
JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY
J. Numer. Anal. Approx. Theory, vol. 54 (2025) no. 2, pp. 295–314, doi.org/10.33993/jnaat542-1601

ictp.acad.ro/jnaat

EFFICIENT GLOBAL OPTIMIZATION OF MULTIVARIATE
FUNCTIONS WITH UNKNOWN HÖLDER CONSTANTS VIA

α-DENSE CURVES
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Abstract. In this paper, we consider the global optimization problem of non-
smooth functions over an n-dimensional box, satisfying the Hölder condition.
We focus our study on the case when the Hölder constant is not a priori known.
We develop and analyze two algorithms. The first one is an extension version of
the Piyavskii’s method that adaptively constructs a linear secant of the Hölder
support functions, avoiding the need for a known Hölder constant. The second
algorithm employs a reducing transformation approach which consists of generat-
ing, in the feasible box, an α-dense curves, effectively converting the multivariate
initial problem to a problem of a single variable. We prove the convergence of
both algorithms. Their practical efficiency is evaluated through numerical ex-
periments on some test functions and comparison with existing techniques.
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1. INTRODUCTION

Let us consider the following box constrained global optimization problem
of finding at least one point x∗ ∈ D and the corresponding optimal value g∗

such that:

(1) g∗ = g(x∗) = min
x∈D

g(x)

where the objective function g : D → R is non-smooth non convex. It is
assumed to satisfy the Hölder condition on the n-dimensional compact box D:

D = [a1, b1]× · · · × [an, bn] ⊂ Rn.
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Specifically, there exists a Hölder constant hg > 0 and a Hölder exponent
1/β (β > 1) such that:

(2) |g(x)− g(y)| ≤ hg∥x− y∥1/β, for all x, y ∈ D.

Here, ∥· ∥ denotes the Euclidean norm. A primary focus of this work is
when the Hölder constant hg is not known a priori.

Many real-world optimization problems are complex, involve minimizing
continuous functions of n variables possessing multiple extrema over the fea-
sible domain. Frequently, derivative information is either unavailable or its
computation is expensive, rendering standard non-linear programming meth-
ods ineffective for finding global optima, as they typically converge only to
local minima. Global optimization has thus become an active field of research
[9]. The challenges are often amplified by local irregularities (non-smoothness)
and the potential existence of numerous local minima within the feasible set.
Deterministic global optimization strategies, particularly covering methods,
offer a rigorous approach to tackle such problems [9, 17]. The first work on
covering methods for univariate Lipschitz functions (the case β = 1 in (2)) was
performed by Piyavskii [11], Evtushenko [4], and Shubert [15]. The widely
discussed Piyavskii-Shubert algorithm guarantees convergence to the global
minimum by constructing a sequence of improving piecewise lower-bounding
functions (sub-estimators) based on the known Lipschitz constant [9]. More
recently, research has addressed the optimization of less regular functions sat-
isfying the Hölder condition with β > 1 [5, 10]. Gourdin et al. were among
the first to study the global optimization of both univariate and multivariate
Hölder functions using such deterministic approaches [5, 8].

The aim of this paper is twofold. First, we develop a novel technique for
univariate Hölder optimization (n = 1), extending the ideas of Piyavskii. This
method utilizes the secants linked to the Hölder support functions between
evaluated points. We address both the case where the Hölder constant hg is
known and significantly, the case where the constant hg is unknown. For the
latter, we propose an adaptive estimation scheme for hg, which is crucial for
practical application and performance. Second, we address the multivariate
case (n > 1). Direct generalization of Piyavskii’s algorithm to higher dimen-
sions is computationally challenging, primarily because finding the minimum
of the multivariate sub-estimator involves determining intersections of com-
plex hypersurfaces [5, 18]. To overcome this, we propose an approach based
on dimension reduction. This method transforms the original n-dimensional
problem (1) into a one-dimensional Hölder optimization problem by explor-
ing the box D along an α-dense curve [20, 21, 22]. The univariate algorithm
developed in the first part can then be effectively applied to these simpler
problems.

The paper is organized as follows. Section 2 presents the univariate algo-
rithm based on Hölder support functions and secant information. Section 3
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describes the reducing transformation method for the multivariate case, de-
tailing the use of a specific α-dense curve. Section 4 provides numerical results
from experiments on test functions and compares the performance with exist-
ing methods. Section 5 concludes the work.

2. UNIVARIATE HÖLDER GLOBAL OPTIMIZATION

Let us begin by considering the problems (1), (2) for a function f with a
single variable, i.e.,
(3) min

x∈[a,b]
f(x), a, b ∈ R

where the objective function f satisfying the following Hölder condition

(4) |f(x)− f(y)| ≤ hf |x− y|1/β , for all x, y ∈ [a, b],
with a constant hf > 0 and β > 1. Let ε > 0 be the desired accuracy with
which the global minimum to be searched.

2.1. Sub-estimator function. When minimizing a non-convex function f
over a feasible set, the general principle behind most deterministic global op-
timization methods is to relax the original non-convex problem in order to
make the relaxed problem convex by utilizing a sub-estimator of the objective
function f . The Hölder condition (4) allows one to construct such a lower
bound for f over an interval [a, b]. From (4) we have

f(y)− hf |x− y|1/β ≤ f(x), ∀x, y ∈ [a, b].
Let xi−1 and xi be two distinct points in [a,b], typically with xi−1 < xi. We
define the following functions:{

Ui−1(x) = f(xi−1)− hf (x− xi−1)1/β, for x ≥ xi−1,

Ui(x) = f(xi)− hf (xi − x)1/β, for x ≤ xi.

By construction setting y = xi−1 or y = xi in the Hölder inequality, these
functions are lower bounds for f(x) on their respective domains of definition
within [a, b]: {

Ui−1(x) ≤ f(x), ∀x ∈ [a, b] such that x ≥ xi−1,

Ui(x) ≤ f(x), ∀x ∈ [a, b] such that x ≤ xi.

The functions Ui−1 and Ui are thus sub-estimators of f . Over any sub-
interval [xi−1, xi] ⊆ [a, b], both functions are well-defined lower bounds. We
can then define a tighter sub-estimator ψi(x) on this sub-interval:

ψi(x) = max {Ui−1(x), Ui(x)} .
This function ψi(x) is convex (as the maximum of two convex functions, as-

suming 1/β ≤ 1) and non-differentiable (typically at the point where Ui−1(x) =
Ui(x)). It also satisfies:
(5) ψi(x) ≤ f(x), ∀x ∈ [xi−1, xi] .
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The global minimum of ψi(x) over [xi−1, xi] occurs at the point x̄ where Ui−1
and Ui(x) intersect (assuming such an intersection exists within the interval).
This point x̄ is given by:

x̄ = arg min
[xi−1,xi]

ψi(x).

Thus, in each iteration of Piyavskii’s algorithm, we must solve the following
non-linear equation to find this intersection point:
(6) Ui−1 (x)− Ui (x) = 0.

Determining the unique solution x̄ to equation (6) within [xi−1, xi] is gener-
ally straightforward only for specific values of β. For instance, Gourdin et al.
[5] provide analytical expressions for this solution when β ∈ {2, 3, 4}, assuming
hf is known a priori. However, when β is large or not an integer, solving equa-
tion (6) can be as complex as a general non-linear local optimization problem.
To overcome this difficulty, we propose a new procedure below.

2.2. Procedure approach to the intersection point. Let θi be the same
midpoint of the intervals [Ui(xi−1), Ui−1(xi−1)] and [Ui−1(xi), Ui(xi)] so

(7) θi = f(xi−1)+f(xi)−hf (xi−xi−1)1/β

2 .

As Ui−1(x) and Ui(x) are monotone continuous functions on the interval
[xi−1, xi] then they are bijective functions. Let U−1

i−1 and U−1
i be the inverse

functions respectively of Ui−1 and Ui. We denote by µi = U−1
i−1(θi) and ϑi =

U−1
i (θi). According to the definition of Ui−1 and Ui we have:

(8)

µi = xi−1 + (f(xi−1)−θi

hf
)β,

ϑi = xi − (f(xi)−θi

hf
)β.

Let S−(x) and S+(x) be the two straight secants linked to the Hölder sup-
port functions Ui−1 and Ui on the interval [µi, ϑi] ⊂ [xi−1, xi] and joining
respectively the points (µi, θi), (ϑi, Ui−1(ϑi)) and (µi, Ui(µi)), (ϑi, θi), we get

S−(x) = f(xi−1)− hf (ϑi − xi−1)1/β + hf (µi−xi−1)1/β−hf (ϑi−xi−1)1/β

ϑi−µi
(x− ϑi),

S+(x) = f(xi)− hf (xi − ϑi)1/β + hf (xi−µi)1/β−hf (xi−ϑi)1/β

ϑi−µi
(x− ϑi).

The intersection point of the two secants S− and S+ is the point zi the approx-
imate point x̄ of the two Hölder support functions Ui−1 and Ui (see Fig. 1).

Then

(9) zi = [f(xi−1)−f(xi)−hf (ϑi−xi−1)1/β+hf (xi−ϑi)1/β](ϑi−µi)
hf [(xi−µi)1/β−(µi−xi−1)1/β−(xi−ϑi)1/β+(ϑi−xi−1)1/β] + vi.

Remark 1. If f(xi−1) = f(xi), the approximate point x̄ is immediately the
midpoint of the interval [xi−1, xi]. In this case, one can choose:

(10) zi = x̄ = xi−1+xi

2 .
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Fig. 1. Illustration of the secant-based approximation for the sub-estimator’s inter-
section point.

Proposition 2. Let f be a real univariate Hölder function with the con-
stant hf > 0 and β > 1 defined on the interval [a, b]. Let the value Mi =
min {Ui−1 (zi) , Ui (zi)} (as a constant lower bound of f on [xi−1, xi] ⊂ [a, b]).
Then we have:
(11) Mi < f(x), ∀x ∈ [xi−1, xi] .

Proof. The value Mi is given by replacing the variable x in the two functions
Ui−1 (x) and Ui (x) by the expression of zi. Since we have defined the function

ψi(x) = max {Ui−1(x), Ui(x)} ,
as a sub-estimator function of f(x) over the interval [xi−1, xi], then,

ψi(x) ≤ f(x), ∀x ∈ [xi−1, xi] .
The function Ui−1(x) is strictly decreasing and Ui(x) is strictly increasing

over the interval [xi−1, xi] . Thus, it follows
min {Ui−1(x), Ui(x)} ≤ min

[xi−1,xi]
ψi(x), ∀x ∈ [xi−1, xi] .

In particular, for x = zi it then follows:
Mi = min {Ui−1(zi), Ui(zi)} < f(x), ∀x ∈ ]xi−1, xi[ .

□
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Algorithm 1 MSPA with known value of hf

1: Step 1: Initialization
2: [a, b] ⊂ R a given search, Hölder parameters hf , β > 1,
3: ε accuracy of global minimization
4: k ← 2, x1 ← a, x2 ← b
5: Step k: The sampling points x1, x2, ..., xk are ordered such that

a = x1 < x2 < ... < xk = b.

6: for i = 2 to k do
7: if f(xi−1) ̸= f(xi) then
8: θi as defined in (7), µi, ϑi as defined in (8), zi as defined in (9)
9: else

10: zi = xi−1+xi

2
11: end if
12: Mi = min

{
f(xi−1)− hf (zi − xi−1)1/β, f(xi)− hf (xi − zi)1/β

}
13: end for
14:

(12) Mρ = min {Mi : 2 ≤ i ≤ k}
15: zρ = argmin {Mρ}
16: xρ = zρ

17: if |xρ − xρ−1| > ε then
18:

(13) xk+1 = zρ

19: k ← k + 1
20: go to the Step k
21: else
22: fopt = min {f(xi) : 1 ≤ i ≤ k}
23: Stop
24: end if
25: return fopt.

2.3. Convergence result of MPSA.
Theorem 3. Let f(x) be a real function defined on a closed interval [a, b],

satisfying (4) with hf > 0 and β > 1. Let x∗ be a global minimizer of f(x) over
[a, b]. Then the sequence (xk)k≥1 generated by the MSPA algorithm converges
to x∗. i.e.,

lim
k→+∞

f(xk) = f(x∗) = min
x∈[a,b]

f(x).

Proof. The proof is based on the construction of a sequence of points (xk)k≥1
generated by Algorithm 1, which converges to a limit point that is the global
minimizer of f on [a, b]. Let x1, x2, x3, ... be the sampling sequence satisfying
(9), (12), (13). Let us consider that xm ̸= xm′ for all m ̸= m′, the set of the
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elements of the sequence (xk)k≥1 is then infinite and therefore has at least one
limit point in [a, b]. Let z be any limit point of (xk)k≥1 such that z ̸= a, z ̸= b,
then the convergence to z is bilateral (one can see [10]). Consider the interval
[xµ−1, xµ] determined by (12) at the (k + 1)-th iteration. According (9) and
(13), we have that the new point xk+1 divides the interval [xµ−1, xµ] into the
subintervals [xµ−1, xk+1] and [xk+1, xµ], so we can deduce
(14) max {xk+1 − xµ−1, xµ − xk+1} ≤ |xµ − xµ−1| .

Consider now an interval [xρ(k)−1, xρ(k)] which contains z, because z is a
limit point of (xk)k≥1 and using (9), (12), (13) and (14), we obtain:
(15) lim

k→+∞
(xρ(k)−1 − xρ(k)) = 0.

In addition, the value Mρ(k) that corresponds to [xρ(k)−1, xρ(k)], is given by
(16)
Mρ(k) = min

{
f(xρ(k)−1)− hf (zρ − xρ(k)−1)1/β, f(xρ(k))− hf (xρ(k) − zρ)1/β

}
,

where zρ is obtained by replacing i by ρ in (9). As z ∈ [xρ(k)−1, xρ(k)] and
from (15) then we have
(17) lim

k→+∞
Mρ(k) = f(z).

On the other hand, according to (11)
(18) Mj(k) ≤ f(x), ∀x ∈ [xj(k)−1, xj(k)].

From (12), Mρ(k) = min {Mj , j = 2, ..., k} , then
Mρ(k) ≤Mj(k), ∀x ∈ [xj(k)−1, xj(k)],

and since [a, b] =
k
∪

j=2
[xj(k)−1, xj(k)] , hence

(19) lim
k→+∞

Mρ(k) ≤Mj(k), ∀x ∈ [a, b],

and from (18), (19) we get
lim

k→+∞
Mρ(k) ≤ f(x), ∀x ∈ [a, b].

Since x∗ is the global minimizer of f over [a, b]
lim

k→+∞
Mρ(k) ≤ f(x∗) ≤ f(z),

thus, we have
0 ≤ f(z)− f(x∗) ≤ f(z)− lim

k→+∞
Mρ(k) = 0,

then
f(z) = f(x∗).

By the condition (4), the function f must be continuous on [a, b] so that
f(z) = f( lim

k→+∞
xk) = lim

k→+∞
f(xk) = f(x∗).
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□

2.4. Estimating of unknown Hölder constant. The algorithm MSPA pre-
sented in the section 2 of this paper is applied to a class of Hölder continuous
functions defined on the closed and bounded interval [a, b] of R when suppose
a priori knowledge of the Hölder constant hf > 0. However, the constant hf

may be, in most situations, unknown and no procedure is available to obtain
a guaranteed overestimate of it. Then, there is a need to find an approximate
evaluation of a minimal value of hf . The algorithm we will extend does not
require a priori knowledge of the hf . To overcome this situation, a typical pro-
cedure is to look for an approximation of hf during the course of search ([9],
[10], [19]). We consider a global estimate of hf for each iteration. Let the sam-
pling points a = x1 < x2 < · · · < xn = b and the values f(x1), f(x2), ..., f(xn)
are also calculated. Let

hi
f = |f(xi)−f(xi−1)|

(xi−xi−1)1/β , for i = 2, ..., k

and
hk

f = max
{
hi

f , i = 2, ..., k
}
.

Let λ > 1 be the multiplicative parameter as an input of the algorithm and
ν be a small positive number. The global estimate of hf then is given by:

h̃f =
{
λhk

f , if f(xi) ̸= f(xi−1), ∀i ≥ 2
λν, else.

The constant λ acts as a safety margin for estimating the unknown Hölder
constant.

• When λ = 1: The algorithm operates without a safety margin. This
can lead to the premature elimination of potentially optimal regions
and a failure to detect the global minimum.
• When λ > 1: Experimental analysis shows that values greater than

1 increase the reliability of the algorithm for the majority of tested
functions.
• While a larger λ (or increasing to a λ′

> λ) increases the multiplicative
safety factor, it also increases the number of function evaluations and
the computation time.

The condition f(xi−1) ̸= f(xi), for all i, indicates that the objective function
f is not constant over the feasible interval [a, b]. Now from the definition of the
global estimate h̃f , we replace in the formulas of θi, µi and ϑi, the constant hf

by h̃f also the point (zi,Mi(zi)) is replaced in the structure of the algorithm
MSPA by the point (z̃i,Mi(z̃i)) where:

(20) z̃i =
[
f(xi−1)−f(xi)−h̃f (ϑi−xi−1)1/β+h̃f (xi−ϑi)1/β

]
(ϑi−µi)

h̃f [(xi−µi)1/β−(µi−xi−1)1/β−(xi−ϑi)1/β+(ϑi−xi−1)1/β] + vi

(21) Mi(z̃i) = min
{
f(xi−1)− h̃f (z̃i − xi−1)1/β, f(xi)− h̃f (xi − z̃i)1/β

}
.
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Finally, from (20) and (21) we obtain an algorithm noted MSPAes which
is based on the use of the estimation constant h̃f during the course of the
algorithm.

3. MULTIVARIATE HÖLDER GLOBAL OPTIMIZATION

Let us consider now the multivariate case, i.e., the problem (1), (2) with
x ∈ Rn and n ≥ 2.

3.1. Reducing transformation procedure. Directly applying Piyavskii’s
method to multivariate Hölder optimization is often impractical due to the
computational cost of repeatedly minimizing the multivariate sub-estimator
function [5, 18]. This sub-estimator is typically the upper envelope of many
individual support functions (g(xi)−hg∥x−xi∥1/β), and finding its minimum
involves complex geometric operations (finding intersections of hypersurfaces).

To circumvent this difficulty, we employ a dimension reduction strategy.
Such approaches, often utilizing space-filling or α-dense curves to map the
n-dimensional domain to a one-dimensional interval, have a history in global
optimization, see, e.g., Butz [2], Strongin [16] and Ziadi et al. [7, 14, 20, 21]).

Our proposed multivariate algorithm combines a specific reducing transfor-
mation with the specialized univariate Hölder optimization algorithm MSPA
developed in Section 2. The key idea is to define a parametric curve Cα :
[0, T ] → D, where D ⊂ Rn is the original search box, such that the curve
Cα(t) = (c1(t), . . . , cn(t)) is α-dense in D. This property guarantees that for
any point x ∈ D, there exists a t ∈ [0, T ] such that ∥Cα(t)− x∥ ≤ α.

Definition 4. Let J be an interval of R. We say that a parametrized curve
of Rn defined by Cα : J → D = [a1, b1] × · · · × [an, bn] is α-dense in D, if for
all x ∈ D, ∃t ∈ J such that

d(x,Cα(t)) ≤ α,
where d stands for Euclidean distance in Rn.

By restricting the objective function g to this curve, we obtain a univariate
function f : [0, T ]→ R, defined by:

f(t) = g(Cα(t)).
Crucially, if g is Hölder continuous and Cα(t) is sufficiently regular (Lip-

schitz), the resulting function f(t) is also Hölder continuous on the interval
[0, T ]. The original n-dimensional problem (1) is thus effectively reduced to
the one-dimensional problem:
(P) min

t∈[0,T ]
f(t).

This univariate problem can be efficiently solved using the algorithm from
Section 2. The quality of the approximation to the original problem depends
on the density parameter α of the curve.
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Theorem 5. Let Cα(t) = (c1(t), . . . , cn(t)) be a function defined from [0, T ]
into D. Let α > 0 and µ denote the Lebesgue measure, such that:
1) (ci)1≤i≤n are continuous and surjective.
2) (ci)2≤i≤n are periodic with respective periods (pi)2≤i≤n.
3) For any interval I ⊂ [0, T ] and for any i ∈ {2, . . . , n}, we have:

µ(I) ≤ pi ⇒ µ(ci−1(I)) < α.

Then, for t ∈ [0, T ], the function Cα(t) is a parametrized
√
n− 1α-dense curve

in D. (The proof can be found in [22]).

Corollary 6. Let Cα(t) = (c1(t), . . . , cn(t)) :
[
0, π

α1

]
→ D a function

defined by:

ci(t) = ai−bi
2 cos(αit) + ai+bi

2 , i = 1, 2, . . . , n,

where α1, . . . , αn are given strictly positive constants satisfying the relation-
ships

αi ≥ π
α(bi−1 − ai−1)αi−1, ∀i = 2, . . . , n.

Then the curve defined by the parametric curve Cα(t) is
√
n− 1α-dense in

D [22].

Remark 7. According to Corollary 6, the parametrized curve Cα(t) is α-
dense in the box D. Moreover, the function Cα is Lipschitz on

[
0, π

α1

]
with

constant:

Lα = 1
2

( n∑
i=1

(bi − ai)2α2
i

)1/2
.

Theorem 8. The function f(t) = g(Cα(t)) for t ∈ [0, π
α1

] is a Hölder
function with constant Hf = hgL

1/β
α and exponent β > 1.

Proof. For t1 and t2 in
[
0, π

α1

]
, we have

|f(t1)− f(t2)| = |g(Cα(t1))− g(Cα(t2))| ≤ hg ∥Cα(t1)− Cα(t2)∥1/β .

As the function of the parametric curve Cα is Lipschitz on
[
0, π

α1

]
with the

constants Lα, we have

∥Cα(t1)− Cα(t2)∥ ≤ Lα |t1 − t2| ,

then
|f(t1)− f(t2)| ≤ hg (Lα |t1 − t2|)1/β ,

hence
|f(t1)− f(t2)| ≤ hgL

1/β
α |t1 − t2|1/β .

□
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Fig. 2. The densification of the square [−1, 1]2 and the cube [−1, 1]3 by the support
of α-dense curves with different values of α.

3.2. The mixed RT-MSPA method. For determining the global minimum
of g on D the mixed RT-MSPA method consists of two steps: the reducing
transformation step and the application of the MSPA algorithm to the function
f(t) on [0, π

α1
].

3.3. Convergence Result of RT-MPSA.

Theorem 9. Let g be a Hölder function satisfying the condition (2) over D
and m be the global minimum of g on D. Then the mixed RT-MSPA algorithm
converges to the global minimum with an accuracy at least equal to ε.

Proof. Denote by m∗ the global minimum of f on [0, π
α1

], where f(t) =
g(Cα(t)). On the other hand, let us designate by fε the global minimum of the
problem (P ) obtained by the mixed method RT-MSPA. Let us show that

fε −m ≤ ε.
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Algorithm 2 RT-MSPA with known value of hg

Require: D = [a1, b1]× · · · × [an, bn] the search box.
The multivariate objective function with known Hölder parameters hg > 0
and β > 1. ε > 0 small accuracy of the global minimization.

Ensure:
First part: Cα(t) the parametric α-dense curve in D.

f(t) the univariate Hf -Hölder function.
Second part: fopt the best global minimum of f .
First part:
Define Cα(t), t ∈ [0, π/α1] −→ D

α =
(

ε
2Hf

)β
, α1 = 1.

for i = 2 to n do
αi = π

α(bi−1 − ai−1)αi−1
end for
for i = 1 to n do

ci(t) = ai−bi
2 cos(αit) + ai+bi

2
end for
Cα(t) = (c1(t), c2(t), ..., cn(t)) and f(t) = g(Cα(t)).
Second part:
Initialization
[0, π] the search interval
k ← 2, ρ← 2, t1 ← 0, t2 ← π
Step k: t1, t2, . . . , tk are ordered such that 0 = t1 < t2 < · · · < tk = π.
for i = 2 to k do

[ti−1, ti] ⊂ [0, π]
if f(ti−1) ̸= f(ti) then

θi, µi, ϑi and zi are defined respectively in (5), (6) and (7) (with
respect to the variable t > 0.)

else
zi = ti−1+ti

2
end if
Mi = min

{
f(ti−1)−Hf (zi − ti−1)1/β, f(ti)−Hf (ti − zi)1/β

}
end for
Mρ = min {Mi : 2 ≤ i ≤ k}
tρ = zρ

if |tρ − tρ−1| > ε then
tk+1 = zρ

k ←− k + 1
go to the Step k

else
fopt = min {f(ti) : 1 ≤ i ≤ k}
Stop

end if
return fopt
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1) As g is continuous on D, there exists a point x ∈ D such that m = g(x).
Moreover, there exists t0 ∈ [0, π

α1
] such that ∥x− Cα(t0)∥ ≤

(
ε

2hg

)β
so

that
∥g(x)− g(Cα(t0))∥ ≤ ε

2 .

And therefore
g(Cα(t0))−m ≤ ε

2 .

But from m ≤m∗ ≤ g(Cα(t0)), we deduce that
(22) m∗ −m ≤ ε

2 .

2) As f is continuous on [0, π
α1

], there exists a point t∗ ∈ [0, π
α1

] such that
m∗ = f(t∗), involving t∗ as a global minimizer of f . Then t∗ is a limit
point of the sequence (tk)k≥1 obtained by the mixed algorithm.

Hence t∗ ∈ [tρ(k)−1, tρ(k)] and lim
k→+∞

(tρ(k) − tρ(k)−1) = 0. i.e.,

∀ε > 0, ∃K ∈ N such that ∀k ≥ K, |tρ(k) − tρ(k)−1| < ε.

On the other hand, since fε is the global minimum obtained after k
iterations, we obtain:

∃tε ∈ [ts−1, ts] : |ts − ts−1| ≤
(

ε
2Hf

)β
and fε = f(tε)

so that{
Ms = min

{
f(ts−1)−Hf (tε − ts−1)1/β , f(ts)−Hf (ts − tε)1/β

}
,

Ms ≤ f(t∗) ≤ f(tε) and t∗ ∈ [ts−1, ts].
Consequently,

(23) fε −m∗ = f(tε)− f(t∗) ≤ Hf |tε − t∗|1/β ≤ ε

2 .

Finally, from (22) and (23), the result of Theorem 9 is proved. □

4. NUMERICAL EXPERIMENTS

This section details the numerical experiments conducted to evaluate the
performance of the proposed MSPA algorithm compared to existing methods,
specifically SPA [10] and TPA [3], [6]. The evaluation encompasses both single-
variable and multivariate optimization problems.

Two series of standard test functions and their corresponding parameters
are listed in Table 1 and Table 4. These functions exhibit diverse properties,
such as non-convexity and non-differentiability, and possess multiple local and
global minima.

The primary performance criteria used for comparison are the total number
of function evaluations (Ev) and the CPU execution time in seconds (T (s)).
All algorithms were implemented in MATLAB and executed on a PC.

For all single-variable experiments, the desired accuracy for locating the
global minimum was set to ε = 10−4(b − a), where [a, b] denotes the search
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interval. Detailed results for the known and estimated Hölder constants are
presented in Table 2 and Table 3, respectively. In these tables, bold values
indicate the best performance achieved among the compared algorithms for
each criterion (Ev and T (s)).

For multivariate optimization, we implemented the Reducing Transforma-
tion (RT) approach combined with the MSPA algorithm, utilizing α-dense
curves with a density parameter α = 0.1.

When the Hölder constant hg is known, a theoretical relationship exists be-
tween α and the accuracy ε that guarantees convergence. However, deriving α
from small values of ε results in extremely small α values, leading to excessive
computation time and function evaluations. Consequently, we fixed α = 0.1,
which proved sufficient to locate the global minimum for all test functions.
Similarly, for cases where hg is unknown, we utilized estimates of the con-
stant hf with a fixed value of α = 0.1 to avoid the computational complexity
associated with the dependence of hf on α.

Regarding the choice of the parameter λ, we adopted a standardized ap-
proach to ensure fair comparison. Although theoretically λ > 1 is sufficient,
empirical evidence suggests that methods such as RT-TPAes require λ ≥ 1.5
for convergence. Consequently, we utilized λ = 1.5 for the majority of experi-
ments across all algorithms (RT-SPAes, RT-MSPAes, and RT-TPAes). While
an optimal λ exists for each function, individual tuning is impractical; thus,
fixed values were used for broad classes of functions. The only exceptions were
specific test problems (noted in Table 6).

Comparative results for multivariate optimization using known and esti-
mated Hölder constants are presented in Table 5 and Table 6, respectively.

4.1. Discussions and remarks. The primary contributions of this paper are
the development of MSPA, an enhanced version of Piyavskii’s algorithm for
finding global minima of univariate Hölder continuous functions, and its ex-
tension, RT-MSPA, for solving higher-dimensional problems.

For the univariate problem, the comparison involves two cases based on the
availability of the Hölder constant hf :

• Known Hölder Constant (hf ): The standard SPA, TPA, and MSPA
algorithms were used directly. The results are presented in Table 2.
• Unknown Hölder Constant (hf ): Modified versions of the algorithms,

employing an estimation procedure for the Hölder constant, were used.
These are denoted as SPAes, TPAes and MSPAes, respectively. These
versions utilize an estimate h̃f of the true Hölder constant hf . The first
remark in Table 3 states that the results are obtained with the same value
of λ = 1.5 (multiplicative parameter) and ν = 10−8 (tolerance parameter).

In higher-dimensional problems, comparative results are also presented for
two cases, based on the availability of the Hölder constant hg:
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N◦ Function Interval Hölder constant hf Ref.
1 min

{√
|x+ 4| − 1,

√
|x+ 1| − 1.005,

√
|x− 3|+ 0.5

}
[−5, 5] 2 [19]

2
∣∣∣1.5− 1.5

√
|1− x2|

∣∣∣ [−2, 2] 4 new

3
{
−
√

2x− x2 if x ≤ 2
−
√
−x2 + 8x− 12 otherwise

[0, 6] 9.798 [5]

4
{

0.35
√
|x− 0.25| if x ≤ 1

2
x otherwise

[0, 1] 1.35 new

5
{

4
√∣∣x− 1

2.5
∣∣ if x ≤ 1

2
8.5x otherwise

[0, 1] 12.5 new

6 −
√

1− x2 [−0.5, 0.5]
√

2 [18]
7 − 2 sin x−1√

|x+1|+2
[−5, 5] 7.8 [3]

8 |x− 0.25|
2
3 − 3 cos x

2 [−0.5, 0.5] 4.26 [12]

9 − cos(x)e(1−
√

|sin(πx)−0.5|
π ) [0, 1] 4.3 [12]

10 5 cosx+
√

0.8 |x| [−10, 8] 5.8 new

11 −
√

9.5
4 − x2 −

√
5

2 [−1.5, 1.5]
√

3 [12]

12 − cos
(
x+ π

2 − 1
)

exp
(

1− 1
π

√∣∣sin π(xπ
2 − 1)− 0.5

∣∣) [−1.5, 1.5] 7.3 [12]

13 −
∣∣cos

(
π
2x

)∣∣ ∣∣∣ √
19−x√
2−1

∣∣∣ 1
2 [−1.5, 1.5] 5.4 [12]

14 −
√

1− sin2 x [−1, 1] 1 new

15 −
√

16− cos2 x [−2π, 2π] 1 new

16 −
√

1− x2 + sin x [−1, 1] 2.41 new

17 −|8− x3| 23 − cosx− sin 3x [−2, 2] 7.73 new

18
3∑

k=1

1
k

∣∣sin(( 3
k + 1)x+ 1

k )
∣∣ |x− k| 12 [0, 3] 6.83 [13]

19 −
√

25− x2 − shx [−2.5, 2.5] 8.36 new

20 − 2 cos x−1√
|x+1|+2

[−5, 5] 7.8 new

Table 1. Univariate Hölder test functions.

Problem number SPA TPA MSPA
N◦ β Ev T (s) Ev T (s) Ev T (s)
1 2 78 0.1167 74 0.0639 78 0.0655
2 2 2005 1.5050 2107 1.5976 2129 1.6245
3 2 4371 9.0077 2812 4.3383 3965 7.8945
4 2 254 0.1302 96 0.0711 104 0.0735
5 2 295 0.1940 79 0.0689 110 0.0957
6 2 3433 4.0167 3061 3.1928 3013 3.1567
7 2 4403 6.6673 4185 5.9728 4487 6.9423
8 3/2 87 0.0642 86 0.0636 89 0.0677
9 2 87 0.0657 86 0.0676 82 0.0650
10 2 704 0.2988 46 0.0653 696 0.2894
11 2 2867 2.8312 1721 1.1843 2149 1.6457
12 2 207 0.1419 216 0.0942 206 0.0905
13 2 1179 0.6164 1333 0.6984 1226 0.6143
14 2 2109 1.7937 1701 1.0748 1527 0.8923
15 2 3169 3.5469 3233 3.7415 3201 3.6079
16 2 2109 1.9788 1587 0.9685 1456 0.8341
17 3/2 668 0.6360 70 0.0637 697 0.2672
18 2 1342 0.7609 874 0.3612 864 0.3611
19 2 91 0.1198 83 0.0703 79 0.0688
20 2 2787 2.7692 1835 1.2205 1809 1.2010

Table 2. Comparison of results between MSPA and the existing algorithms with
known value of hf .
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Problem number SPAes TPAes MSPAes

N◦ β Ev T (s) Ev T (s) Ev T (s)
1 2 37 0.0116 48 0.0104 37 0.0064
2 2 1215 5.4778 962 3.5355 667 1.8018
3 2 2271 20.869 1819 13.717 1877 15.585
4 2 1288 6.4384 546 1.1884 240 0.2420
5 2 2854 31.324 575 1.2967 1104 4.8313
6 2 1501 8.6159 1841 12.972 1438 8.3665
7 2 1018 3.8064 1224 5.7721 1467 8.4715
8 3/2 22 0.0025 23 0.0026 21 0.0030
9 2 32 0.0049 31 0.0047 30 0.0044
10 2 986 3.7106 1062 4.3083 815 2.7356
11 2 1937 14.211 2446 22.842 2676 28.106
12 2 54 0.0126 69 0.0200 66 0.0194
13 2 1193 5.4486 914 3.2404 1364 7.3024
14 2 1391 7.3437 1707 11.168 1282 6.4865
15 2 1350 6.930 1540 9.0673 1045 4.3092
16 2 1995 15.269 1545 9.1268 1595 10.213
17 3/2 910 3.5283 638 1.7160 655 2.6685
18 2 578 1.2773 386 0.5728 437 0.7776
19 2 77 0.0246 74 0.0231 66 0.0191
20 2 687 1.7730 748 2.1631 553 1.2303

Table 3. Comparison of results between MSPAes and the existing algorithms with
unknown value of hf .

N◦ Function Box Hölder constant hg Ref.

1
3∑

k=1

1
k

∣∣cos(( 3
k + 1)(x+ 5) + 1

k )
∣∣ |x− y| 13 [−5, 5]2 14.77 [18]

2 −
∣∣∣∣cos(x) cos(y)e(1−

√
x2+y2

π )
∣∣∣∣ [−1, 1]× [−1, 2] 5.0679 [14]

3
3∑

k=1

1
2k

∣∣cos(( 3
2k + 1)x+ 1

2k )
∣∣ |x− y| 23 [−0.5, 0.5]2 15.8 [13]

4 |x+ y − 0.25|
2
3 − 3 cos x

2 [−0.5, 0.5]2 4.26 [13]

5 − cos(x) sin(y)e(1−
√

x2+y2
π ) [−1, 1]× [−1, 2] 5.0679 new

6 max
{√
|x|,

√
|y|

}
[−1, 1]2 1 [1]

7
√
|x|+ |y| [−1, 1]2 (

√
2) 1

2 [1]

8
√
|x|+

√
|y| [−1, 1]2 2 [1]

9
√
|x+ 1|+

√
|y + 2|+

√
|z +

√
6| [−1, 1]3 3 new

10 −10e−
√

0.5(|x|+|y|) [−2, 12]2 10√
2 [1]

11 |3 + cos(
√
x2 + y2)| [−1, 1]2

√
2 [14]

12 | sin(
√
x2 + y2)| [−1, 1]2

√
2 [14]

13 1
2 sin(

√
|x− y|)− 1

2 sin(
√
|x+ y|) [0, 1]× [0, 2.71] 1 [14]

14 | cos(0.5 + 9.5
√
x2 + y2)| [−1, 1]2 13.43 [14]

15 min
{√
|x+ 0.35|,

√
|y + 0.25|

}
[−1, 1]2 1 new

Table 4. Multivariate Hölder test functions.
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Problem number RT-SPA RT-TPA RT-MSPA
N◦ β Ev T (s) Ev T (s) Ev T (s)
1 3 9131 28.642 8875 26.875 9055 28.103
2 2 1493 0.8627 1459 0.8278 1425 0.8030
3 3/2 6298 13.532 6255 13.316 6248 13.412
4 3/2 1053 0.4863 990 0.4411 986 0.4489
5 2 2844 2.8212 2770 2.6870 2692 2.600
6 2 218 0.0806 238 0.0868 213 0.0802
7 2 214 0.0769 196 0.0920 186 0.0734
8 2 331 0.1102 297 0.0997 319 0.1088
9 2 5795 11.432 5536 10.468 5507 10.501
10 2 4024 5.3531 4266 6.0112 3724 4.6304
11 2 2046 1.5416 2010 1.4863 1973 1.4524
12 2 509 0.1726 478 0.1615 475 0.1625
13 2 6309 13.646 6342 13.534 6257 13.335
14 2 6972 17.1265 6805 15.8143 6776 15.6564
15 2 497 0.1703 485 0.1682 480 0.1662

Table 5. Comparison of results between RT-MSPA and the existing algorithms with
known value of hg.

x
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Fig. 3. Illustration of the global minimization process and iteration points generated
by RT-MSPA for function 12 (as defined in Table 4) on the domain [−1, 1]2.

• Known Hölder Constant (hg): The corresponding results are shown
in Table 5 for the test problems listed in Table 4.

In this context, Fig. 3 provides a numerical example illustrating how the
RT-MSPA algorithm converges, by showing the iteration points produced
by this algorithm around the global minimum.
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Problem number RT-SPAes RT-TPAes RT-MSPAes

N◦ β λ Ev T (s) Ev T (s) Ev T (s)

1 3 2.1 2938 36.910 2460 26.040 2317 33.541
1.07 1194 6.0336 / / 1147 8.2836

2 2 1.5 665 1.6772 614 1.4797 607 1.4337
1.07 435 0.7450 / / 231 0.2266

3 3/2 1.5 636 1.7097 742 2.2662 732 3.2807
1.07 466 0.926 / / 286 0.5239

4 3/2 1.5 276 0.3303 267 0.3049 296 0.5407
1.07 163 0.1200 / / 136 0.1193

5 2 1.5 1595 9.6273 1765 11.474 1711 11.357
1.07 1356 6.9890 / / 1289 6.7921

6 2 3.1 610 1.4298 674 1.6995 591 1.3795
7 2 3.5 / / 534 1.0745 506 1.0562
8 2 3.1 521 1.0367 1140 4.7631 529 1.1228
9 2 4.05 130 0.0697 / / 33 0.0059

10 2 1.5 1723 11.188 2355 20.513 1966 15.084
1.07 1530 8.9580 / / 965 3.8254

11 2 14.4 290 0.3300 310 0.3749 310 0.3992
12 2 3.1 472 0.8553 459 0.7910 472 0.8762

13 2 1.5 134 0.0739 147 0.0855 145 0.0873
1.07 79 0.02688 / / 55 0.01473

14 2 1.5 2792 29.536 3134 36.0570 2923 32.761
15 2 1.5 84 0.0306 33 0.0055 53 0.0135

Table 6. Comparison of results between RT-MSPAes and the existing algorithms with
unknown value of hg.

• Unknown Hölder Constant (hg): Table 6 presents a comparison be-
tween RT-MSPAes and the corresponding estimation-based versions of
existing algorithms (RT-SPAes and RT-TPAes), where hg is estimated.

Moreover, in this case with the estimation of hg, we observed that using
ν = 10−8 and λ = 1.07 often yielded better results than λ = 1.5. Notably,
the RT-TPAes method failed to produce results when λ = 1.07.

It should be noted that for the multivariate tests in Table 6 (unknown hg),
two different values for the parameter λ (typically 1.5 and 1.07) were generally
used in the estimation procedure to obtain the reported results. The symbol
(/) in Table 6 indicates instances where results could not be obtained for
λ = 1.07, particularly for the RT-TPAes method.

Indeed, the TPA method (known hf ) is often faster and requires fewer eval-
uations according to Table 2, when comparing with SPA and MSPA. However,
even in this case, the performance of MSPA remains competitive when com-
pared to TPA. A possible reason for this is that for certain functions with
a known Hölder constant hf , the more aggressive linear approximation used
by TPA is more effective at quickly locating the global minimum than the
secant-based approximation of MSPA. This can be particularly true for func-
tions where the Hölder exponent β is close to 1, making the function’s behavior
more linear.
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In the case where hf is unknown a priori, the situation is different (see
Table 3). Also, according to Table 5 and Table 6, in the cases where hg is
known and hg is unknown, the performance of MSPAes and RT-MSPAes is
more competitive compared to the other algorithms.

Finally, for problems with a known Hölder constant hf , MSPA required
68.42% fewer function evaluations than SPA, and 50% fewer than TPA. It
also achieved an 80% reduction in execution time compared to SPA, and 50%
compared to TPA. When the Hölder constant is unknown, MSPAes maintained
strong performance, requiring 78.95% fewer evaluations than SPAes, and 60%
fewer than TPAes, while also reducing execution time by 75% and 55%, re-
spectively. Similarly, RT-MSPAes demonstrated its efficiency for problems
with an unknown constant hg, achieving up to 61.9% fewer function evalua-
tions than RT-SPAes, and 85.71% fewer than RT-TPAes, along with execution
time reductions of 54.55% and 68.18%, respectively.

Based on these comparative studies, the MSPA, MSPAes, RT-MSPA, and
RT-MSPAes algorithms demonstrate higher efficiency compared to the other
techniques evaluated.

5. CONCLUSION

This paper addressed the global optimization of multivariate Hölderian
functions defined on a box domain in Rn. A key focus was the challenging yet
practical case where the Hölder constant hg is unknown a priori. To tackle
this class of problems, we developed and analyzed two novel algorithms: the
MSPA and RT-MSPA. We provided rigorous mathematical proofs establishing
the convergence guarantees for both proposed methods. To evaluate their prac-
tical efficacy, MSPA and RT-MSPA were implemented and tested on a suite
of standard functions commonly used in global optimization literature. The
numerical results were compared against those obtained by other well-known
search methods. This comparative analysis demonstrated the viability and
effectiveness of our approach, in particular, offers a competitive performance
in practice. Future work could explore further adaptive strategies within the
partitioning framework or extend the approach to handle different types of
constraints.

Acknowledgements. The authors would like to thank the anonymous
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presentation of this paper.
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