; and ¢, and v; and vy indicating the
vertices bounding £. Computations for a number of manifolds have shown these
expressions to converge to their corresponding smooth values [16]. Similar
constructions have also been developed for the extrinsic curvature [19], with
numerical computations successfully converging to their smooth values.

The Ricci flow of a smooth manifold changes the metric g due to the Ricci
curvature Rc,

dg

The resulting change in the length of a geodesic segment can be given solely
by the Ricci curvature along and tangent to it, as shown in section 6.3 of [16].
Since the edge-lengths of a triangulation correspond to the lengths of these
geodesic segments, a piecewise flat approximation of the smooth Ricci flow
can be given by a fractional change in the edge-lengths,

1 dJ¢|
4 A
(4) 0] dt Rey

The equation above has been shown to converge to known smooth Ricci flow
solutions as the resolution is increased, using analytic computations for sym-
metric manifolds in [16], and numerical evolutions for a variety of other mani-
folds in [17]. This approach has also been used by Alsing, Miller and Yau [18]
for approximating the Ricci flow of the neckpinch model, but with a differ-
ent edge volume V;, which works when the triangulations are adapted to the
spherical symmetry of the manifolds studied there.

3. INSTABILITY AND SUPPRESSION

3.1. Instability. Despite the close approximation of the piecewise flat Ricci
curvature Rey to its corresponding smooth values [16], direct application of
the piecewise flat Ricci flow equations to cubic and skew triangulations result
in an exponential growth of the face-diagonals, even for manifolds that are
initially flat. Since the deficit angles should all be zero for triangulations of a
flat manifold, this growth must arise from numerical errors.

The top two graphs in Fig. 3 show how far the face-diagonal edge-lengths
deviate from a flat triangulation. These deviations start at the level of the
numerical precision and grow exponentially from there, soon dominating any
evolution. The growth is invariant to the step size, has occurred for every
grid size tested and for both the normalized and non-normalized piecewise flat
Ricci flow equations. The growth rates also increase when the scale of the
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edge-lengths is reduced, countering any improved precision from an increase
in resolution. However, these instabilities do not arise for the diamond trian-
gulations for any of these situations. This has led to the proposition below.

PrOPOSITION 1. The cubic and skew type triangulations lead to an expo-
nential instability for direct application of the piecewise flat Ricci flow.

This proposition is proved in Section 4.2 using a linear stability analysis of
all cubic and skew triangulations of a three-torus. Section 4.3 then shows the
growth rates for a number of numerical simulations to be in close agreement
with the results of the linear stability analysis.

Cubic triangulation Skew triangulation
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Fig. 3. Exponential growth of the errors in the face-diagonals is shown on the top
row, for both cubic and skew triangulations of a flat three-torus. The bottom shows
the suppression of this growth when the body-diagonals are adjusted to give blocks
with flat interiors.

3.2. Suppressing instability. While it is clear that the evolution shown on
the top row of Fig. 3 does not correspond to smooth Ricci flow, it is also
inherently non-smooth in nature, particularly with the growth rates increasing
as the resolution of a triangulation is increased. This suggests an extra freedom
in the cubic and skew triangulations that does not arise in smooth manifolds.

In both the linearized equations in Section 4.2, and the numerical simu-
lations in Section 4.3, all of the face-diagonal edges can be seen to grow at
the same growth rate, with the other types of edges remaining unchanged.
With only the face-diagonals growing, each face can still be viewed as a flat
parallelogram. The exterior of each block can also still be embedded in three
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dimensional Euclidean space as a parallelepiped, with the change in the face-
diagonals acting similar to a change of coordinates. This is shown in the left
two images of Fig. 4. The distance between the bottom left and top right
vertices of the parallelepiped in the middle image of Fig. 4 must clearly grow
if it is to remain embedded in Euclidean space, but the corresponding body-
diagonals remain unchanged. This produces a growing deficit angle around the
body-diagonals, shown on the right of Fig. 4, which then drives the growth
of the face-diagonals. The addition of the body diagonal to each block can
also be interpreted as producing an over-determined system, with seven edge-
lengths associated with each vertex or block, while there are only six metric
components at each point of a smooth manifold. However, this interpretation
also suggests a solution.

%Hi}%‘(

Fig. 4. The effect of the face-diagonal growth on the exterior of a cubic block, with
the resulting deficit angle arising from an unchanged body-diagonal shown on the
right.

The flat segments of a piecewise flat manifold do not necessarily have to be
tetrahedra, these are just the most simple of segments. If each block of the
cubic and skew triangulations are instead treated as flat, the mechanism that
drives the exponential growth of the face-diagonals will be broken. This has
lead to the following;:

PROPOSITION 2. The exponential instability is suppressed for the piecewise
flat Ricci flow of cubic and skew type piecewise flat manifolds with flat blocks
as the piecewise flat segments.

In practice the body-diagonals are retained since it is easier to compute
dihedral angles and volumes with a tetrahedral graph. Their lengths are then
continually re-defined to give zero deficit angles around them, and hence a
flat interior for each block, as shown in Fig. 5. This results in a set of con-
straint equations to determine the lengths of the body-diagonals at each step
of an evolution, circumventing the over-determined nature of the tetrahedral
triangulations.

Proposition 2 is proved for a number of cubic and skew grids of 7% manifolds
in Section 5.1, and numerical simulations show the suppression of the insta-
bility in Section 5.2. The use of flat blocks has also given stable evolutions
for all of the computations in [17], giving remarkably close approximations to
their corresponding smooth Ricci flows.
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Fig. 5. The deficit angle € at the body-diagonal is shown, along with the perturbation
0 of the body-diagonal that makes this deficit angle zero, giving a flat interior for the
block.

4. INITIAL INSTABILITY

Since it is the linear terms in a set of differential equations that lead to
exponential growth, the linear stability of the piecewise flat Ricci flow was
tested for cubic and skew triangulations of flat 73 manifolds.

4.1. Linear stability analysis. A linear stability analysis uses the linear
terms of a perturbation away from an equilibrium to test for the stability
of that equilibrium.

DEFINITION 3. For a system of differential equations dt = fi(zj):

1. A stationary solution x; = 29 is a solution that does not change with t, i.e.
d:c 0.

2. Lmeamzed equations at x? are the linear terms in a series expansion of
fz(xg) +9;) about 6; = 0. The zero order terms vanish since they correspond
to a stationary solution, resulting in the equations % = a;; 0; with real
numbers a;;.

3. The system is linearly unstable at 29 if the coefficient matriz A = a;j for
the linearized equations has any eigenvalues with positive real parts. Solu-
tions of the linearized equations consist of linear combinations of exponential
functions, with the eigenvalues of A giving the growth rates.

Euclidean metrics provide stationary solutions for the smooth Ricci flow,
having zero Ricci curvature, and triangulations of flat Euclidean manifolds
are stationary for the piecewise flat Ricci flow, with zero deficit angles and
therefore zero piecewise flat Ricci curvature. The edge-lengths for cubic and
skew triangulations of flat Euclidean space, with unit volume blocks, are given
in Table 1 below.

. 4y L, Ly, Len Loy Loyz
Cubic | 1 1 1 V2 V2 V2 V3
Skew | 2v10 1 £v94 | $v139 142 /13| $V133

Table 1. The edge-lengths for flat triangulations with unit volume blocks.

kol

Any global scaling of the edge-lengths in Table 1 will also be stationary
solutions of the piecewise flat Ricci flow. However, the linearized equations and
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the eigenvalues of the coefficient matrix are not invariant to this rescaling. The
effect of globally rescaling the triangulation blocks is therefore given below.

LEMMA 4 (Scale factor). If a triangulation of a flat manifold has a coeffi-
cient matrix A, then the coefficient matriz for a rescaling of all of the edges
by a factor of ¢ will be C%A.

Proof. From Eq. (2), the piecewise flat Ricci curvature for an edge ¢; can
be written as the sum

(5) Re; = Zb felar

for some coefficients b;;. The series expansion of Re; for a perturbation d; of
some edge /; is given by the series expansions of the individual terms appearing
on the right-hand side above. The zero-order terms for the deficit angles ¢
will always be zero, since these correspond to a triangulation of Euclidean
space. Hence, the linear terms in the expansion of Rc; must be given by the
linear terms from the deficit angles, and the zero-order terms, or non-perturbed
values, for the remaining variables.

For a global rescaling of all the edge-lengths of a triangulation by a factor
of ¢, the volumes are clearly scaled by ¢3. The coefficients b;, can be seen
in Eq. (2) to be either constant or depend on the angles between edges, and
therefore not depend on the scaling. This gives the relations

(6) 1| = c|lkl, Ve =V, b = bik,

with the superscript ¢ representing the rescaled terms. The deficit angles
depend on the relative lengths of the edges, and since the perturbation J; is
the only length that is not rescaled by ¢, the deficit angle would be the same if
only 0; was rescaled, but by a factor of 1/c. An expansion of the deficit angle
€f.(05) for the rescaled blocks is therefore given by the equation

(7) €i(8)) = €6+ 0062 = Lo+ 0(82)

with €k and e;; representing the first order coefficients.
Using the piecewise flat Ricci flow equation, Eq. (4), the linear coefficients
aj; for the rescaled triangulation can now be given in terms of the linear
coefficient a;; for the original triangulation,

1 .
®) wﬂZbC"“' 4= el S ""( 8) _ 1 a,

The coefficient matrix A, and hence its eigenvalues, are therefore scaled by
a factor of 1/c?> when all the edge-lengths of a triangulation are rescaled by
c. O
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4.2. Proof of Proposition 1. To calculate the linearized equations for the
piecewise flat Ricci flow, a number of properties of both the graph structure
and the linearization itself are taken advantage of.

e It is only necessary to determine the linearized equations for a single set
of three face-diagonals due to the symmetry of the grids. The equations
for all of the other face-diagonals will have the same coefficients, with an
appropriate translation of indices.

e A 3 x 3 x 3 grid of cubic or skew blocks provides all of the edges required
to determine the piecewise flat Ricci curvature for the edges in the cen-
tral block. This can be seen from Eq. (2), where the piecewise flat Ricci
curvature Rcy depends only on the deficit angles at edges ¢; that have a
vertex in common with ¢, and these depend only on the lengths of edges in
tetrahedra containing the edge /;.

e Series expansions of the piecewise flat Ricci curvature need only be com-
puted for a single perturbation variable at a time, with the linear terms for
each perturbation computed separately and then added together to give
the complete linearized equation. This avoids the need to compute series
expansions of multiple variables simultaneously.

Symbolic manipulations in Mathematica were used to calculate the linearized
equations for both the cubic and skew triangulations, with the code and results
available in the Zenodo repository at https://doi.org/10.5281 /zenodo.8067524.

THEOREM 5 (Linear instability of cubic triangulations). The piecewise flat
Ricci flow of any cubic triangulation of a flat T® manifold is linearly unstable,
with perturbations growing exponentially at a rate of at least 12/c* for blocks

with volume c3.

Proof. To begin, the linearized equations for the piecewise flat Ricci flow
equations about a flat cubic triangulation with unit volume blocks are cal-
culated. Each face-diagonal in a 3 x 3 x 3 grid of cubic blocks is perturbed
in turn, with the linearized equations at a set of three face-diagonals in the
central block computed for each perturbation, and the contributions from all
of these perturbations then added together. The resulting linearized equation
at the xy-face-diagonal takes the form:

(9) 4 044(0,0,0) =
— 4 6,,)(0,0,0) — b,y (—1
+ % (6231(_17 07 O) + 5:Ey(07 _17 0) + 6:vy(07 17 0) + 5:By(1> Oa O))
+ 2 (824(0,0, —1) 4 044(0,0,1))

,—1,0) — 04y(1,1,0)

(8,2(0, =1, =1) + 8,2(1,1,0)) + 6,2(0, —1,0) + §,.(1,1, —1)
(642(0,0,0) + 6,.(1,0,—1))

+
NI N

(022(—1,0,—1) + 0.2(1,1,0)) + 6.2(—1,0,0) + d.,(1,1, —1)

D=
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+ 5 (6:2(0,0,0) + 0.4(0,1, 1)),

with the coordinates in parentheses indicating the location of the perturbed
edge in the triangulation grid, with respect to the central block. Due to the
symmetries in the cubic lattice, the linearized equations for the other two
face-diagonals are given by a permutation of the {zy, yz, zz} subscripts and a
similar permutation of the grid coordinates. The linearized equation for any
face-diagonal in a T3 grid of cubic blocks can then be given by a discrete linear
transformation of the grid coordinates.

The set of coefficients in Eq. (9) are the same for the linearized equations
at all of the face-diagonals in the triangulation, for any size grid, so the set of
elements in each row of the coefficient matrix A will also be the same. These
elements sum to 12, which must be an eigenvalue of A with a corresponding
eigenvector consisting of all ones. From Lemma 4, the coefficient matrix for a
triangulation with blocks of volume ¢® will have an eigenvalue of 12/c?. Any
solution to the set of linearized equations must then contain an exponential
term with a growth rate of 12/c2, leading to an exponential growth for the
perturbations in all of the face-diagonals of at least this rate. O

THEOREM 6 (Linear instability of skew triangulations). The piecewise flat
Ricci flow of any skew triangulation of a flat T3 manifold is linearly unstable,
with perturbations growing exponentially at a rate of at least 0.996/c? for blocks

with volume c>.

Proof. As with the cubic triangulations in Theorem 5, the linearized equa-
tions about a flat skew triangulation with unit volume blocks are first com-
puted. Unlike the cubic case, the skew blocks do not have the same sym-
metries as the cubic blocks, so the linearized equations for each of the three
types of face-diagonals, £, £,. and £,, must be found separately. The lin-
earized equations are not displayed here, but can be found in the Zenodo
repository, https://doi.org/10.5281/zenodo.8067524. As with the cubic case,
the linearized equations for all of the face-diagonals in a T grid of skew blocks
can be given by a discrete transformation of the grid coordinates for each of
the three face-diagonals in a single block.

From these equations, it can be seen that the sum of the coefficients are not
the same for each face-diagonal, so the vector of all ones is not an eigenvector
for the coefficient matrix A as it was for the cubic triangulations. However,
by ordering the indices of the face-diagonals ¢; according to their edge-type,
a similar approach can be used. The indices for an n-block triangulation are
defined so that i € {1,...,n} for the yz-diagonals, i € {n + 1,...,2n} for the
za-diagonals and i € {2n+ 1, ...,3n} for the zy-diagonals. Defining a vector v
so that

p if 1<i<n,
(10) v=<q if n+1<i<2n, forp,q,reR,
r if 2n+1<i<3n
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the product of the matrix A with v is

(11) A‘U:aij'vj:(zn:aij>p+< % (I@'j>q+< % aij>7".

j=1 j=n+1 j=2n+1

Since there will only be three different values for the elements of the resulting
vector, one for each type of face-diagonal, the information in this product can
be reduced to the 3 x 3 matrix product below,

0.308 0.311 0.282 p
(12) 0.410 0.415 0376 |- ¢ |,
0.266 0.269 0.244 r

with the matrix elements obtained by summing the appropriate coefficients in
the linearized equations. This matrix has a maximum eigenvalue of approxi-
mately 0.966, with a corresponding eigenvector of (0.532,0.710,0.461). From
Eq. (11), the matrix A must also have this eigenvalue, with eigenvector v from
Eq. (10) where p = 0.532, ¢ = 0.710 and r = 0.461.

From Lemma 4, the coeflicient matrix for a triangulation with blocks of
volume ¢ will have an eigenvalue of approximately 0.966/c?. Any solution to
the set of linearized equations must then contain an exponential term with a
growth rate of approximately 0.966/c?, leading to an exponential growth for
the perturbations in all of the face-diagonals of at least this rate. O

The linearized equations in the proofs of theorems 5 and 6 have also been
used to construct the coefficient matrices for 3 x 3 x 3 and 3 x 3 x 4 grids of
blocks using Mathematica. This was done for both the cubic and skew blocks,
with the edge-lengths from Table 1, and for a rescaling of these edges by a
factor of 1/3. The eigenvalues for each matrix were then computed, again
using Mathematica, with the largest real parts matching the eigenvalues in
Theorem 5 and Theorem 6, as shown in Table 2.

c=1 c=1/3
3x3x3 3x3x4 ‘ Ix3x3 Ix3x4
Cubic | 12, 6, 2.739, 0 12, 8, 6, 4.514 | 108, 54, 24.65, 0 108, 72, 54, 40.63
Skew 0.966, 0. 0.966, 0. ‘ 8.697, 0. 8.697, 0. ‘

Table 2. The largest of the real parts of the eigenvalues for both cubic and skew
triangulations, with two different grid sizes and two different scales ¢. The non-
integer values are approximated to three decimal places.

REMARK 7. Due to the effect of the scaling factor ¢ in Lemma 4, the in-
stabilities are more severe when the grid resolutions are increased. This is the
opposite of the piecewise flat approrimations, which should converge to their
corresponding smooth values as the resolution is increased.

REMARK 8. The instability for the skew triangulations is an order of mag-
nitude less than for the cubic triangulations for the same block volumes. It
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can also be noted that the cubic blocks are only borderline Delaunay for a flat
manifold, with the circumcentres of all tetrahedra in a single block coinciding
at the centre of that block. The skew blocks were initially used because they
form more strongly Delauney triangulations, where Voronoi dual volumes can
be used with more confidence. For a flat diamond block, the circumcentres of
all of the tetrahedra coincide with their barycentres, making them as strongly
Delaunay as possible, and may offer a clue to explain the original lack of in-
stability in the diamond triangulations.

4.3. Numerical simulations. Simulations have been run for the piecewise
flat Ricci flow of 3 x 3 x 3,4 x4 x4 and 5 x 5 x 5 grids of both cubic and skew
blocks. The base edge-lengths were taken from Table 1, scaled by a factor of
1/3 for the skew triangulations, with Theorem 5 and Theorem 6 indicating that
these should give exponential growth rates on the order of 10. The edge-lengths
were then approximated as double-precision floating point numbers, and each
perturbed by a random number from a normal distribution with standard
deviation of 107!, the level of numerical precision. Evolutions were performed
using an Euler method with 100 steps of size 0.01, and deviations in the
face-diagonal edge-lengths were fitted to a linear combination of exponential
functions,

(13) feubic(t) = a1e + aze™' + azefst + ¢,
Fokew(t) = are™ + bt +c.

The number of terms was chosen to include all of the positive eigenvalues
for the 3 x 3 x 3 grid triangulations shown in Table 2. A linear term was
also added for the skew function, as the non-face-diagonal edges showed a
consistent linear growth of about 107'°. Results of the growth rates and
coefficient of determination (R?) values for the best-fit functions are presented
in Table 3, with sample graphs of the fitted functions and their corresponding
data shown in Fig. 6.

3 x3x3 3x3x3 4x4x4 5X5xH

Eigenvalues | Median IQR | Median IQR | Median IQR

Cubic k1 12 11.998  0.001 | 11.997 0.007 [ 11.97  0.04
ko 6 6.04 0.01 6.04 0.08 6.2 0.5

ks 2.739 2.86 0.04 2.9 0.2 3.8 1.9

R? 0.99998 107° | 0.99994 10™* | 0.99930 1073

Skew  k 8.697 8.339  0.004 | 8.336 0.01 8.337  0.01
R? 0.999999 1077 | 0.999998 107° | 0.999999 10~°

Table 3. The median growth rates (k;) and coefficient of determination (R?) values
with their interquartile ranges (IQR) for each triangulation. The values for the cubic
triangulations are in extremely close agreement with the corresponding eigenvalues
for the 3 x 3 x 3 grid in Table 2 (reproduced in “Eigenvalues” column), and the skew
parameters in close agreement.
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Cubic triangulation Skew triangulation
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Fig. 6. The best-fit graphs with the lowest R? values (0.99998 and 0.999999 respec-
tively) for deviations in the edge-lengths of the 3 x 3 x 3 grid triangulations, closely
agreeing with the evolution values represented by the points.

The close agreement between the growth rates in Table 3 and eigenvalues
in Table 2, along with the extremely high R? values, demonstrate how ef-
fective the linearized equations are in approximating the evolution. The low
interquartile ranges also show consistent behaviour across all edges, with sur-
prisingly comparable growth rates over the different grid sizes, considering
a higher number of distinct eigenvalues should be expected for larger grids.
In particular, the simulations support the hypothesis that the eigenvalues in
Theorem 5 and Theorem 6 represent the largest growth rates for any cubic or
skew type triangulations.

5. SUPPRESSION OF EXPONENTIAL INSTABILITY

With the body-diagonals re-defined to give flat interiors for each block, the
linear stability analysis and numerical simulations are performed again, with
the exponential growth suppressed in both.

5.1. Linear instability suppressed. The linearized equations are calculated
here by taking advantage of the same properties outlined at the beginning of
Section 4.2, but with some additional steps to ensure that each block is flat
after any perturbations.

e Once a face-diagonal ¢; is perturbed by an arbitrary amount d;, only the
blocks on either side of that face are affected. For the body-diagonals of
each of these blocks, the deficit angle can be found in terms of J; and the
length b of the body-diagonal itself.

e Setting the deficit angle to zero, the length b which gives a flat block can be
found in terms of §;. Since only linear terms in ¢; will impact the linearized
equations, b needs only be found as a linear approximation in 9;.

e A grid of size 4 x 4 x 4 is now required to determine the piecewise flat Ricci
flow for the edges in a central block, due to the changes in body-diagonals.

The linearized equations are first used to show that the approaches in The-
orem 5 and Theorem 6 no longer imply a linear instability once flat blocks are
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used, and then to show that the linear instability is actually suppressed for a
number of different grid sizes.

THEOREM 9. When the body-diagonals are re-defined to give flat blocks,
summing rows of the linear coefficient matriz no longer implies a linear insta-
bility of the piecewise flat Ricci flow.

Proof. Each face-diagonal £; in a 4 x 4 x 4 grid of blocks is perturbed away
from the flat values in Table 1 by an arbitrary amount J;, with the body-
diagonals on either side of that face re-defined in terms of d; to give a zero
deficit angle. The linear impact of each perturbation J; on a face-diagonal
Z; in a central block can then be calculated using the piecewise flat Ricci
flow equations, Eq. (4), and the separate terms summed to give the linearized
equation for ¢;.

The resulting equation is shown below for an xy-face-diagonal of the cubic
triangulation, with the coordinates indicating the relative locations of the
face-diagonals on the grid,

(14)  £6,,(0,0,0) =
— 5 024(0,0,0) = 82y (—1,—1,0) — 8,,(1,1,0)

—1/4(82y(—1,0,1) + 0y (0, =1, 1) + 055 (0, 1, —1) + 64,(1,0,—1))
+5/4(02y(—1,0,0) + 05 (0, —1,0) + 65 (0, 1,0) + 64, (1,0, 0))
+3/2(02y(0,0, —1) + 6, (0,0, 1))

—1/2(8,2(0, =1, —1) + ,.(0,0, —1) + 6,.(1,0,0) + 6,.(1,1,0))
— 1/4(8,2(=1,0,0) + 6,.(0,1, 1) + 8,.(1, —1,0) + 6,.(2,0, —1))
+3/4(8,2(0,—1,0) 4 6,2(0,0,0) + 6,-(1,0, —1) + §,.(1,1, —1))

—1/2(8.2(—=1,0,=1) + 6.,(0,0, —1) 4 6.,,(0,1,0) + 8.,(1,1,0))
—1/4(0.2(=1,1,0) 4 6.2(0, —1,0) + 6.(0,2, —1) + 8..,(1,0, —1))
+3/4(8.2(—1,0,0) + 8.5,(0,0,0) + 0.,,(0, 1, —1) 4 8.,(1,1, —1)).

As in the proof of Theorem 5, the linearized equations for the other two types
of face-diagonal in the cubic triangulation are simply given by a permutation
of the {xy, yz, zz} subscripts and of the grid coordinates. The linearized equa-
tions for a skew triangulation are not displayed here, but can be found in the
Zenodo repository at https://doi.org/10.5281/zenodo.8067524. The linearized
equations for all of the face-diagonals in any 7° grid of cubic or skew blocks
can be found through a discrete transformation of the grid coordinates.

The coefficients in Eq. (14) can be seen to sum to zero, with the coefficients
of the linearized equations for the face-diagonals in the skew triangulation also
summing to zero. This implies that the vector of all ones is an eigenvector
of the coefficient matrix A, with an eigenvalue of zero, for all grid-sizes of
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both the cubic and skew triangulations. While this approach gave positive
eigenvalues in Theorem 5 and Theorem 6, proving the equations there to be
linearly unstable, it does not do so when flat blocks are used instead of just
flat tetrahedra. 0

REMARK 10. For many constant row-sum matrices, the etgenvalue given by
the row-sum can be proved to be the largest eigenvalue. For example, if all of
the coefficients except the first in Eq. (14) were positive, the Gershgorin circle
theorem would be sufficient to prove this. Recent progress has also been made
on eigenvalue bounds for more general constant row-sum matrices [20, 21].
Unfortunately, a proof that the same is true in this case has not been found,
but direct computation of the eigenvalues below and the numerical simulations
in Section 5.2 suggest that it is true.

For particular grid sizes, the linearized equations were used to construct the
coefficient matrices directly, using the mathematical software Mathematica,
and the set of eigenvalues computed for each. The eigenvalue with the largest
real part is given for each piecewise flat manifold in Table 4. For the cubic
blocks these were computed exactly, but numerical methods were required to
compute the eigenvalues for the skew blocks.

c=1 c=1/3
I x3x3 3x3x4 3 x3x3 3 x3x4
Cubic 0 0 0 0
Skew |3.0x107'% 3.3x107' | 20x107* 3.7x107'

Table 4. The eigenvalues with the largest real part, showing a suppression of the
linear instability when flat blocks are used.

Clearly, there cannot be any exponential growth terms for the linearized
equations in the cubic triangulations since the largest real part of the eigen-
values is zero. The largest values for the skew triangulations are practically
zero, being equivalent to zero for the numerical precision of the computations.
While an eigenvalue of zero does not imply complete stability, it is consistent
with the linearization of the smooth Ricci flow near a flat manifold, which
also contains zero eigenvalues [22]. Also, since the piecewise flat curvatures
depend on local regions of a piecewise flat manifold, it is deemed unlikely that
the instability would re-emerge in larger grids.

5.2. Numerical simulations with instability suppressed. Numerical sim-
ulations of the piecewise flat Ricci flow have also been run with blocks that
are effectively flat. In order to compare with the simulations in Section 4.3,
the same triangulations and edge-length perturbations were used, and evolved
using the same Fuler method with 100 steps of size 0.01, but with the body-
diagonal edge-lengths adapted at the beginning of each step. This was done
by first adding a perturbation variable d; to the length of each body-diagonal
¢;, computing the deficit angle around ¢; as a function of J;, and then setting
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this equal to zero and solving for ;. Since the deficit angles should already be
small for a good triangulation, a linear approximation in d; about zero is used
for the deficit angle, giving a unique solution for d; when set equal to zero.
To show that the exponential growth is suppressed, the median and maximum
changes in edge-lengths for all triangulations are shown in Table 5, with the
deviations of the edge-lengths for the blocks with the largest changes shown
in Fig. 7. These same edges were used for the graphs in Fig. 3.

3 x3Ix3 4x4x4 S5XHXDH

Cubic Median change 0 0 0
Max. change 1.7x107*% 31x107*® 22x107*°
Initial pert. 24x107% 31x107% 33x10715

Skew Median change | 4.6 x 107 4.6 x 107%% 4.6 x 10719
Max. change 6.7x 107" 80x 107" 81x107'5
Initial pert. 29%x1071% 31x107% 40x10°%°

Median slope 45%x 1071 4.6x107% 4.5x107%
IQR of slope 75x 1071 78x107¢ 7.6x1071¢

Table 5. The median and maximum edge-length changes for each triangulation, along
with the maximum values of the initial random perturbations. The median and
interquartile ranges (IQR) for the best-fit linear functions in the skew triangulations
are also shown. All values are close to the numerical precision, showing a suppression
of the exponential growth.

The adapting of the body-diagonals has clearly suppressed the exponential
growth for both the cubic and skew simulations. For the cubic triangulations,
most of the edge-lengths do not change, and those that do, only change during
the first quarter of time steps and by an extremely small amount, less than
the largest of the initial perturbations. While the growth rates are non-zero
throughout the simulation, as seen in Fig. 7, when combined with the step
size for the Euler method the resulting changes are lower than the numerical
precision. The set of edge-lengths then become stationary once the rates of
change drop below this threshold.

For the skew triangulations, the numerical precision is lower as it depends on
the lengths of the edges, so the oscillations in the lower-right graph in Fig. 7
continue to produce a linear growth. Linear functions have therefore been
fitted to the data for each edge in the triangulation, with the results in Ta-
ble 5 showing consistent, extremely small rates of change across all edges, also
agreeing with the rates of the background linear growth for the un-suppressed
simulations in Section 4.3. While this linear growth does not directly corre-
spond to smooth Ricci flow, it does not conflict with it either. The consistency
of the rates of change leads to a global change in the scale but will not pro-
duce any curvature, so the piecewise flat manifold remains in a stationary
state, growing but remaining flat. The low rate means the effect will not be
noticeable at regular scales for extremely long time frames, but the effect can
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Fig. 7. Deviations of the face-diagonal edge-lengths from their pre-perturbed values,
for blocks with the largest edge-length changes, and the corresponding rates of change
from the adapted piecewise flat Ricci flow, showing a clear suppression of the expo-
nential instability.

still be avoided by using the normalized Ricci flow which preserves the global
volume.

6. CONCLUSION

The cubic and skew type triangulations have been successfully adapted to
avoid a numerical instability resulting from the direct application of the piece-
wise flat Ricci flow to these triangulation types. The instability was seen
to come from an over-determination of the system, with seven distinct edge-
lengths associated with each block, while there are only six metric components
at each point on a smooth manifold. This is resolved by removing the body
diagonals as variables, and setting the interior of each block to be flat. In prac-
tice, the tetrahedral structure is retained, with a set of constraint equations
introduced for the lengths of the body-diagonals so that their deficit angles
vanish at each time step, ensuring a flat interior for each block.

While the instability first appeared in numerical simulations, a linear sta-
bility analysis for cubic and skew triangulations of a flat Euclidean space has
indicated the same growth rates for the errors in the face diagonals. The
largest growth rates were found by summing the rows of the linear coefficient
matrices, and once the triangulations have been adapted, these row-sums are
all zero. As with related matrices, it seems reasonable to expect the constant
row-sums to give the largest real eigenvalue for each linear coefficient matrix,
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and hence the largest growth rates for the system. Direct computations of the
largest growth rates for a number of specific grids also give zero, in agreement
with the smooth Ricci flow [22], and the numerical simulations lead to stable
evolutions for the adapted triangulations.

Although this paper only shows the stability for adapted triangulations
of flat Euclidean manifolds, these adaptations have also led to stable piece-
wise flat Ricci flow for a variety of different manifolds in [17], where they
were shown to converge to their expected smooth Ricci flow solutions. Also,
despite re-defining the body-diagonals to have zero deficit angles, computa-
tions of the piecewise flat Ricci curvature in [17] are just as accurate at these
body-diagonals as they are at the other edges, showing the robustness of the
piecewise flat curvature expressions in Eq. (2).

DATA AVAILABILITY. The Mathematica notebooks used for the computa-
tions and numerical simulations, and the data generated by these, are available
in the Zenodo repository at https://doi.org/10.5281/zenodo.8067524.
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