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1. Introduction

In [1] LIN J. G. gave a Fritz John type optimality criterion for a cer-
tain class of nonlinear multi-objective optimization. But in the proof of
the corresponding theorem there is a mistake. In this note we give another
proof for this important theorem. In the second part of the paper modi-
fied Fritz John type sufficient conditions for a certain class of multi-
-objective programming problems are also established.

2. A Fritz John theorem for multi-objeetive optimization
Tet X < R" be an open set and let f: X - R”, h: X - R, g: X —
— R,, be given. Denote
Q={x e X:h(x) =0, gx) <0}.

Definition 2.1. 20 = Q s called Parcto mintmal for f on Q if
there exists no x <« L) such that :

(2.1) flx) < f(a), flx) # f(2°).

Similarly, x° < Q s called weak Parcto minimal for f on Q if there
is no x = Q such that

2.2) (%) <f(x).
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2 = Q is called locally Pareto minimal (locally weak Pareto minimal)
if there exists a néighbourhood B(x°, ¢) = {x & R*: |[x — 2% || < &} (for
e > 0), such that x° is Pareto minimal (weak Paréto minimal) for f on
QM B(x°, ¢).

Definition 22 Let' Y < R". The vector ¢ = R” s called a con-
vergence vector for Y at y* e Y if theve exist a sequence (y*) in Y and a
sequence (o) of strictly positive real numbers such that

(2.3) lim y% = 0 ; lim o, = 0; lim 22—
k—-00

k—-00 k=0 e 3%

THEOREM 2.1 [1, pag.54]. If &* < Q s locally minimal or locally weak
minimal for f on Q them mo comvergence vector for f(Q) at y° = f(x°) is
strictly wnegative. .

THEOREM 2.2 (Motzkin’s theorem). Let A, B and C be given veal mat-
rices and A be nonzevo. Then cither there exists x such that

Ax =0
Bx 20
Cx >0,
ov there exist u, v 2 0, w > 0, w # 0 such that
ATu +4- BTy + CTw = 0,

but wnever both.
Now let us denote by C(, x°) the cone of convergence vectors for
Q at x°, and let

Ly = {i:g(x*) = 0}

We say that % and g satisfy the Kuhn-Tucker constraint qualification
at 2 = Q if

(2.4) CQ 20) = {d = R*: yh(x)d = 0, vg, (x°)d < 0},

where yf(x) is the Jacobian matrix of f at x and g, = (g),_,.

In [1] the following T'ritz John type theorem for multi-objective pro-

gramming is stated.

THEOREM 2.3. Let % < Q. Assume that the functions f, g and h are
differentiable at x° and that h and g satisfy the Kuhwn-Tucker constraint
qualification at x°. If «° is @ Pareto minimal (or weak Parcto minimal)
solution to the problem

(2.5) min {f(x): x = Q}

then there exist u « RIN{0}, v « R", w « R% such that
(2.6) Vi (x)u 4 vTh(x")r + yTg(a%)w = O,
(2.7) gT{x"w = 0.

QL ¢
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In”the proof of this theorem [l, pag. 59] the following assertion is
done: "'Let g be a convergence vector for f(Q) at y = f(#*), and let (y%)
and («) be the corresponding sequances for g. Consequently, there is a
sequence (x*) in Q converging to x® such that

lim f(x") =) f(xo)' lim M =q " X

k> ko o

This assertion is not true, as we can see from the following example
Example 2.1. Consider f: R —+ R, )

[(x =12 5 & J—o, 1]
f(x):l , x e [1, 2]
(x—2)2 x =712, oof .

Obviously f is a differentiable function on R. Consider X = 3 and

(%) a sequence in R, converging to 0 = f ( E). It is clear that there is
Sbe ,

' S I

no sequeuce (x,), x, = f~'(y,) converging to x,. For instance, if Y, 1.

15 nz

-0, thenf—l(l)={1 — Lot i}.
n2! .

n ¥

Fach convergent sequence (x,), #, < {1 —~1 , 2+ l}, converges to
n n

1 or to 2('and not to E).
2

Proof of Theorem 2.3. Let x* = Q be Pareto minimal (weak minima
for f on Q. Then the vector y0 = f(x) is Pareto minimal {(weak minimaig
foi the set f(Q). et d « R* be a convergence vector for Q at x° and
(9:) < Q/J (0) e Ry the corresponding sequences. Consider (¥") = f(Q)
y* = f(x*). In view of differentiability (and so of continuity) of f at X0,
the sequence (y*) is convergent to 40 = f(a0). '

But from the differentiability of f we have also
F) = f(2) = vf(a)(#* — 2°) + a(||* — 0 |)),
where

(||t — #°1)

—0, xF =0,
Hwh — 20|

From the relationship

k — 40 k) — 0
¥ Y — f(x) f(x) :Vf(xo) xk — 20 +

Ay op oy

x(l|#% — #°1)  |lxk — 20|

[1#% — 20| o,
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we persuade that
(2.8) g = lim 2= = gf(x0)d

k— o
is a convergence vector for f(Q) at »°.

From the Kuhn-Tucker constraint qualification it follows that d is
a convergence vector for £ at a9 iff 4 is a solution to the system

(2.9) ,. vhi(x®)d =0
Vg, (x0)d < 0.
Since yv is Pareto minimal (weak minimal) for f(Q), there is no con-

vergence vector for f(Q) at 3° strictly negative (Theorem 2.1). Therefore,
the system

vA(x*)d =0
(2.10) vg, (¥*)d <0
vf(x*)d <0
is incomnsistent.
System (2.10) can be written under the form

—yh(x*)d =0
(2.10") —vg, (*°)d = 0
—vf(x*)d > 0.
From Motzkin’s theorem (Theorem 2.2) it follows that system
(2.11) —V A0 — v7g, (2)w — yTf(x°)u = 0

w>0 420 4#0
is consistent.
Let (v, p, #) be a solution to the system (2.11). Then, considering
w < R, defined as follows:
Wy = P4 20, 7 GIO
w; = 0, 1 & I,

we conclude that (u#, v, w) satisfy the conditions (2.6) — (2.7), and so
Theorem 2,3 is proved.

3. Sufficient conditions for Pareto optimality

THEOREM 3.1. Let 20 « X and let f and g be convex and differentiable
at x° functions and h affine function. If at x° conditions (2.6) — (2.7) are

satisfied with u < R, and x0 < Q, .. h(x°) =0, g(x°) < 0, then 2° 1is
Pareto minimal for f on Q.
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Proof. Assume that (4, v, w) = i’e’_’; X R x R% satisty (2.6 — 2.7
and consider the function F: X — R,

F(3) = 3 uef (3

From (2.6) — (2.7) we derive

VE(#) + vTh(x*)v + vTg(x*)w = 0,
& (x)w =0, w > 0.
In view of the Kuhn-Tucker theorem (see [3, pag. 65]) we conclude
that x° is a minimal point of ¥ on Q.

Since # > 0 it follows (see [1, Theomrem 6.1]) that #° is Pareto mi-
nimal for f on Q.

In order to generalize Theorem 3.1 we introduce the notion of weak
strictly pseudo convex vector function.

Definition. 3.1. Let X = R* be an open set and let f: X — R”
be differentiable at x° < X. Then f is said to be weak strictly pseudo convex
at 20 if for any x « X, x # a9, '

(3.1) J(®) —f(x*) <0
f(x) — f(x0) # 0

This definition is a slight extention of that of the vector pseudo
convex functions. This class of functions does not contain the class of
convex functions, but does contain the class of strictly convex functions.

= vf(x) (% — %) <O.

THEOREM 3.2. Let f: X — R™ be a weak strictly pseudo convex,
&+ X — Rt quasiconvex, h: X —~ R affine function, and are all differentiable
@ 2 «Q={xe R:hx)=0, gx) <0} If there exist u = K} \_{0},
v & RM, w = Rh such that (2.6) — (2.7) hold, thew 29 is a Pareto mini-
mal point for f on Q.

Proof. If I, and g;, have the same meaning as in §2, then condi- <
tions (2.6) can be written under the form:

=V f(2°)u — v h(x)y — v7g, (2°)w, =0
w20, u+#0 w0,
where w, = (w;), L
From Motzkin’s theorem it follows that the system
—vA(x)z =0
— V&, (x°)z > 0
—vf(x%)z2> 0
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or equivalently
yh(a0)yz = 0
(3:2) ve, ()2 < 0

vf(x*)z < 0
is inconsistent.

Assume that %% is not Pareto minimal for f on Q. Then there is
% = Q such that

i.e.

3.3) (%) — h(x0) =0,

glu(x) il g[a(%o) < 0.
From the weak strictly pseudo convexity of f, quasiconvexity of g
and affinity of %, from (3.3) we obtain

vix*)(E — %) <0
(3.4) vA(x®)(x — x°) =0
v, (#)(F — ) < 0.

For 2z = % — %9, system (3.4) shows that (3.2) is consistent, i.e. a
contradiction. Therefore, x, is Pareto minimal for f on Q.
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