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LAURENT OPERATOR-BASED REPRESENTATION
OF DISCRETE SOLUTIONS IN THE NEWMARK SCHEME

WITH NON-HOMOGENEOUS TERMS

ELIASS ZAFATI†

Abstract. This paper investigates representation results for second-order evo-
lution equations arising in structural dynamics, discretized using the Newmark
time integration scheme. More precisely, the discrete solution is expressed in
terms of bi-infinite Toeplitz or Laurent operators. A spectral analysis of the as-
sociated discrete operators is discussed, and a convergence analysis is performed
under relaxed regularity assumptions on the source term. Furthermore, we ex-
amine the errors introduced by some truncation strategies, including one that is
commonly used in engineering practice.
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1. INTRODUCTION

It is well-known that the time integration schemes play a central role in
the numerical simulation of several problems in solid mechanics. The accurate
time evolution of mechanical systems subject to transient loads, vibrations,
or dynamic interactions is essential in a wide range of engineering applica-
tions, including aerospace, civil infrastructure, and mechanical design. The
challenge lies in developing numerical methods that are not only robust and
computationally efficient but also capable of accurately capturing the dynamic
response of complex structures over long time intervals.

In this paper, we focus on a fundamental problem in structural dynamics.
Specifically, we consider the second-order system of differential equations given
by: 

M Ü + CU̇ +KU = F
ess lim
t→−∞

U(t) = 0
ess lim
t→−∞

U̇(t) = 0
(1.1)
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where the vector-valued functions t 7→ Ü(t), t 7→ U̇(t), and t 7→ U(t) rep-
resent the n-dimensional acceleration, velocity, and displacement vectors, re-
spectively, with the dot symbol denoting the time derivative. The function
t 7→ F (t) represents the external force. The matrices M , K, and C are sym-
metric and positive definite. In this setting, let ω2

1, . . . , ω
2
n > 0 be the real,

positive eigenvalues (possibly repeated) of M−1K, arranged in non-increasing
order. It is known that the eigenvectors of M−1K are orthogonal with re-
spect to the Hermitian product induced by M , i.e., ⟨•,M•⟩. Concerning
the matrix C, we assume that the positive eigenvalues M−1C are written as
2ξ1ω1, . . . , 2ξnωn, where ξ1, ξ2, . . . , ξn > 0.

Furthermore, the following assumptions are implicitly considered in the sub-
sequent sections:
(H1):

i) The function t 7→ F (t) is Lebesgue-measurable on R and satisfies

ess lim
t→−∞

F (t) = 0.

ii) For every integer 1 ≤ i ≤ n, the eigenspaces associated with the eigenval-
ues ω2

i and 2ξiωi coincide. In other words, there exist orthogonal projec-
tions Pi, 1 ≤ i ≤ n, with respect to the product ⟨•,M•⟩ such that:

(1.2) M =
n∑

i=1
MPi, K =

n∑
i=1

ω2
iMPi, and C =

n∑
i=1

2ξiωiMPi.

Over the decades, numerous time integration methods have been proposed
to solve numerically (1.1), each developed to specific modeling goals, such
as energy conservation, high-frequency damping, unconditional stability, or
second-order accuracy. Classical schemes such as the Newmark family [15], the
Wilson-θ method [1], the Hilber–Hughes–Taylor (HHT-α) method [13] and the
generalized-α method [7] have been widely adopted in industrial codes due to
their simplicity and effectiveness. Furthermore, these time integration schemes
have also served as building blocks for multi-time-step methods, which allow
different parts of a structure or different physical subdomains to be integrated
using different time resolutions [8, 12, 16, 19, 20, 4, 5].

Although it is one of the earliest time integration schemes developed for
structural analysis, the Newmark family of methods remains among the most
widely used techniques for solving second-order differential systems in struc-
tural dynamics, such as the system described in (1.1). Introduced by Newmark
in the 1950s [15], this class of methods encompasses both explicit and implicit
variants, with two parameters that offer control over numerical dissipation and
stability. Most accuracy analyses in the literature have been conducted under
the assumption of smooth (at least two differentiable) or vanishing nonhomo-
geneous terms [6, 10, 2]. The method’s adaptability, stability properties, and
reliable performance continue to justify its widespread adoption in modern
commercial solvers.
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This paper aims to provide new representation results for the discrete solu-
tion in terms of Laurent operators (or bi-infinite Toeplitz operators). These
representations allow us to derive some spectral properties of the associated
operators, along with convergence results under relaxed smoothness assump-
tions on the source term F in (1.1). Furthermore, we analyze the errors
introduced by two truncation procedures, one of which is commonly employed
in engineering applications.

The rest of the paper is organized as follows. Section 2 reviews the Newmark
scheme in the form of a block matrix formulation. Section 3 presents the
representation of the discrete solution using Laurent operators and discusses
related spectral properties, convergence results, and some truncation errors.

2. REVIEW ON THE MATRIX FORMULATION OF THE DISCRETIZED EQUATION

In this section, we present the matrix formulation of the discretized equation
associated with (1.1), together with the main assumptions on the Newmark
parameters and classical results that play a key role in the analysis developed
in the subsequent sections.

To begin, we choose a time step h, such that the approximate solution of
(1.1) is described at discrete time instances tl = lh, where l is an integer, i.e.,
l ∈ Z. Furthermore, let Ül, U̇l, Ul, and Fl denote the acceleration, velocity,
displacement, and external force, respectively, at time tl = lh.

In this paper, Fl is considered an approximation of F (lh) and does not
necessarily coincide with its exact value. For a fixed l ∈ Z, the discretized
equation at the time tl writes:
(2.1) M Ül + C U̇l +K Ul = Fl.

The approximated quantities Ul and U̇l, computed using the Newmark
scheme with parameters γ and β, are given by:

(2.2)

Ul = Ul−1 + h U̇l−1 + h2
(

1
2 − β

)
Ül−1 + h2β Ül,

U̇l = U̇l−1 + h(1 − γ)Ül−1 + hγ Ül.

Furthermore, the discrete sequences (Ul)l∈Z and (U̇l)l∈Z should satisfy the
decay condition:
(2.3) lim

l→−∞
Ul = 0, lim

l→−∞
U̇l = 0.

It is more convenient to rewrite the previous time discretized equations in a
block matrix representation between two times tk and tj (with −∞ < k < j)
as: 

M
N M

. .
. .

N M




Uk

Uk+1
.
.
Uj

 =


Pk − NUk−1

Pk+1
.
.
Pj

(2.4)
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where we have:

M =

 M C K
−γhIn In 0
−βh2In 0 In

 , N =

 0 0 0
−(1 − γ)hIn −In 0

−(1
2 − β)h2In −hIn −In



Pl =

Fl

0
0

 , Ul =

Ül

U̇l

Ul

 ,
(2.5)

for every k ≤ l ≤ j. Here, the matrix In stands for the n× n-identity matrix.
We consider the following assumption (H2): The Newmark parameters

(γ, β, h) satisfy:
i) γ ≥ 1

2 .
ii) h > 0.
iii) M̃ = M + h2(β − γ

2 )K is positive definite.
iv) The inequality

(2.6)
(
γ + 1

2

)2
− 4β < min

1≤i≤n

[
4(1−ξ2

i )
ω2

i h2 + 2ξi
ωih

(2γ − 1)
]

is commonly used in practice for physical purposes (see, for instance, Sec-
tion 7.2.7 in [10]). In addition, we assume 0 < ξi < 1.

Throughout the remainder of this paper, assumptions (H1) and (H2) are
considered to be satisfied, even if not explicitly mentioned and the time step
belongs to the set for which the above assumption holds. The following results
are easy to establish by arguments similar to those in [17] and [18].

Lemma 2.1. Let D = {z ∈ C | |z| < 1}. The spectrum of NM−1 is a
subset of D. More precisely, the spectrum is given by:
(2.7) {0, z1, z̄1, · · · , zn, z̄n}

For every 1 ≤ i ≤ n, the real and imaginary parts of zi are given by:

(2.8)


ℜ(zi) = 1

2

((
γ′

i + 1
2

) Ω2
i

1+β′
iΩ

2
i

− 2
)
,

ℑ(zi) = −1
2

√
4Ω2

i

1+β′
iΩ

2
i

−
(

Ω2
i

1+β′
iΩ

2
i

)2 (
γ′

i + 1
2

)2
,

where ℜ(z) and ℑ(z) denote the real and imaginary parts of a complex number
z, and Ωi = hωi.

Additionally, the modified parameters γ′
i and β′

i are defined as:

(2.9) γ′
i = γ + 2 ξi

Ωi
, and β′

i = β + 2γξi
Ωi
.

In this case, the magnitude of zi is given by:

(2.10) |zi| =
√

1 −
(
γ′

i − 1
2

) Ω2
i

1+β′
iΩ

2
i
.

□
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Remark 2.2. If we define the resolvent R of NM−1 as

(2.11) R(z) =
(
zI3n − NM−1

)−1
= M (zM − N)−1

where z ∈ C and I3n is the 3n × 3n-identity matrix, it can be observed that
R(z) is well-defined on C \ D under the hypothesis of Lemma 2.1.

Lemma 2.3. If (zM − N)−1 is written as 3×3 block matrix where each entry
is a n× n-matrix, and letting

[
X11(z) X21(z) X31(z)

]T be the first column
of the previous matrix, then:

X11(z) = (1+z)2

z Q−1(z)
X21(z) = h (1+z)(γ(1+z)−1)

z Q−1(z)

X31(z) = h2 β(1+z)2−(1+z)(γ+ 1
2 )+1

z Q−1(z)

(2.12)

where:
Q(z) =(1 + z)2M + h2

(
β(1 + z)2 − (γ + 1

2)(1 + z) + 1
)
K

+ h
(
γ(1 + z)2 − (1 + z)

)
C

(2.13)

□

Remark 2.4. Using the decomposition (1.2), one can verify that:

(2.14) Q(z) =
n∑

i=1
Λi(Ωi)(z − zi)(z − z̄i)MPi,

where we define

(2.15) Λi(Ωi) := 1 + β′
iΩ2

i .

□

3. LAURENT OPERATORS AND REPRESENTATION RESULTS FOR THE NEWMARK

SCHEME

This section focuses on the representation of various quantities in (1.1) in
terms of Laurent operators, as well as the behavior of the error when dealing
with less regular nonhomogeneous terms compared to those studied in the
literature. To begin, we introduce the following classical definitions:

Definition 3.1. Let p ≥ 1 and k be a positive integer, let U ⊂ R be an
open set, and let K be either R or C. We define the following spaces along
with their associated norms:

• C0(U,Kk): The space of continuous functions from U to Kk, equipped with
the supremum norm:

∥f∥C0 = sup
t∈U

∥f(t)∥.
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• Lp(U,Kk): The space of p-integrable functions from U to Kk, i.e.,

Lp(U,Kk) =


{
f : U → Kk :

∫
U

∥f(t)∥p dt < ∞
}
, 1 ≤ p < ∞,{

f : U → Kk : ess sup
t∈U

∥f(t)∥ < ∞
}
, p = ∞.

The associated norm is:

∥f∥Lp =


(∫

U
∥f(t)∥p dt

) 1
p
, 1 ≤ p < ∞,

ess sup
t∈U

∥f(t)∥, p = ∞.

• For sequence spaces, we define:

lp(Kk) =



{
(Xl)l∈Z ⊂ Kk :

∑
l∈Z

∥Xl∥p < ∞
}
, 1 ≤ p < ∞,{

(Xl)l∈Z ⊂ Kk : sup
l∈Z

∥Xl∥ < ∞
}
, p = ∞.

The corresponding norm for X = (Xl)l∈Z is:

∥X∥lp =


(∑

l∈Z
∥Xl∥p

) 1
p

, 1 ≤ p < ∞,

sup
l∈Z

∥Xl∥, p = ∞.

We also define the space c−
0 (Kk), consisting of all sequences in l∞(Kk)

that converge to zero at −∞:

c−
0 (Kk) =

{
(Xl)l∈Z ∈ l∞(Kk) : lim

l→−∞
Xl = 0

}
,

□

Remark 3.2. In the preceding Definition 3.1, the norm notations are writ-
ten without explicit reference to the index k or the domain U for the sake of
simplicity; their precise meaning should be inferred from the context.

Definition 3.3. Let a ∈ L∞ (
(−π

h ,
π
h ),C

)
and 0 < p ≤ ∞. The Laurent

operator (or bi-infinite Toeplitz operator ) T (a) on lp(Cn) is defined as
follows: for every sequence X̃ = (. . . , X−1, X0, X1, . . . ) ∈ lp(Cn),

(3.1) (T (a)X̃)m =
∞∑

l=−∞
cm−l(a)Xl, for all m ∈ Z,

where (cl(a))l∈Z are the Fourier coefficients of the function a, defined by:

(3.2) cl(a) = h
2π

∫ π
h

− π
h

a(t)e−iclht dt, for all l ∈ Z,

where ic is the imaginary unit. □
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When 1 ≤ p ≤ 2, it follows that the operator T (a) is bounded as a conse-
quence of the Riesz-Thorin interpolation theorem (see, for instance, Theorem
1.3.4 in [11]).

Definition 3.4. Let k > 0 be an integer and X̃ = (Xℓ)ℓ∈Z be a sequence of
elements in Ck. We define the following operators:
(i) Discrete Fourier Transform: The operator Fh on l2(Ck) is given by

(3.3) FhX̃(θ) =
∞∑

ℓ=−∞
Xℓe

icℓhθ, ∀θ ∈
[
−π

h ,
π
h

]
.

(ii) Piecewise Constant Interpolation: The interpolation operator Ih is
defined by

(3.4) IhX̃(t) =
∞∑

ℓ=−∞
Xℓχ[ℓh,(ℓ+1)h)(t),

where χ[ℓh,(ℓ+1)h)(t) is the characteristic function of the interval [ℓh, (ℓ +
1)h).

□

Remark 3.5. Let K = R or C, and r > 1. It is straightforward to show
that the operator Ih is continuous from lr(Kn) into Lr(R,Kn). Moreover, its
adjoint operator I⋆

h is given by:

I⋆
hX =

(∫ (l+1)h

lh
X(s) ds

)
l∈Z

, for X ∈ Lr⋆(R,Kn),

and we have:
(3.5) ∥Ih∥L(lr(Kn),Lr(R,Kn)) = ∥I⋆

h∥L(Lr⋆ (R,Kn),lr⋆ (Kn)) = h
1
r = h

r⋆−1
r⋆

where 1
r + 1

r⋆ = 1. □

We are now in a position to state the main result concerning the repre-
sentation of the discrete solution in terms of Laurent operators. This will
be followed by a series of corollaries presenting some convergence results and
analyzing the errors introduced by some truncation procedures.

Theorem 3.6. Assume that (Fℓ)ℓ∈Z ∈ c−
0 (Rn). Let w ∈ D with ℑw ̸= 0.

Define the functions:

gu
w(θ) = βh2 +

∞∑
ℓ=1

h2 ℑ[(−1)ℓwℓ−1(β(1+w)2−(1+w)(γ+ 1
2 )+1)]

ℑw · eicℓhθ,

gv
w(θ) = γh+

∞∑
ℓ=1

h
ℑ[(−1)ℓwℓ−1(1+w)(γ(1+w)−1)]

ℑw eicℓhθ,(3.6)

ga
w(θ) = 1 +

∞∑
ℓ=1

ℑ[(−1)ℓwℓ−1(1+w)2]
ℑw eicℓhθ.
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Each of these series defines an uniformly convergent function. Moreover,
we have:

(3.7)



Ũ =
n∑

i=1
1

Λi(Ωi)T (gu
zi

)PiM̃−1F ,

˜̇U =
n∑

i=1
1

Λi(Ωi)T (gv
zi

)PiM̃−1F ,

˜̈U =
n∑

i=1
1

Λi(Ωi)T (ga
zi

)PiM̃−1F ,

where Λi(Ωi) is defined in (2.15), and the notations are as follows:

Ũ = (Uℓ)ℓ∈Z,
˜̇U = (U̇ℓ)ℓ∈Z,

˜̈U = (Üℓ)ℓ∈Z, M̃−1F =
(
M−1Fℓ

)
ℓ∈Z

,

and, for any 1 ≤ i ≤ n and any bi-infinite sequence X̃ = (Xℓ)ℓ∈Z,
(3.8) PiX̃ := (PiXℓ)ℓ∈Z.

□

In the proof of Theorem 3.6, we need the following lemma:

Lemma 3.7. Under the assumptions of Theorem 3.6, the discrete block so-
lution (Um)m∈Z, defined in (2.5), is given for all m ∈ Z by:

(3.9) Um =
m∑

l=−∞
(−1)m−l M−1

(
NM−1

)m−l
Pl.

□

Proof. First, observe that the right-hand side of (3.9) is well defined. In-
deed, by Eq. (2.8), the eigenvalues of the matrix NM−1 lie strictly inside the
unit disk, and the sequence (Fℓ)ℓ∈Z is bounded.

It is straightforward to verify that the constructed solution satisfies the
recurrence relation

MUm + NUm−1 = Pm, for all m ∈ Z,
as well as the decay condition (2.3). By the uniqueness of the discrete solution,
the result follows. □

Proof of Theorem 3.6. Let ϵ > 0. We introduce a small perturbation by re-
placing the sequence (Fℓ)ℓ∈Z with the exponentially damped sequence (F ϵ

ℓ )ℓ∈Z,
defined by

F ϵ
ℓ = e−ϵℓ2

Fℓ, ∀ℓ ∈ Z.
We denote by Pϵ

ℓ and Uϵ
ℓ the perturbed block vectors corresponding to the

discrete data and the discrete solution, respectively, as defined in (2.5):

Pϵ
ℓ =

F ϵ
ℓ

0
0

 , Uϵ
ℓ =

Ü ϵ
ℓ

U̇ ϵ
ℓ

U ϵ
ℓ

 ,(3.10)
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and from (3.9), we have for every m ∈ Z:

(3.11) Uϵ
m =

m∑
l=−∞

(−1)m−l M−1
(
NM−1

)m−l
Pϵ

l .

Since the eigenvalues of the matrix NM−1 lie strictly inside the unit disk,
we conclude that

lim
ϵ→0

Uϵ
m = Um, ∀m ∈ Z.

Let P̃ϵ = (Pϵ
l )l∈Z. Using the Dunford–Taylor integral representation [14]

and the definition of the resolvent in Remark 2.2, we can express Uϵ
m for every

integer m as:
(3.12)

Uϵ
m =

m∑
l=−∞

(−1)m−l M−1
(
NM−1

)m−l
Pϵ

l

= h
2π

∫ π
h

− π
h

e−icmhθ
m∑

l=−∞
(−1)m−l M−1

(
NM−1

)m−l
eic(m−l)hθFhP̃ϵ(θ) dθ

= h
(2π)2ic

∫ π
h

− π
h

e−icmhθ

[∫
C

( ∞∑
l=0

(−1)leiclhθzl

)
(zM − N)−1 dz

]
FhP̃ϵ(θ) dθ

where C is a positively oriented circle of radius strictly less than one, whose in-
terior contains all the roots zi described in (2.8). Hence, by applying Lemma 2.3
and using the definition of the resolvent in Remark 2.2, we obtain:

U ϵ
m = h

(2π)2ic

∫ π
h

− π
h
e−icmhθ

[∫
C

X13(z)
1+eichθz

dz
]
FhF̃

ϵ(θ) dθ,

U̇ ϵ
m = h

(2π)2ic

∫ π
h

− π
h
e−icmhθ

[∫
C

X12(z)
1 + eichθz

dz

]
FhF̃

ϵ(θ) dθ,

Ü ϵ
m = h

(2π)2ic

∫ π
h

− π
h
e−icmhθ

[∫
C

X11(z)
1 + eichθz

dz

]
FhF̃

ϵ(θ) dθ

(3.13)

A direct application of the residue theorem, combined with the identity
(2.14), yields the desired result for the sequence (F ϵ

ℓ )ℓ. Taking the limit as
ϵ → 0, we obtain the corresponding result for (Fℓ)ℓ, since the series

∑
ℓ cℓ(gr

zi
)

converges absolutely. Here, cℓ(gr
zi

) denotes the Fourier coefficients of the uni-
formly convergent functions gr

zi
, with r ∈ {u, v, a}.

□

By extending the definition of the operator Pi to the space l2(Cn) as given
in (3.8), the following result follows from Theorem 3.6:

Corollary 3.8. We have the following:
(i) For every r ∈ {u, v, a}, consider the operator

Tr :=
n∑

i=1

1
Λi(Ωi) T (gr

zi
) Pi
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acting on the Hilbert space l2(Cn), equipped with the Hermitian inner prod-
uct

⟨X̃, Ỹ ⟩h :=
∑
ℓ∈Z

⟨Xℓ,MYℓ⟩Cn , for X̃ = (Xℓ)ℓ, Ỹ = (Yℓ)ℓ ∈ l2(Cn).

Then, the spectrum of Tr is given by

(3.14) σ (Tr) =
n⋃

i=1

1
Λi(Ωi) g

r
zi

([
−π

h ,
π
h

])
.

(ii) The operator Tr defines a bijection from l2(Cn) onto the following spaces:

(3.15)



l2(Cn), if r = u,(Xm)m ∈ l2(Cn) :
Xm =

∑
l∈Z
l ̸=m

(−1)m−l

m−l Yl,

(Yl)l ∈ l2(Cn)

 , if r = v,

(Xm)m ∈ l2(Cn) :
Xm = π2

6 Ym +
∑
l∈Z
l ̸=m

(−1)m−l

(m−l)2 Yl,

(Yl)l ∈ l2(Cn)

 , if r = a.

This holds under the condition γ > 1
2 . Moreover, if γ = 1

2 and β < 1
4 ,

the operator defines a bijection from l2(Cn) onto:

(3.16)



l2(Cn), if r = u,(Xm)m ∈ l2(Cn) :
Xm =

∑
l∈Z
l ̸=m

(−1)m−l

(m−l)3 Yl,

(Yl)l ∈ l2(Cn)

 , if r = v,

(Xm)m ∈ l2(Cn) :
Xm = π2

6 Ym +
∑
l∈Z
l ̸=m

(−1)m−l

(m−l)2 Yl,

(Yl)l ∈ l2(Cn)

 , if r = a.

□

Proof of Corollary 3.8. For a fixed r ∈ {u, v, a}, observe that for each 1 ≤ i ≤
n, the operator Tr is stable on the subspace

Ran
(

1
Λi(Ωi)T (gr

zi
)Pi

)
,

since the Pi’s are orthogonal projections in the sense of (3.8), with respect to
the Hermitian inner product defined in the present lemma. It is clear that the
restriction of Tr to this subspace coincides with 1

Λi(Ωi)T (gr
zi

)Pi.
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Therefore, by applying Lemma 1 (I.128) from Bourbaki [3], we deduce:

σ (Tr) =
n⋃

i=1
σ
(

1
Λi(Ωi)T (gr

zi
)Pi

)
.

Moreover, the operator 1
Λi(Ωi) T (gr

zi
) Pi, when restricted to its range, is uni-

tarily equivalent to the multiplication operator

Mgr
zi

/Λi(Ωi) : f 7→ 1
Λi(Ωi) g

r
zi

· f,

acting on the Hilbert space

L2 ((−π
h ,

π
h

)
; Ran(Pi)

)
.

Following the arguments in [9], and using the fact that gr
zi

is continuous on
the interval

[
−π

h ,
π
h

]
, we conclude that the spectrum of Mgr

zi
/Λi(Ωi) is given by

σ
(
Mgr

zi
/Λi(Ωi)

)
=
{

1
Λi(Ωi) g

r
zi

(θ)
∣∣∣ θ ∈

[
−π

h ,
π
h

]}
.

This yields the desired spectral characterization and concludes the proof of
the first assertion.

The second statement is proved as follows: We focus only on (3.15), since
(3.16) can be established by analogy. Replacing (Ül)l∈Z, (U̇l)l∈Z, (Ul)l∈Z, and
(Fl)l∈Z by X̃ = (Xl)l∈Z, Ỹ = (Yl)l∈Z, Z̃ = (Zl)l∈Z, and W̃ = (Wl)l∈Z, re-
spectively, where all these sequences belong to l2(Cn), in (2.1) and (2.2), we
obtain, by applying the discrete Fourier transform Fh:
(3.17)

MFhX̃(θ) + CFhỸ (θ) +KFhZ̃(θ) = FhW̃ (θ),

(1 − eichθ)FhZ̃(θ) = heichθFhỸ (θ) + h2
(
β +

(
1
2 − β

)
eichθ

)
FhX̃(θ),

(1 − eichθ)FhỸ (θ) = h
(
(1 − γ)eichθ + γ

)
FhX̃(θ).

Given that Fh is an isomorphism between l2(Cn) and L2 ((−π
h ,

π
h

)
,Cn

)
, it

follows from (3.17) that the operator Tr is injective for r ∈ {u, v, a}. Moreover,
we can easily verify that FhZ̃, FhỸ , and FhX̃ belong to the function spaces

L2 ((−π
h ,

π
h

)
,Cn) ,{

θf | f ∈ L2 ((−π
h ,

π
h

)
,Cn)} ,

and {
θ2f | f ∈ L2 ((−π

h ,
π
h

)
,Cn)} ,

respectively. One can notice by computing the Fourier coefficients that the
premiage of the previous spaces by Fh are given by (3.15). The surjectivity
is a consequence of the assumption γ > 1

2 , (3.17) and the fact that Fh is an
isomorphism.



368 E. Zafati 12

In the case of (3.16), one can verify that FhZ̃, FhỸ , and FhX̃ belong to the
following function spaces:

L2 ((−π
h ,

π
h

)
,Cn) ,{(

π2

h2 − θ2
)
θf
∣∣∣ f ∈ L2 ((−π

h ,
π
h

)
,Cn)} ,

and {
θ2f

∣∣∣ f ∈ L2 ((−π
h ,

π
h

)
,Cn)} .

This concludes the proof. □

Remark 3.9. In Corollary 3.8, the spectrum σ (Tr) provides, from a phys-
ical point of view, essential information about the system’s behavior in the
frequency domain for each mode. Specifically, it describes how the system
amplifies or attenuates various frequency components (gain) and introduces
corresponding phase shifts, all within the discrete framework. Moreover, an-
alyzing the Fourier coefficients in (3.6) offers insight into which frequencies
contribute most significantly to the spectrum.

It follows from Corollary 3.8 that if γ > 1
2 or γ = 1

2 with β < 1
4 , then Tu

is an isomorphism, and we have 0 /∈ Tu. Moreover, the spaces in (3.15) and
(3.16) associated with the operators Tv and Ta are not closed in l2(Cn).

In [6], a discretization error was established for twice-differentiable functions
F . The following result extends this analysis for positive coefficients ξi to the
cases of bounded continuous functions and integrable functions.

Corollary 3.10. With the same notations as in Theorem 3.6, we claim
the following:

i. If F ∈ C0(R,Rn) is bounded and Fl ∈ F ([lh, (l + 1)h]), then there exists
h0 > 0 such that for every 0 < h ≤ h0 and for every x, y ∈ R with y > x,
we have:

(3.18)∥∥∥∥∥IhŨ(y) −
n∑

i=1
(Gi ∗ PiM

−1F )(y)
∥∥∥∥∥+

∥∥∥∥∥Ih
˜̇U(y) −

n∑
i=1

d
dt(Gi ∗ PiM

−1F )(y)
∥∥∥∥∥

+
∥∥∥∥∥Ih

˜̈U(y) −
n∑

i=1

d2

dt2 (Gi ∗ PiM
−1F )(y)

∥∥∥∥∥
≤ C

[
max

1≤i≤n
e−ξiωi(y−x) sup

s≤x+h
∥F (s)∥ + h∥F∥L∞ + ψF,[x−h,y+h](h)

]
.

where:
• C is independent of h, F , x, and y.
• The function h 7→ ψF,[x,y](h) denotes the modulus of continuity of F

over [x, y].
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• The convolution product Gi ∗ PiM
−1F is defined as:

Gi ∗ PiM
−1F (t) = 1

ωdi

∫ t

−∞
exp(−ξiωi(t− s)) sin(ωdi(t− s))PiM

−1F (s) ds

where the kernel Gi is given by:

Gi(t) = 1
ωdi

exp(−ξiωit) sin(ωdit)χR+(t),

and ωdi = ωi

√
1 − ξ2

i is the damped natural frequency.

ii. If F ∈ Lp(R,Rn), with 1 < p ≤ 2, and

Fl = 1
h

∫ (l+1)h

lh
F (s) ds, ∀l ∈ Z,

then, as h → 0, we have the following convergences:

(3.19)

IhŨ →
n∑

i=1
Gi ∗ PiM

−1F in Lp⋆(R,Rn)

Ih
˜̇U →

n∑
i=1

d
dt

(
Gi ∗ PiM

−1F
)

in Lp(R,Rn) + Lp⋆(R,Rn)

Ih
˜̈U →

n∑
i=1

d2

dt2

(
Gi ∗ PiM

−1F
)

in Lp(R,Rn) + Lp⋆(R,Rn)

with 1 = 1
p + 1

p⋆ .
□

Proof. i- We restrict ourselves to the case IhŨ , as the remaining cases can
be treated analogously. Let 0 < ϵ < 1 and C > 0 an arbitrary constant
independent of h, F , x, and y but may depends on ϵ. Moreover, we choose h′

0
sufficently small such that:

(3.20)
∣∣∣ 1

Λi(Ωi) − 1
∣∣∣ ≤ ϵ, for all 1 ≤ i ≤ n and 0 < h < h′

0.

It suffices to prove that the inequality (3.18) holds on the subspace Ran(Pi)
for each 1 ≤ i ≤ n, assuming that h satisfies (3.20). More precisely, our goal
is to establish the following estimate:

(3.21)

∥∥∥∥ 1
Λi(Ωi)Ih

(
T (gu

zi
)PiM̃−1F

)
(y) −

(
Gi ∗ PiM

−1F
)

(y)
∥∥∥∥ ≤

≤ C

[
e−ξiωi(y−x) sup

s≤x+h
∥F (s)∥ + h∥F∥L∞ + ψF,[x−h,y+h](h)

]
.

To simplify the presentation, we assume without loss of generality that
PiM

−1F = F . Furthermore, we use the notation f(h) = O(hr), with r ≥ 0,
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to indicate that |f(h)| ≤ C|hr| for all h ≤ h0, where h0 is sufficiently small.
We also define the sequence c = (cl)l by:

(3.22) cl = 1
Λi(Ωi)

h
2π

∫ π
h

− π
h

gu
zi

(t) e−iclht dt, for all l ∈ Z.

Let m be a positive integer such that mh ≤ y < mh+ h. First, we have:

(3.23)


1 + zi = O(h),

h
ℑ(−zi) = 1

ωdi
+ O(h)

1
Λi(Ωi) = 1 + O(h)

Thus,

(3.24) 1
Λi(Ωi) · h

ℑ(−zi)

[
β(1 + zi)2 − (1 + zi)

(
γ + 1

2

)
+ 1

]
− 1

ωdi
= O(h).

Moreover, taking into account (2.8) and (2.10), we have for every l ∈ Z:
(3.25)
ℑ
(
(−zi)l

)
− exp (−ξiωilh) sin (ωdilh)

=
[
exp

(
l
2 ln

(
1 −

(
γ′

i − 1
2

) Ω2
i

Λi(Ωi)

))
− exp (−ξiωilh)

]
ℑ (exp (icl arg(−zi)))

+ exp (−ξiωilh) [ℑ (exp (icl arg(−zi))) − sin (ωdilh)] .

By the mean value theorem, there exists t ∈ [0, 1] such that

(3.26)

∣∣∣∣exp
(

l
2 ln

(
1 −

(
γ′

i − 1
2

) Ω2
i

Λi(Ωi)

))
− exp (−ξiωilh)

∣∣∣∣
≤ exp(−αtl) ·

∣∣∣∣− l
2 ln

(
1 −

(
γ′

i − 1
2

) Ω2
i

Λi(Ωi)

)
− ξiωilh

∣∣∣∣ ,
where

(3.27) αt = t ·
(

−1
2 ln

(
1 −

(
γ′

i − 1
2

) Ω2
i

Λi(Ωi)

))
+ (1 − t) · ξiωih.

Since γ ≥ 1
2 and taking into account (3.20), we have:

(3.28)

αt ≥ (1 − ϵ) ξiωih,

exp(−αtl) ≤ exp (−(1 − ϵ) ξiωilh)

Using the expression (2.8) and the Taylor expansion, we obtain:

(3.29)


∣∣∣∣− l

2 ln
(

1 −
(
γ′

i − 1
2

) Ω2
i

Λi(Ωi)

)
− ξiωilh

∣∣∣∣ = lO(h2),

|ℑ (exp (icl arg(−zi))) − sin (ωdilh)| = lO(h2).
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The constants implicit in the O(·) notation in (3.29) are, of course, inde-
pendent of l. Thus, using (3.25), (3.28) and (3.29):
(3.30)∣∣∣∣∣ℑ ((−zi)l

)
− exp (−ξiωilh) sin (ωdilh)

∣∣∣∣∣ ≤ C · exp (−(1 − ϵ) ξiωilh) · lh2.

Since
m−1∑

l=−∞
h|(−zi)m−l| = O(1),

combining (3.24) and (3.30), we obtain:

(3.31)

∥∥∥∥∥∥
m∑

l=−∞
cm−lFl − h

ωdi

m∑
l=−∞

exp (−ξiωi(m− l)h) sin (ωdi(m− l)h)Fl

∥∥∥∥∥∥ ≤

≤ Ch ∥F∥L∞

Moreover, it is not difficult to show, taking into account that |y− s− (m−
l)h| ≤ h for lh ≤ s < (l + 1)h, and using the mean value theorem, that:
(3.32)∥∥∥∥∥∥ h

ωdi

m∑
l=−∞

exp (−ξiωi(m− l)h) sin (ωdi(m− l)h)Fl

− 1
ωdi

∫ y

−∞
exp(−ξiωi(y − s)) sin(ωdi(y − s))IhF̃ (s) ds

∥∥∥∥ ≤ Ch ∥F∥L∞ .

and

(3.33)

∥∥∥∥∫ y

−∞
exp(−ξiωi(y − s)) sin(ωdi(y − s))

[
IhF̃ (s) − F (s)

]
ds

∥∥∥∥
≤ C

(
ψF,[x−h,y+h](h) + exp(−ξiωi(y − x)) sup

s≤x+h
∥F (s)∥

)
.

Here, F̃ = (Fℓ)ℓ∈Z. Thus, we obtain the desired result for the first claim.
ii- Let p⋆ denote the conjugate exponent of p, i.e., such that 1

p + 1
p⋆ = 1.

We focus on the first case related to IhŨ , and we only need to prove that

Ih

(
T (gu

zi
) Pi M̃−1F

)
→ Gi ∗ PiM

−1F

in Lp⋆(R,Rn), for a fixed 1 ≤ i ≤ n, since Λi(Ωi) → 1 as h → 0. For this
purpose and without loss of generality, we assume PiM

−1F = F for simplicity.
First, observe that IhF̃ → F in Lp(R,Rn), where F̃ = (Fℓ)ℓ∈Z. Indeed, one

can check that IhF̃ is uniformly bounded with respect to h in Lp(R,Rn), with

∥IhF̃∥Lp ≤ ∥F∥Lp .
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More precisely, using (3.5), we have

(3.34)

∥IhF̃∥Lp = 1
h ∥Ih ◦ I⋆

hF∥Lp

≤ 1
h ∥Ih∥L(lp(Rn),Lp(R,Rn))∥I⋆

h∥L(Lp(R,Rn),lp(Rn))∥F∥Lp

≤ ∥F∥Lp .

Moreover, the convergence holds for functions in C0(R,Rn) with compact
support. By density of this space in Lp(R,Rn) and by the contractivity prop-
erty in (3.34), we deduce the desired result.

Let Gh
i be the piecewise constant kernel defined by

Gh
i (t) = Gi(lh) for lh ≤ t < (l + 1)h, l ∈ Z.

Define also the function hu
i by

(3.35) hu
i (θ) =

∞∑
l=1

hGh
i (lh) e−iclhθ,

Taking into account the fact that Gi(0) = 0, we write:
(3.36)

Ih ◦ T (gu
zi

)F̃ −Gi ∗ IhF̃ =Ih ◦ T (gu
zi

)F̃ −Gh
i ∗ IhF̃ +Gh

i ∗ IhF̃ −Gi ∗ IhF̃

=Ih ◦
(
T (gu

zi
) − T (hu

i )
)

◦ 1
hI⋆

hF+(
Gh

i −Gi

)
∗
(
Ih ◦ 1

hI⋆
h

)
F.

Moreover, the operators Ih ◦
(
T (gu

zi
) − T (hu

i )
)

◦ 1
hI⋆

h and
(
Gh

i −Gi

)
∗(

Ih ◦ 1
hI⋆

h

)
are well defined on L1(R,Rn) and L2(R,Rn). Furthermore, we

have the following estimates:
For every X ∈ L1(R,Rn), we have:∥∥∥Ih ◦

(
T (gu

zi
) − T (hu

i )
)

◦ 1
hI⋆

hX
∥∥∥

L∞
≤ sup

l∈Z

∣∣∣ 1
hcl −Gh

i (lh)
∣∣∣ · ∥X∥L1 ,∥∥∥(Gh

i −Gi

)
∗
(
Ih ◦ 1

hI⋆
h

)
X
∥∥∥

L∞
≤ ∥Gh

i −Gi∥L∞ · ∥X∥L1 .

For every X ∈ L2(R,Rn), we have:∥∥∥Ih ◦
(
T (gu

zi
) − T (hu

i )
)

◦ 1
hI⋆

hX
∥∥∥

L2
≤
∥∥∥gu

zi
− hu

i

∥∥∥
L∞

· ∥X∥L2 ,∥∥∥(Gh
i −Gi

)
∗
(
Ih ◦ 1

hI⋆
h

)
X
∥∥∥

L2
≤
∥∥∥FGh

i − FGi

∥∥∥
L∞

· ∥X∥L2 ,

where F denotes the Fourier transform.
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As a consequence, using the Riesz–Thorin interpolation theorem, we obtain
the following estimate:∥∥∥Ih ◦ T (gu

zi
)F̃ −Gi ∗ IhF̃

∥∥∥
Lp⋆ ≤

(
sup
l∈Z

∣∣∣ 1
hcl −Gh

i (lh)
∣∣∣ 2

p
−1 ∥∥∥gu

zi
− hu

i

∥∥∥2(1− 1
p

)

L∞

+
∥∥∥Gh

i −Gi

∥∥∥ 2
p

−1

L∞

∥∥∥FGh
i − FGi

∥∥∥2(1− 1
p

)

L∞

)
∥F∥Lp(3.37)

It is not difficult to show, using the asymptotic expansion as h → 0 and
following similar arguments as in the previous case, that the right-hand side
of (3.37) tends to zero. Moreover, applying once again the Riesz–Thorin in-
terpolation theorem on X 7→ Gi ∗X, we deduce that

Gi ∗ IhF̃ → Gi ∗ F in Lp⋆(R,Rn),

taking into account the convergence IhF̃ → F in Lp(R,Rn) established above.
Thus, we have Ih ◦ T (gu

zi
)F̃ → Gi ∗ F in Lp⋆(R,Rn).

In the case of Ih
˜̇U , we prove, as in the previous case, that:

Ih

(
T (gv

zi
) F̃
)

→ d
dt (Gi ∗ F )

in Lp(R,Rn) + Lp⋆(R,Rn).
Taking as before the following notations:

Ġh
i (t) = d

dtGi(mh) for mh ≤ t < (m+ 1)h, m ∈ Z,

and

(3.38) hv
i (θ) =

∞∑
l=1

h Ġh
i (lh) e−iclhθ,

it is sufficient to observe that
(

d
dtGi

)
∗F = d

dt (Gi ∗ F ) almost everywhere. In
particular, at every t ∈ R, we have:
(3.39)

Ih ◦ T (gv
zi

) F̃ (t) −
(

d
dtGi

)
∗ IhF̃ (t) = Ih ◦

(
T (gv

zi
) − T (hv

i )
)

◦ 1
hI⋆

hF (t)

+
(
Ġh

i − d
dtGi

)
∗
(
Ih ◦ 1

hI⋆
h

)
F (t)

−
(
t−

⌊
t
h

⌋
h
)
Ġh

i (0) Ih ◦ 1
hI⋆

hF (t)

where
⌊

t
h

⌋
denotes the integer part of t

h . As in the previous case, the first two
terms on the right-hand side of (3.39) tend to zero in Lp⋆(R,Rn).

Denoting the last term on the right-hand side of (3.39) by the map Eh(t),
we obtain:
(3.40)

(
d
dtGi

)
∗ IhF̃ − Eh →

(
d
dtGi

)
∗ F

in Lp(R,Rn) + Lp⋆(R,Rn), since Eh → 0 in Lp(R,Rn) and
(

d
dtGi

)
∗ IhF̃ →(

d
dtGi

)
∗ F in Lp⋆(R,Rn). Thus, we conclude the desired convergence result.
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The final case, concerning Ih
˜̈U , can be handled analogously, with only minor

modifications. It suffices to observe that, at every Lebesgue point t ∈ R of the
map F , the identity(

d2

dt2Gi

)
∗ F (t) + d

dtGi(0) · F (t) = d2

dt2 (Gi ∗ F ) (t)

holds.
□

In many structural dynamics applications, a cut-off frequency is employed
for modal truncation, allowing the solution to be computed in the subspace
generated by the projection operators {P1, . . . ,Pq}, where 1 ≤ q ≤ n.

The cut-off frequency is characterized by the existence of an integer q such
that, for all i ≥ q, the approximation

ω2
i Gi ∗

(
PiM

−1F
)

≈ PiM
−1F

holds in the asymptotic regime where ωi is sufficiently large.
This means that the contribution of higher modes becomes negligible, and

the dynamics can be captured by the first q modes. Moreover, using the
notation of Corollary 3.10 and assuming additionally that the weak derivative
Ḟ ∈ L∞(R,Rn), one can show that

∥PiM
−1F − ω2

iGi ∗ PiM
−1F∥L∞ ≤ 1

ωiξi

√
1−ξ2

i

∥PiM
−1Ḟ∥L∞ .

The discretized version of the above inequality is given by the following:

Corollary 3.11. Assume that F ∈ C0(R,Rn), Ḟ ∈ L∞(R,Rn) and Fl ∈
F ([lh, (l + 1)h]). For a fixed 1 ≤ i ≤ n, we have the following estimate:

(3.41)
∥∥∥∥PiM̃−1F − ω2

i
Λi(Ωi)T (gu

zi
)PiM̃−1F

∥∥∥∥
l∞

≤ C
ωiξi

g(Ωi)∥PiM
−1Ḟ∥L∞

where:

(3.42) g(Ωi) = Λi(Ωi)√
Λi(Ωi)− 1

4 Ω2
i (γ′

i+
1
2 )2

and C depends only on γ and β. Recall that γ′
i is given by (2.9).

Moreover, we have the asymptotic behavior:

(3.43) lim
Ωi→0

g(Ωi) = 1√
1 − ξ2

i

.

□

Proof. Let C be an arbitrary constant that depends only on γ and β and
m ∈ Z. We put:

(3.44) cl = h
2π

∫ π
h

− π
h

gu
zi

(t)e−iclht dt, for all l ∈ Z,
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and for arbitrary integer q, −∞ < q ≤ m:

(3.45) Aq = ω2
i

q∑
l=−∞

cm−l.

Using Abel’s summation by parts, we obtain:

(3.46) ω2
i

m∑
l=−∞

cm−lPiM
−1Fl = AmPiM

−1Fm −
m−1∑

l=−∞
AlPiM

−1(Fl+1 − Fl).

Using the expression (2.8) on can establish:

(3.47) Am = Λi(Ωi).

Moreover, taking into account that |zi| < 1, we have for q < m:

(3.48)

|Aq| = Ω2
i

∣∣∣∣∣∣
ℑ
[

(−zi)m−q

1+zi
(β(1+zi)2−(1+zi)(γ+ 1

2 )+1)
]

ℑ(−zi)

∣∣∣∣∣∣
≤ C

Ω2
i

|ℑ(zi)| · |zi|m−q

|1+zi|

= C · (Λi(Ωi))
3
2√

Λi(Ωi)− 1
4 Ω2

i (γ′
i+

1
2 )2

· |zi|m−q.

Combining this with the fact that Ḟ ∈ L∞(R,Rn) and using again that
|zi| < 1 with (2.10), we have for every l < m:
(3.49)

∥∥PiM
−1Fl+1 − PiM

−1Fl

∥∥ ≤ 2h
∥∥∥PiM

−1Ḟ
∥∥∥

L∞
= 2Ωi

ωi

∥∥∥PiM
−1Ḟ

∥∥∥
L∞

Ωi

m−1∑
q=−∞

|zi|m−q = Ωi|zi|
1−|zi| ≤ (Λi(Ωi))

1
2

ξi
.

Combining equations (3.46), (3.47), (3.48), and (3.49), we obtain the desired
result. This completes the proof.

□

The following corollary provides an explicit convergence rate for the trun-
cated operator representation introduced in Theorem 3.6. It can be interpreted
as the error introduced by considering only the N recent time steps.
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Corollary 3.12. With the notations of Theorem 3.6, assume that F̃ =
(Fℓ)ℓ∈Z ∈ l2(Rn). Let N ∈ N∗, and define the following truncated functions:

(3.50)



gu
w,N (θ) = βh2 +

N∑
l=1

h2 ℑ[(−1)lwl−1(β(1+w)2−(1+w)(γ+ 1
2 )+1)]

ℑw · eiclhθ,

gv
w,N (θ) = γh+

N∑
l=1

h
ℑ[(−1)lwl−1(1+w)(γ(1+w)−1)]

ℑw eiclhθ

ga
w,N (θ) = 1 +

N∑
l=1

ℑ[(−1)lwl−1(1+w)2]
ℑw eiclhθ

Next, define the associated truncated sequences:

(3.51)



ŨN =
n∑

i=1

1
Λi(Ωi)T (gu

zi,N )PiM̃−1F ,

˜̇UN =
n∑

i=1

1
Λi(Ωi)T (gv

zi,N )PiM̃−1F ,

˜̈UN =
n∑

i=1

1
Λi(Ωi)T (ga

zi,N )PiM̃−1F .

Then, for every integer r > 0, there exists a constant h0 > 0 such that for
every 0 < h < h0, the following estimate holds:

(3.52) ∥ŨN − Ũ∥l2 + ∥ ˜̇UN − ˜̇U∥l2 + ∥ ˜̈UN − ˜̈U∥l2 ≤ C LN +1
(hN)r ∥F̃∥l2 ,

where LN denotes the Lebesgue constant (see Chapter II, Section 12 of [21]
for its definition), and C is a constant independent of h, N and F̃ but depends
on r. □

Proof. Throughout this proof, let C > 0 be an arbitrary constant, indepen-
dent of h, N and F̃ , but possibly depending on r. Since the projectors Pi

are orthogonal with respect to the inner product ⟨·, ·⟩h introduced in Corol-
lary 3.8, and since M is positive definite, we deduce, taking into account that

1
Λi(Ωi) ≤ 1, that:

(3.53)
∥∥∥ŨN − Ũ

∥∥∥
l2

≤ C
n∑

i=1

∥∥∥gu
zi

− gu
zi,N

∥∥∥
L∞

∥∥∥F̃∥∥∥
l2
.

Moreover, for each 1 ≤ i ≤ n, using inequality (13.25) from [21] and the
fact that gu

zi
is h-periodic, we obtain:

(3.54)
∥∥∥gu

zi
− gu

zi,N

∥∥∥
L∞

≤ CLN +1
(hN)r

∥∥∥ dr

dθr g
u
zi

∥∥∥
L∞

.
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Furthermore, using the fact that γ ≥ 1
2 and |zi| < 1, we have:

∥∥∥ dr

dθr g
u
zi

∥∥∥
L∞

≤ C h
|ℑ(zi)|

∞∑
l=1

(lh)r exp
(
− ξiωi(l−1)h

Λi(Ωi)

)
≤ C h

|ℑ(zi)| exp
(

2ξiΩi

Λi(Ωi)

) ∫ ∞

0
sr exp

(
− ξiωis

Λi(Ωi)

)
ds(3.55)

= C h
|ℑ(zi)| exp

(
2ξiΩi

Λi(Ωi)

) [
Λi(Ωi)

ξiωi

]r
Γ(r)(3.56)

≤ C h
|ℑ(zi)| exp (2ξiΩi)

[
Λi(Ωi)

ξiωi

]r
(3.57)

where r 7→ Γ(r) denotes the Gamma function.
In the other cases, i.e., when considering gv

zi
or ga

zi
, we use the following

identity from (2.8):

|1 + zi| = hωi√
Λi(Ωi)

,

and we obtain the following estimates:∥∥∥ dr

dθr g
v
zi

∥∥∥
L∞

≤ C hωi
|ℑ(zi)| exp (2ξiΩi)

[
Λi(Ωi)

ξiωi

]r
,(3.58) ∥∥∥ dr

dθr g
a
zi

∥∥∥
L∞

≤ C
hω2

i
|ℑ(zi)| exp (2ξiΩi)

[
Λi(Ωi)

ξiωi

]r
.(3.59)

Thus we obtain:

(3.60)
∥ŨN − Ũ∥l2 + ∥ ˜̇UN − ˜̇U∥l2 + ∥ ˜̈UN − ˜̈U∥l2

≤ C (LN +1)
(hN)r

(
n∑

i=1

h(1+ωi)2 exp(2ξiΩi)
|ℑ(zi)|

[
Λi(Ωi)

ξiωi

]r)
∥F̃∥l2 .

Using the Taylor approximations in (3.23), we obtain the desired result for
0 < h < h0, for some h0 > 0 satisfying the assumption (H2). □

4. CONCLUSIONS

In conclusion, this paper investigates some representation results for the
discrete solutions of second-order evolution equations, discretized using the
Newmark scheme, with the solutions expressed through bi-infinite Toeplitz or
Laurent operators. This approach provides some insights into the spectral
properties of the associated operators. Additionally, we establish convergence
results under relaxed regularity assumptions, requiring only either continuous
or integrable source terms. These results, although derived in the context of
the Newmark scheme, can be adapted to other time discretization methods
that preserve similar structural properties such the convolution-type recur-
rence relations.
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