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FOR LAPLACE AND HELMHOLTZ LAYER POTENTIALS IN 2D∗
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Abstract. An adaptive algorithm based on quadrature by expansion (QBX) is
proposed for computing layer potentials at target points near or on a smooth
boundary in R2. The algorithm can be viewed as a major modification to the two-
phase algorithm AQBX, proposed recently by Klinteberg et al. [SIAM Journal
on Scientific Computing, 40(3), 2018]. In the modified AQBX (MAQBX), we
consider sharper bounds for the involved truncation error. As a result, the
involved stopping criteria are met earlier, and the total computational cost is
reduced. Moreover, MAQBX is a single-phase algorithm and its structure is far
simpler than that of AQBX. It is recommended that QBX (or any version of it)
should be applied on a small part of the boundary that is near the target point,
and a classical quadrature is applied on the rest of the boundary (this is often
referred to as local QBX). We partially show that for Laplace and Helmholtz
potentials, parametric symmetry of the target point with respect to the near
part, can improve the convergence of QBX. Based on this observation, we suggest
the local MAQBX that is very efficient in practice both for computing layer
potentials and for solving boundary integral equations via the Nyström scheme.
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In boundary integral methods (BIMs), one uses Green theorems and trans-
forms a boundary value problem (BVP) for PDEs to a well-posed integral
equation on the boundary of the domain of definition of the problem (note that
the domain of application of BIMs extends far beyond the scope of PDEs).
This has many advantages over the traditional volume PDE solvers such as
FD, FEM, etc: 1) the dimension of the problem is reduced by one, so one
needs fewer sample points to achieve a given accuracy, 2) an exterior problem
with an unbounded spatial domain is reduced to a boundary integral equation
over a bounded domain, 3) solving integral equations of the second kind is
more numerically stable than solving PDEs directly by traditional discretiza-
tion methods, 4) through the Nyström method, the problem of solving an
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integral equation of the second kind is reduced to the simpler problem of nu-
merical quadrature or cubature for which high-order rules exist, 5) moving
boundaries can be handled more easily, 6) a boundary integral formulation
reflects well-posedness of the underlying physical problem more fairly, etc.

Assume that G is the fundamental solution of the PDE associated with a
BVP defined in a domain Ω ⊂ Rd, d ≥ 1. In a BIM, the solution u of the
problem is represented as a layer potential with a jump discontinuity on the
boundary ∂Ω. This jump discontinuity is essential in well-posedness of the
resulting boundary integral equation. Consider the double layer potential

(1) Dσ(x) :=
∫

∂Ω
∂G

∂nx′
(x, x′)σ(x′) dx′,

(with nx′ the outer unit normal at x′) and the single layer potential

(2) Sσ(x) :=
∫

∂Ω
G(x, x′)σ(x′) dx′.

The double layer potential itself and the gradient of the single layer potential
satisfy jump discontinuity properties. Thus, the double layer and the single
layer potentials are suitable for Dirichlet and Neumann problems, respectively.
For the sake of solvability, one usually uses a combined field representation

(3) u(x) = (D + αS)σ(x), x ∈ Ω,

where α ̸= 0 is a coupling parameter. For a Dirichlet problem with the Dirich-
let data f on the boundary, we obtain the following boundary integral equation
for the unknown density function σ:

(4)
(
±1

2I + D + αS
)

σ(x) = f(x), x ∈ ∂Ω,

where the positive and the negative signs correspond to the exterior and the
interior problem, respectively. If σ̃ is an approximate solution of (4), the
solution to BVP at the target point x is achieved by computing the layer
potential (D + αS)σ̃(x). For Neumann and Robin boundary conditions, BIM
is also led to integral equations of the second kind, which are known to be
well-posed (see [11] and references therein).

In this paper, we focus on two-dimensional Laplace and Helmholtz problems,
though the theory is readily applicable to other problems.

In BIM, singularity is a price which should be paid for well-posedness. In-
deed, the singularity of the fundamental solution yields the jump disconti-
nuity property of the layer potential, and the latter causes the term ±I/2
in (4), which renders the boundary integral equation to a well-posed inte-
gral equation of the second kind. Singularity of the fundamental solution
is inherited by both the boundary integral equation and the layer poten-
tial. Indeed, the boundary integral equation is weakly singular, and the
layer potential at a target point near the boundary is a nearly singular in-
tegral. There are several efficient numerical methods for both the problems
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(see e.g., [5, 7, 8, 9, 10, 13, 15, 14, 16, 18, 22]), but there is still the need to
design more robust algorithms.

Quadrature by expansion (QBX) was introduced in [17] for computing
layer potentials at target points on or near the boundary. QBX is easy
to implement, high order accurate, and despite earlier methods, dimension-
independent. Moreover, QBX can be coupled with fast multipole methods
(FMMs) and introduces fast algorithms for both the problems of solving
boundary integral equations and computing layer potentials at target points
near the boundary. In QBX, the singular integrand is locally expanded about a
center with a suitable distance from the boundary. As a result, the singular or
nearly singular layer potential is approximated by a sum of several regular inte-
grals. Due to its individual benefits, QBX has been the subject of many studies
for the last decade. In [6, 12, 2], convergence of QBX is studied in depth. Some
combinations of QBX with FMM are suggested in [26, 25, 20]. QBX has also
found applications in simulating spheroids in periodic Stokes flow [1]. For
other applications and modifications of QBX one can see [3, 21, 23, 27].

One of the difficulties of QBX is the choice of parameters to achieve the
optimal accuracy. The distance r of the expansion center from the boundary,
the order p of the expansion, and the number N of abscissas for the underlying
quadrature have unspecific interactions on the total accuracy. For example,
when p grows, the total error can decrease or increase depending on the values
of r and N . Thus, there is an urgent need to determine optimal parameters
to achieve a given accuracy.

In [3], this problem has been studied in depth, and an adaptive algorithm is
proposed for determining p and N , for a given r. In adaptive QBX, the poten-
tial is written as the inner product of a vector of coefficients involving regular
integrals over the boundary and a vector of norm one. The error in QBX can
be separated into a truncation error and a coefficient error. In adaptive QBX,
practical a priori estimates for both of the errors are suggested, which enable
one to determine the optimal parameters in order to achieve a given accuracy.
The algorithm has two phases. In the first phase, the coefficients are computed
by the Gauss-Legendre rules to a given accuracy. In the core of this phase,
there is a usable and sharp a priori error estimate for the Gauss-Legendre
quadrature. The idea is developed by contour integrals and residue calculus,
which was extended later to curves and surfaces in R3 [4, 24]. Meanwhile, the
coefficients are computed till a stopping criterion is met for the truncation er-
ror. In the second phase, the potential is computed by considering a different
stopping criterion for the truncation error. Indeed, in the first phase, an upper
bound is employed for the truncation error to compute coefficients contribut-
ing in the second phase, while in the second phase, a sharper bound is used to
evaluate the potential. This causes that some coefficients are computed in the
first phase that do not have any contribution in the second phase, and this in
turn exposes an extra and unnecessary computational cost.
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In the present paper, we address the above issue. If we consider the sharper
bound in both phases, then they merge into a single one, resulting in a modified
algorithm that is simpler as well as faster in practice. We also propose some
other modifications that improve the logic and convergence of adaptive QBX.
The estimate suggested in [3] for the coefficient error actually depends on p.
Here, we suggest a p-independent one, which gives a more reasonable bound for
the coefficient error. Also, we partially show that for Laplace and Helmholtz
potentials, if some symmetry conditions are held, the convergence of QBX
is improved. Such conditions can easily be held without imposing an extra
computational cost.

The rest of paper is organized as follows. In Section 1, a brief review of
QBX is given. Section 2 contains the modifications to the AQBX algorithm
of [3], based on which, we devise the modified AQBX (MAQBX) algorithm
in Section 3. We carry out some numerical experiments in Section 4 to illus-
trate the efficiency of the MAQBX algorithm for computing layer potentials as
well as solving boundary integral equations. Finally, we give some conclusions
in Section 5.

1. QBX

In this section, we give a review of QBX and its localization. Assume that
Ω ⊂ R2 is either interior or exterior of a bounded domain in R2 with smooth
boundary ∂Ω. In 2D, it is more convenient to consider R2 as the complex
plain C and write the potentials in the complex setting. Assume that γ is an
analytic 2π-periodic counterclockwise parametrization of the boundary, that
is γ([0, 2π]) = ∂Ω. Assume also that the boundary is so smooth that γ′ never
vanishes. Then, the outer normal n(t) at any point t ∈ [0, 2π), is determined
by −iγ′(t)/|γ′(t)|.

In the complex setting, a 2D layer potential can be written in form of

(5) u(z) =
∫

∂Ω
K(z, w)σ(w) dsw,

where z is the target point in R2, K is a linear combination of the fundamental
solution and its normal derivative, and dsw is the arc length element with
respect to w.

The main assumption of QBX is that the variables of K can be separated
by a known addition theorem as

(6) K(z, w) =
∞∑

m=0
Ar

m(w, z0) · Br
m(z, z0), |z − z0| < |w − z0|,

where Ar
m and Br

m are either scalars or 2-vectors with given r, the distance of
the expansion center z0 from the boundary. Note that K(w, w) is unbounded
for any w ∈ ∂Ω, thus the expansion (6) should have a singular factor. We
assume that Br

m is bounded and Ar
m is the singular part, i.e., Ar

m(w, w) is
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unbounded for any w ∈ ∂Ω. We also assume that (6) is normalized as
|Br

m(z, z0)| ≤ 1,(7)
max
m,z

|Br
m(z, z0)| = 1,(8)

for |z − z0| ≤ r and integer m ≥ 0. This normalization is necessary in adaptive
QBX (see [3]).

From (6), the potential (5) can be written as

(9) u(z) =
∞∑

m=0
amBr

m(z, z0),

where

(10) am :=
∫

∂Ω
Ar

m(w, z0)σ(w) dsw.

Since the expansion center is far away from the boundary, the integrals (10)
are regular and can be approximated by classical quadrature rules to the given
accuracy. Assume that am, for each m, is approximated by ãm. When the
distance of z from the boundary is less than r, the u(z) can be approximated
by QBX as

(11) up(z) :=
p∑

m=0
ãmBr

m(z, z0).

The total error is the summation of the truncation error (eT) and the coef-
ficient error (eC):

(12) u(z) − up(z) = u(z) −
p∑

m=0
amBr

m(z, z0)︸ ︷︷ ︸
eT

+
p∑

m=0
(am − ãm)Br

m(z, z0)︸ ︷︷ ︸
eC

.

See [12] for an error analysis. In practice, the truncation error decreases
almost exponentially as rp when p grows. The coefficient error depends on
the accuracy of the underlying quadrature rule, but it can be deteriorated as
p increases. The interplay between eT and eC, as p grows, naturally leads us
to search for the optimal p, which minimizes the total error.

The paper [3] was the first attempt to study this problem in depth, and
here, we give some revisions to the algorithm proposed in [3]. Before that, we
complete this section by determining Ar

m and Br
m for Laplace and Helmholtz

layer potentials.

1.1. Laplace double layer potential. Fundamental solution of the 2D
Laplace problem is Φ(x, x′) = − log |x − x′|/(2π). In the complex setting, the
corresponding double layer potential can be written as u = ℜv, where

(13) v(z) = 1
2π

∫
∂Ω

nw
z−w σ(w) dsw, z ∈ C \ ∂Ω.



6 Modified adaptive quadrature by expansion 277

Now, from the Taylor expansion

(14) −1
z−w =

∞∑
m=0

(z−z0)m

(w−z0)m+1 , |z − z0| < |w − z0|,

the corresponding Ar
m and Br

m is specified

Ar
m(y, z0) = − rmnw

2π(w−z0)m+1 ,(15a)

Br
m(z, z0) = (z−z0)m

rm .(15b)

1.2. Laplace single layer potential. In the complex setting, the Laplace
single layer potential can be written as u = ℜv, where

(16) v(z) = 1
2π

∫
∂Ω

log
(

1
w−z

)
σ(w) dsw, z ∈ C \ ∂Ω.

Now, from the Taylor expansion

log
(

1
w−z

)
= log

(
1

w−z0

)
− log

(
1 − z−z0

w−z0

)
= log

(
1

w−z0

)
+

∞∑
m=1

1
m

(
z−z0
w−z0

)m
, |z − z0| < |w − z0|,(17)

the corresponding Ar
m and Br

m is specified by

Ar
0(w, z0) = 1

2π log
(

1
w−z0

)
,(18a)

Ar
m(w, z0) = 1

2πm
rm

(w−z0)m+1 , m > 0,(18b)

Br
m(z, z0) = (z−z0)m

rm , m = 0, 1, . . . .(18c)

1.3. Helmholtz double layer potential. In the complex setting, fundamen-
tal solution of the 2D Helmholtz problem with the wave number k is

(19) Φk(z, w) = i
4H

(1)
0 (k|z − w|).

For Helmholtz potentials, one uses the Graf addition theorem [19, §10.23(ii)],

(20) H
(1)
0 (k|z − w|) =

∞∑
m=−∞

H(1)
m (krw)e−imθwJm(krz)eimθz , rz < rw,

where (rw, θw) and (rz, θz) are polar coordinates of w − z0 and z − z0, respec-
tively, i.e.,

rw = |w − z0|,(21a)
eiθw = w−z0

|w−z0| ,(21b)
rz = |z − z0|,(21c)

eiθz = z−z0
|z−z0| .(21d)
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Then, the corresponding Ar
m and Br

m are given as follows (see [3])
Ar

0(w, z0) = d0(w, z0)(22a)
Br

0(z, z0) = J0(krz)(22b)
Ar

m(w, z0) = αr
m (dm(w, z0), d−m(w, z0)) , m > 0,(22c)

Br
m(z, z0) = 1

αr
m

(
Jm(krz)eimθz , J−m(krz)e−imθz

)
, m > 0,(22d)

where
(23) αr

m :=
√

2
m!

(
kr
2

)m
, m > 0,

and
(24) dm(w, z0) = ik

8

(
H

(1)
m−1(krw)e−i(m−1)θw n̄w − H

(1)
m+1(krw)e−i(m+1)θwnw

)
,

for all m ≥ 0. Note that Ar
m and Br

m are 2-vectors for m > 0

1.4. Helmholtz single layer potential. Again, the Graf addition theorem
implies that Ar

m and Br
m, corresponding to the Helmholtz single layer potential,

are as follows (see [3])
Ar

0(w, z0) = s0(w, z0)(25a)
Br

0(z, z0) = J0(krz)(25b)
Ar

m(w, z0) = αr
m (sm(w, z0), s−m(w, z0)) , m > 0,(25c)

Br
m(z, z0) = 1

αr
m

(
Jm(krz)eimθz , J−m(krz)e−imθz

)
, m > 0,(25d)

where αr
m are defined by (23), and

(26) sm(w, z0) = i
4H(1)

m (krw)e−imθw ,

for all m ≥ 0.

1.5. Localization. For integration of (5), one can split the integration path
as ∂Ω = Γnear ∪ Γfar into the ‘near part’ and the ‘far part’. The near part
contains points of the boundary which are so near the target point z, that
classical quadrature rules on Γnear with a moderate number of abscissas leads
to rather large error. More precisely, for a given integer ℓ ∈ [0, 1),
(27) Γnear = {w ∈ ∂Ω : |w − z| ≤ ℓr} .

Discussion on the choice of ℓ is beyond the scope of this article; interested
reader can refer [6, 3] for some comments.

It is recommended that QBX is used only on the near part, and a tradi-
tional fast quadrature rule is employed for the far part [6, 3]. This is the
so-called local QBX that is compatible with FMM. In local QBX, one divides
the boundary into smaller pairwise disjoints panels,

(28) ∂Ω =
⋃
i

Γi,
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Γ1

Γ2

z
(2)
0

z
(1)
0

target point *

Fig. 1. The near (red) and the far (green) parts of a boundary with respect to a target
point (black asterisk). z

(j)
0 is the exapnsion center corresponding to the panel Γj , for

j = 1, 2.

such that the boundary is well-resolved by the panels, i.e., the curvature of
each panel is rather small. One often uses panels of equal length though panels
of different lengths are also allowed. In the latter case, it is recommended that
the lengths of any two adjacent panels have a ratio in the interval [1/2, 2]
(see [20] for more details).

Note that the near (or far) part of a boundary with respect to a target point
is not necessarily connected. In Fig. 1, the near part is the union of two disjoint
curves Γ1 and Γ2. QBX is applied for each panel separately with an individual
expansion center, i.e., z

(j)
0 for the panel Γj , for j = 1, 2. Without losing any

generality, we assume that the near part is always connected throughout this
paper.

In adaptive local QBX, the only input parameter is the error tolerance ε.
In Section 3, we suggest how to choose r and determine the near part by ε.
Throughout the paper, by adaptive QBX, we mean adaptive local QBX, and
the idea is described on a typical small panel Γ ⊂ ∂Ω that is near to the target
point z and in front of it, i.e., the set {|z − w| : w ∈ Γ} takes its minimum
at a point in int(Γ) := {w ∈ Γ : Brw(w) ∩ ∂Ω ⊆ Γ for some rw > 0}. Here,
Brw(w) is an open ball of radius rw centered at w.

2. SOME IMPROVEMENTS IN ADAPTIVE QBX

In this section, we give some modifications to the two-phase algorithm pro-
posed in [3] for adaptive QBX. In Section 2.1, the first phase, i.e., the coeffi-
cient error, is affected by considering more suitable criteria for the coefficient
refinement. In Section 2.2 and Section 2.3, we modify the second phase such
that the truncation error reaches the stopping threshold more rapidly. In to-
tal, one obtains a single-phase algorithm for adaptive QBX (ref. Section 3)
that is simpler and faster than that of [3].

2.1. p-independent coefficient error estimate. In the algorithm proposed
in [3], the quadrature rule is refined so that |am − ãm| < ε for each m, where
ε > 0 is a given tolerance. This strategy has this disadvantage that the upper
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bound for the coefficient error grows linearly with p. Indeed,

(29) |eC| ≤
p∑

m=0
|am − ãm| ≤ (p + 1)ε.

If we use the condition |am − ãm| < 2−m−2ε for each m instead, then we
gain two advantages. Firstly, ãm approximates am more accurately since it is
assumed that am decays exponentially by m. Secondly,

(30)
p∑

m=0
|am − ãm| ≤ ε

p∑
m=0

2−m−2 = ε(1/2 − 2−p−2) < ε/2.

Thus, the upper bound (30) is independent of p.
Note that 2−m−2ε may reach the machine epsilon εmach rapidly as m

grows. In order to avoid extra effort, one can consider the condition
|am − ãm| < max{2−m−2ε, εmach} instead. Since one does not expect that p
exceeds, e.g. 50, the inequality (30) will still be valid up to a tolerance scalable
to the machine precision.

In order to approximate am to a given accuracy, we suggest the Gauss-
Legendre rules, though any other quadrature rule can also be employed, pro-
vided that there exists a practical error bound for it that contains no unknown
coefficients and can efficiently be evaluated. In [3], the authors suggest such
an a priori estimate EC(n, m) of |am − ãm|, where ãm is an approximation of
am obtained by the n-point Gauss-Legendre quadrature rule:

(31) EC(n, m) = rm

m!

∣∣∣∣ 2n+1
γ′(w0)

√
w2

0−1

∣∣∣∣m |σ(w0)|∣∣w0±
√

w2
0−1

∣∣2n+1 ,

where γ : [−1, 1] → Γ is a parametrization of Γ, and w0 is a zero of the complex
function w 7→ γ(w) − z0. For details on how to approximate w0 and evaluate
EC(n, m) robustly, one can see [3, Section 3.1].

2.2. Avoid computing extra coefficients. Truncation error eT depends on
the coefficients am, which are unknown. Assume that ãm is an approximation
of am for each m.

The algorithm proposed in [3] has two phases. Since it is assumed that
the coefficients am decay exponentially as m grows, one can expect that their
approximate values ãm do so. In the first phase ([3, Algorithm 1]), starting
from m = 0, the coefficients am are approximated by ãm to the accuracy of ε
till they drop below ε. If m0 > 0 is the smallest integer such that |ãm0 | < ε,
then set p := m0. Thus, by [3, Eq. (14)],

(32) |eT| =
∣∣∣ ∞∑

m=p+1
amBr

m(z, z0)
∣∣∣ ⪅ |am0+1| ≤ |am0+1−ãm0+1|+|ãm0+1| < 2ε.

In the second phase ([3, Algorithm 2]), only those terms ãmBr
m(z, z0) with

|ãmBr
m(z, z0)| < ε are contributed in the sum (11). This means that there is

a possibility that some coefficients ãm are computed in the first phase but
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Fig. 2. A portion of the ‘starfish’ geometry (33) between 5.05 < t < 5.2 and a target
point at z = 0.45 − i.

ε 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12

num-coeff-phase1 5 6 7 9 10 12 14 15 17 19
p + 1 3 4 5 5 6 7 8 8 9 10

Table 1. Efficiency of the algorithm proposed in [3] for the Laplace double layer po-
tential at the target point z = 0.45 − i and on the ‘starfish’ geometry (33) limited to
5.05 < t < 5.2: The number of computed coefficients ãm at the end of Algorithm 1
of [3] (num-coeff-phase1) and the number of contributed terms, p + 1, for each toler-
ance ε are computed.

do not contribute in the second phase since |Br
m(z, z0)| ≤ 1. In this case, the

value of p is updated in the second phase, accordingly.
For example, consider a small portion Γ of the starfish

(33) γ(t) = (1 + .25 sin(5t)) exp(it),

between 5.05 < t < 5.2, and the target point z = 0.45 − i (see Fig. 2). For com-
puting the Laplace double layer potential by QBX, as recommended in [3], let
r = l/4 with l denoting the length of Γ. The number of computed coeffi-
cients ãm at the end of the first phase (num-coeff-phase1) and the number
of contributed terms in the approximate potential (11), i.e., p + 1, for each
tolerance ε are listed in Table 1. The differences between the values of these
two rows indicate that a considerable portion of computational cost is devoted
to computing some coefficients which never come to use.

We can revise the above procedure by approximating am by ãm to the
accuracy of 2−m−2ε (see Section 2.1) till |ãmBr

m(z, z0)| drops below ε/4. Let
m0 > 0 be the smallest integer such that |ãm0Br

m0(z, z0)| < ε/3. Then, setting
p := m0 − 1,

|eT| =

∣∣∣∣∣∣
∞∑

m=p+1
amBr

m(z, z0)

∣∣∣∣∣∣ ⪅ |am0Br
m0(z, z0)|

≤ |am0 − ãm0 | + |ãm0Br
m0(z, z0)|

≤ (2−m0 + 1)ε/3 ≤ ε/2.
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2.3. Expansion center. Our observations show that position of the target
point with respect to the curve Γ affects the efficiency of adaptive QBX. In-
deed, the more symmetric the target point is with respect to Γ, the earlier the
condition |ãmBr

m(z, z0)| < ε/4 is satisfied. Note that this symmetry is not nec-
essary geometrically, and it should be viewed in the sense of parametrization.
In order to explain the idea, we need the following lemma.

Lemma 1. Consider a holomorphic function h on the lines |ℑz| = r0, for
some r0 > 0. Assume that h satisfies the following conditions in its domain
of analyticity: (c1) h(z) = h(z̄); (c2) either h(−z) = h(z) or h(−z) = −h(z).
Then, the real-valued function ξ defined by

(34) ξ(t0) =
∣∣∣∣∫ 1

−1
h(t − t0 − ir0) dt

∣∣∣∣ ,

on [−1, 1], is even.
Proof. Change of the variables t := −t with (c1) and (c2) yields

ξ(−t0) =
∣∣∣∣∫ 1

−1
h(t + t0 − ir0) dt

∣∣∣∣ =
∣∣∣∣∫ 1

−1
h(t + t0 − ir0) dt

∣∣∣∣
=

∣∣∣∣∫ 1

−1
h(t + t0 + ir0) dt

∣∣∣∣ =
∣∣∣∣∫ 1

−1
h(−t + t0 + ir0) dt

∣∣∣∣
=

∣∣∣∣∫ 1

−1
h(t − t0 − ir0) dt

∣∣∣∣ = ξ(t0).(35)

□

Thus, under the assumptions of Theorem 1, t0 = 0 is a critical point of∣∣∣∣∫ 1

−1
h(t − t0 − ir0) dt

∣∣∣∣. In the following, we use Theorem 1 to show that the
coefficients am in either of the Laplace or the Helmholtz layer potentials, are
minimized for almost all m, when the projection of the target point on Γ, has
the preimage in the middle.

2.3.1. Laplace potentials. Assume that γ : [−1, 1] → Γ is a parametrization of
Γ, i.e., γ([−1, 1]) = Γ. Then, for any m ≥ 0, the coefficient am, corresponding
to the Laplace double layer potential, can be written as

am = −ym

2π

∫
Γ

hm(w − z0)nwσ(w) dsw

= − rm
0

2πi

∫ 1

−1
hm (γ(t) − γ(t0 + ir0)) γ′(t)σ̃(t) dt,(36)

where hm(z) = z−m−1, σ̃ = σ ◦ γ, and z0 = γ(t0 + ir0) is the expansion center.
When the length of Γ is small enough and it resembles a straight segment in
the complex plain, we can assume that σ̃ is almost constant on [−1, 1], and γ
is approximated by a line, i.e.,
(37) γ(t) ≈ bt + q,
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Fig. 3. Graphs of ξm(t0), for m = 0, . . . , 7, as functions of t0. As it is seen, the
minimum is always occured at t0 = 0.

for some b, q ∈ C. Then,

(38) am ≈ − rm
0 b

2πi hm(b)σ̃(0)
∫ 1

−1
hm(t − t0 − ir0) dt.

Similarly, for the Laplace single layer potential

(39) am ≈ − rm
0 |b|

2πm hm(b)σ̃(0)
∫ 1

−1
hm(t − t0 − ir0) dt, m > 0.

Note that hm(z) = z−m−1 satisfies all the assumptions of Theorem 1. Thus,
t0 = 0, as a critical point of the factor

(40) ξm(t0) :=
∣∣∣∣∫ 1

−1
hm(t − t0 − ir0) dt

∣∣∣∣ ,

may potentially minimize |am|, though we could not establish any result
about it. However, our numerical experiments are all in accordance with
this claim. In Fig. 3, for some different values of r0, we have plotted ξm(t0),
for m = 0, . . . , 7, as functions of t0.

Because of the linear assumption (37), one can imply that γ(t0) is almost
the closest point of Γ to z. Therefore, according to the discussion above, the
best position of the near part Γ with respect to the target point z is such that
γ−1(zc) lies near the midpoint of the preimage γ−1(Γ), where zc stands for the
closest point of Γ to z (see Fig. 4).

For example, consider the Laplace double layer potential on the ‘starfish’ ge-
ometry (33) with the density function σ ≡ 1 and the target point z = 0.45 − i.
Let Γ be the near part of the boundary, on which adaptive QBX is ap-
plied. Depending on the partition of the boundary, position of z with re-
spect to Γ can vary. We consider six different situations (see Fig. 5). Clearly,
γ−1(zc) = 5.1202 is fixed in all cases because z is fixed, and it is always in
front of the panel Γ. In Table 2, we have shown values of the parameter p at
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z
z0

zc
t0

Γ

Preimage of Γ

γ

zw

t0 + ir0

γ

Fig. 4. Preimage of the panel Γ. Here, z0 = γ(t0 + ir0) is the expansion center. It
is assumed that the panel Γ is so small that it resembles a stright segment. Thus,
becasue of linear assumption (37), one can imply that γ(t0) ≈ zc, where zc is the
projection of z (or z0) on Γ.

1 2 3 4

5 6 7 8

Fig. 5. Positions of the target point z = 0.45 − i with respect to different near parts
Γ, corresponding to different partitions of the ‘starfish’ geometry (33) .

the end of [3, Algorithm 2] for some different tolerances ε. The midpoint of
the preimage γ−1(Γ) is shown in the row ‘midpoint’. It is seen that the small-
est p always corresponds with Fig. 4, in which the midpoint 5.12 is closest to
γ−1(zc) = 5.1202.

2.3.2. Helmholtz potentials. For the Helmholtz single layer potential, the pair

(41)
(∫ 1

−1
h1,m(t − t0 − ir0) dt,

∫ 1

−1
h2,m(t − t0 − ir0) dt

)
with

(42) h1,m( z
b ) = H(1)

m (k|z|) |z|m
zm , h2,m( z

b ) = H
(1)
−m (k|z|) zm

|z|m

is the t0-dependent factor of the coefficient am.
Clearly, both h1,m and h2,m satisfy (c2). Note that for any fixed x ∈ R,

Jn(x) → 0 as |n| grows. Thus, for the coefficient am with larger m, the condi-
tion (c1) holds approximately, i.e., hi,m(z) ≈ hi.m(z̄), i = 1, 2.
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Fig midpoint ε p Fig midpoint ε p

10−4 16 10−4 13
1 5.15 10−8 59 5 5.11 10−8 33

10−12 93 10−12 94
10−4 14 10−4 14

2 5.14 10−8 56 6 5.10 10−8 56
10−12 93 10−12 93
10−4 13 10−4 15

3 5.13 10−8 32 7 5.095 10−8 58
10−12 94 10−12 93
10−4 9 10−4 16

4 5.12 10−8 30 8 5.09 10−8 59
10−12 92 10−12 93

Table 2. Adaptive QBX for computing the Laplace double layer potential on the
panel Γ of the ‘starfish’ geometry (33) with the density function σ ≡ 1 and the target
point z = 0.45 − i. For each tolerance ε, the value of the parameter p at the end of
[3, Algorithm 2] depends on the position of z with respect to the near part Γ. Here,
we consider 6 different situations corresponding to Fig. 5. For each figure (position),
the midpoint of the preimage γ−1(Γ) is shown in the column ‘midpoint’. As it is
seen, the smallest p always corresponds with Fig. 4, which has the closest midpoint
to γ−1(zc) = 5.1202.
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Fig. 6. Graphs of ξ1,m(t0) with k = 0.5 and b = 1, for m = 0, . . . , 7, as functions of
t0. As it is seen, the minimum is always occured at t0 = 0 for m > 0.

Here again our numerical experiments shows that t0 = 0 is the minimizer
of ξi,m(t0), for each i = 1, 2, where

(43) ξi,m(t0) :=
∣∣∣∣∫ 1

−1
hi,m(t − t0 − ir0) dt

∣∣∣∣ , i = 1, 2.
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Fig. 7. Graphs of ξ2,m(t0) with k = 0.5 and b = 1, for m = 0, . . . , 7, as functions of
t0. As it is seen, the minimum is always occured at t0 = 0 for m > 0.

In Fig. 6 and Fig. 7, for fixed k = 0.5, b = 1, and some different values of
r0, we have plotted ξ1,m(t0) and ξ2,m(t0), respectively, as functions of t0. As it
is seen, all the functions are minimized near t0 = 0 when m > 0. As expected,
the minimizer in each case approaches 0 as the index m grows.

According to the above discussion, we recommend the following strategy
for partitioning of the boundary ∂Ω with respect to the target point z. Find
the minimizer t = tmin of |z − γ(t)|. For a given dt > 0 small enough, let
Inear = [tmin − dt, tmin + dt] be the preimage of the near part, that means that
adaptive QBX should be applied on Inear, and a traditional quadrature rule
should be employed on [0, 2π] \ Inear. It is recommended that r is set to 0.25l,
where l is the length of the near part (see [17]).



16 Modified adaptive quadrature by expansion 287

3. ALGORITHMS

MAQBX. Modified adaptive QBX based on the Gauss-Legendre quadrature rules,
when the panel Γ resembles a straight segment, the target point z lies in the bad
annular neighborhood, and r, n are known.
m = 0; κ = 1;
while EC(κn, m) > ε/4 do

κ = κ + 1;
Apply the (κn)-point Gauss-Legendre rule to find ãm;
δm = ãm · Br

m(z, z0);
u = 0;
repeat

u = u + δm;
m = m + 1;
κ = 1;
while EC(κn, m) > max

{
2−m−2ε, εmach

}
do

κ = κ + 1;
Apply the (κn)-point Gauss-Legendre rule to find ãm;
δm = ãm · Br

m(z, z0);
until |δm| < ε/3;
return up(z) = u and p = m − 1

Assume that an approximation of the density σ(x) is available for any x in
the panel Γ ⊂ ∂Ω. According to the comments in Section 2, one can consider
the above algorithm as a revision to [3, Algorithms 1,2].

Thus, the main algorithm for computing the layer potential (9) on the whole
boundary ∂Ω can be described by the following steps:
1) Find the minimizer t = tmin of |z − γ(t)|.
2) If |z − γ(tmin)| is small enough, use the following steps; otherwise use a

classical quadrature rule for computing the layer potential, and stop.
3) For a given dt > 0 small enough, set Inear := [tmin − dt, tmin + dt].
4) Set the half-width r of the bad annular neighborhood of the boundary to

r := l/4, where l is the length of γ(t), for t ∈ Inear.
5) Apply MAQBX to the near part Γnear := γ(Inear), and
6) apply the Gauss-Legendre quadrature to the far part.

Remark 2. In some cases, we can save some computational efforts in
MAQBX. If the target point lies on the boundary, and the potential satisfies a
jump condition, it is recommended that QBX should be applied with two expan-
sion centers, say z0 and z′

0, on the opposite sides of the boundary and the aver-
age of the two sided values is considered (see [17, §3.2]). Also for the Helmholtz
potentials, one needs to evaluated both Br

m and Br
−m for each positive m. On

the other hand, the following equalities hold due to J−n(x) = (−1)nJn(x) and
(|z|/z)−m = conj(|z|/z)m:

B(−m, z0) = (−1)mB(m, z0),
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Fig. 8. A partition of the ‘starfish’ geometry (33) into 20 panels of an equal length
h (the blue dots), and the near part (the red segment) corresponding to the target
point located at the red asterisk. The distance of the target point to the curve is
less than h/4. The red dot on the curve, is located at γ(tmin), and the interval
[tmin − 0.2, tmin + 0.2] is the preimage of the near part. In this example, the near part
does not coincide with any panel of the partition.

B(m, z′
0) = (−1)mB(m, z0).

Hence, if we compute B(m, z0) for some m, we can immediately obtain
B(−m, z0), B(±m, z′

0) with no effort.

In BIM, the density function σ is unknown, but it can be approximated
at any set of discrete points on the boundary ∂Ω. Divide the boundary
into M panels Γ1, . . . , ΓM of an equal length l. Let γm : [−1, 1] → Γm be
a parametrization of Γm for m = 1, . . . , M , and consider the roots t1, . . . , tn of
the Legendre polynomial of degree n for some integer n ≥ 1. The set of Mn
Gaussian points γm(tj), m = 1, . . . , M , j = 1, . . . , n, on the boundary form
the so-called underlying grid. In adaptive QBX (either the one proposed in
this paper or in [3]) the density σ must be unsampled even to a finer grid.
For this purpose, as proposed in [3], we use the Lagrange interpolation at the
underlying grid. More precisely, for computing σ(x), where x lies on the panel
Γm, we use the Lagrange interpolation of σ̃ := σ ◦ γm at t1, . . . , tn. Note that
in the main algorithm above, a near part Γ may be different from all Γm (see
Fig. 8). However, the computational cost is not affected by whether the near
part coincides with a panel of the underlying grid or not because the density
should be resolved at finer grids anyway.

4. NUMERICAL EXPERIMENTS

In this section, we carry out some numerical experiments by our desktop
PC1 in order to illustrate efficiency of MAQBX.

4.1. Laplace layer potential evaluation. Consider the Laplace double layer
potential on the ‘starfish’ geometry (33) with the density function σ ≡ 1. The
exact value of the potential is −1 for any target point in the interior domain.
As target points, consider a 500 × 500 grid of a small region near the boundary.
In the main algorithm, we choose dt = 0.1 for each target point, resulting the
near part to be always connected. For each target point, we apply MAQBX

1Intel Core i7-7700 CPU with the clock speed of 3.60 GHz with 32 GB of RAM.
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Fig. 9. Error of MAQBX with n = 16 and ε = 10−4, 10−8, 10−12 from left to right.
The algorithm is applied to the Laplace double layer potential with the density σ ≡ 1
on the ‘starfish’ geometry (33). The target points are defined by a 500 × 500 grid of
a small region near the boundary. For the far parts, the 256-point Gauss-Legendre
rule is employed.

with n = 16 to the near part, and the 256-point Gauss-Legendre rule to the
far part of the boundary with the tolerances ε = 10−4, 10−8, 10−12 (see Fig. 9
for the absolute error).

4.2. Comparison to AQBX. Here, we consider the CPU run-time consumed
in implementation of the previous numerical experiment. For twelve target
points, selected randomly close to the boundary (see Fig. 11), we implement
adaptive QBX of [3] and Algorithms 1 and 2 proposed in this paper. We
run each Matlab code 10 times and consider the average of the run-times. In
Fig. 10, we compare performance of adaptive QBX with MAQBX. For each
algorithm, we plot the relative error as a function of CPU run-time in seconds.
As it is seen, MAQBX converges faster than adaptive QBX of [3] in general.

4.3. Solving a source point scattering problem. Before computing a layer
potential, one should approximate the density function σ by solving the cor-
responding boundary integral equation. A more challenging task for adaptive
QBX is thus in the context of solving boundary integral equations in which
the target points lies on the boundary. In summary, we find a Nyström ap-
proximation of σ at an underlying grid on the boundary. Then, we use an
accurate interpolation to approximate σ at a finer grid employed in adaptive
QBX for computing the layer potential.

For the wave number k = 0.5, consider the Helmholtz exterior problem in-
duced by six source points located in the interior of the ‘starfish’ geometry (33).
We apply the boundary integral method with the combined field representa-
tion
(44) u = Dkσ + ik

2 Skσ,

where Sk and Dk are the Helmholtz single layer and double layer potentials,
respectively. As the underlying grid, we divide the boundary into 50 panels of
equal length and consider 16 Gauss-Legendre points in each panel. We apply
the Nyström method to the corresponding boundary integral equation

(45)
(

1
2I + Dk + ik

2 Sk

)
σ = f,
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Fig. 10. Comparison of adaptive QBX of [3] with MAQBX on the ‘starfish’ geome-
try (33). Each algorithm is applied to the Laplace double layer potential with the
density σ ≡ 1 at a random target point close to the boundary. Each panel corresponds
with a single target point. The positions of the target points are depicted in Fig. 11.
The relative error is plotted as a function of the run time in seconds.

where f is the Dirichlet data induced by the source points. Then, we use
the Lagrange interpolation at the underlying grid to obtain an approxima-
tion of the density function. In order to solve the Nyström system, we use
GMRES with the matrix-vector product carried out by MAQBX with n = 16
and ε = 10−12. The algorithms with the same parameters are then applied to
compute the layer potential as the solution of the source-point problem (see
Fig. 12 for the absolute errors). The near part for each target point is bounded
in a parameter interval of length 0.02, and the 512-point Gauss-Legendre rule
is applied to the far part.

4.4. Higher wavenumbers. Here, we repeat the previous experiment, now
for the higher wavenumbers k = 10, 20 and ε = 10−8. The near part for each
target point is bounded in a parameter interval of length 0.05. Other param-
eters of the algorithm remains the same as in Section 4.3. The results from
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Fig. 11. The sample target points of Fig. 10.

Fig. 12. Error of MAQBX with ε = 10−12, applied to the Helmholtz Dirichlet problem
with the wave number k = 0.5 and Dirichlet data induced to six source points (‘+’)
in the interior of the ‘starfish’ geometry (33).

Fig. 13 show that MAQBX is still practical for scattering problems with higher
wavenumbers. The same observation has been reported in [3] for AQBX.

5. CONCLUSIONS

Adaptive QBX is a robust and accurate tool for computing layer potentials
at target points near or on the boundary. In this paper, we have modified the
main structure of Algorithms 1,2 of [3] in order to obviate the need to compute
extra coefficients am, which never appear in the truncated expansion of the
potential. The modified AQBX is more rapid than AQBX of [3] in practice.

Acknowledgements. The author would like to thank Alex Barnett, Lud-
vig af Klinteberg, and Anna-Karin Tornberg for many valuable discussions.



292 Hassan Majidian 21

Fig. 13. Error of MAQBX with ε = 10−8, applied to the Helmholtz Dirichlet problem
with the wave number k = 10, 20 and Dirichlet data induced to six source points (‘+’)
in the interior of the ‘starfish’ geometry (33).
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