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1. Introduction. Tn the bresent paper we deal with some oscillation

‘conditions of a differentia] equation which is more general than the Lié-
nard equation :

(1.1) 2"+ f(@)a’ + g(w) = 0

The equation (1.1) may be written as a tizst order system of difte-
Tential equations :

{1.2) {m' = 3/-*1”(50)
Y = —y(z)

In this paper, instead of (1.2) we consider the more general systen,
namely : :

2" = o(z, y)
Gl y = —g(@),
and we suppose throughout this Paper that the functions 1, y: @ - ®,
?:[R* - [R are continuous, and conditions which guarantee the oxis.
tence and uniqueness of the solution for each initial value problem for
System (1.3) are satisfied, Moreover, we assume that the following
conditions are satisfied :
(1.4) ?EOUR?),  9(0,0) =0, ag(x) >0, @0,

and one can find g Positive constant K as well ag a continuous function
h:R - IR such that :

(1.5) K < oy, y) < Iy), (@,y) € IR®

It is obvious that under conditions (1.4) and (L.5) the orvigin of
the Fuclidean plane is the unique _critical point of system (1.3). Let us

write G(z) = Sg(s) ds.

3 ~0.2874
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A solution (w, y): [f, 1) - R% (I < +00), of system (1.3) is said to
be oscillatory if there exist two sequences {t,} and {8 wip <<ngpiaith,
tending monotonically to ¥ such that 2(t) = y(t,) = 0.

In [2] Gabrielle Villari proves that if

F(z) > — > —oo  for o >0,

Fz) < 0 < 1 o0 for » < 0,

and zI'(2) < 0 for || < z > 0, then all solutions of system (1.2) oseil-
late if and only if :

im sup [G(z) 4 F(2)] = +oo,
A -} oo

lim sup [G(2) — F(2)] = +oo.

¥=>—00
Later, Villari improves his own above stated result to the case: if’
Hm sup F(x) > — oo,

1> -} oo
Hm inf F(o) < 4 oo,
X~F—00
and zI(z) < 0 for [@| < e >0, then all solutions of system (1.2) oscil-
ate if and only if: .
Hm sup [T_(2) -+ F(2)] = + oo

x=>-}-co

Im sup [Ty(z) — F(x)] = - co,

where

X

r.(o) =S

i 0
Fyi(2) = max {0, F F(z)).

This result was eommunicated by Gabrielle Villari at the XIth
International Conference ‘on Nonlinear Oscillations held at Budapest,
August, 1987, as prof. A. Halanay kindly informed us.

Tt s easy to see that the above hypothesis is not fulfilled if we
consider the equation :

96
1+ Fy(s)

)

e, " . F oot ’
G c 27 A ba’ e = 0,

W'he.re b and ¢ are real constants.
" The aim of the present paper is to extend the result of G. Villaxi
as well as some results of 1. Hara and T. Yoneyama, [1]. We will study

also system (1.3) under the following hypothesis :

lim o(z, 0) = +oo,

*—> too

(1.6)
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which, for system (1.2) it means that .

lim P(2) = Fco,
A=>.L 0o
S 2 Wi SEEAE A Tt >
1y .II]n_ ‘?u:[-_r'ol.y_ we stud) the bebaviour of the lrajectory of Bystem
ol ‘-\u_rui Ii T{.l;_t.h at a point of the characieristic curpe @@, 7) = 0 ab
©=U, and satisfies gome repulsivity conditions. Our rosults ape <
; Pulsivity ¢ IS, Uar results are in conne.
tiong with those of 1, Hava andd [ "funm-u-'u:l, [1] i
anfs o B i ) . e W e

e In!; eclion 3 We give a necessary and sufficient condition for oseil-
fatlon of the solutions of system (1.3) when :

lim inf ¢(a, 0) << J-00
l;

¥ -foo

Um sup o(z, 0) > —oo,

=00
licnce we obtain an exbension of {he result of Cabrielle Villari
a0 I]l .a‘?t-'.(].' r,_‘lon } }‘."o 1'1’),[:1*9('!,110{» sufficient cone ions foy inbersection and
1—-1.1u,_015~__reu.1011 b Bl trajectory of System (1.3) with the eharacteristic
eurve, i (1.6) holds, AU (B e
MHya ol 4] : 2 . g ;
Throughont the Paper we use no Tiapunoy funcéion,

AC}'.W%()‘Z")Z()(Z‘O"3);(”,‘1?’ We are d St ,
2 VOECGEINGHE, We are aeenly ﬂ.ld‘@])‘d()d to T)VO]Q A P PR
many valuable suggestions, i vrol A Halanay for

2 Toeai h"h“ﬂ'i@ﬂj‘ at i} PRSI = .

A 0en; roat e D8N, Lot s wWribe 7). —— f1n Lol _—
a4t JTiot e MO S WIe D) == (w4 | O-
P(% y) >0} and Dy = {(2, )| » = 0, ole, 7)< 03, 1EUR ) @ >0

MMA 27 Ty i Ser | . ' § i =

B(a T;EA_I_*'}.[A 2.1, .;"‘ﬂri--(.*_?/ trajectory of sysiem (1.3) passing through @ poing
y-aan Yo) (@0 # 0) which belongs 1o the haracleristic curve inerseels e
‘9)::3-.: i3 ‘ff-af {f? ;}u-&n!s : A(0, Ya) (#aZ0) amd C0, ye)y (o < 0). More preci-
.}E;}, T.'f_r;f.-f.] =10 U-fr 30{:@301:; rg}“.(l'.d) leaotng ithe point 1 at't = 0 cither traverses
Io.m,: ??ag,mx;e SR ik Tomd VR TINE —1y >0 gg | decreases or tends o the
t'.’.'m'? ?:z(fffs (—1 % (¢ ?f'—:zxxj. Femarnang iy the 1Efion Dy, and traverses the ne gii-
WEUC IR Gl some fingle e te =0 as {,.,:._,3(..',.‘_,(,5,',,8 i=f) 1. i e

T s ; - v U ARCTedses or tends to oloin as 1 o
vemaining in D, o tends to origin as | t

Proot Tiot S ST11T)3 9 hade 470 = 0 R,

M I_/..’J?L us sappose [hal G >0 and let ¢ =0 the moinent af
which the trajectory meets the sharncteristic curve at the poing By, 4,)
N ! bl ol i el ulC POINY H{a K
(o(ay, Yo) = 0). Tirst we cousidler the cage when ¢ 2 0. Since : S

| - re K 3
= =%, 1) glwp) < 0,
=0

S ottt g1
e L)y Y (i
ds P y Y(7)) ‘
the solution (@(1), w(1)) enters in the region | ] i
sohh i 1) y ] glon D, and does not ingersept g
]I.fl:)_le the cha 'a_cterlst{c curve as long a(f) > 0, Then g Ia:mo[s?.r;’r;l})y
"J‘lth us suppose that bhis trajectory Starting in B does not mect {?h’e y—%i%.
- 1en ue can find & e [(, Tp) such that 2(t) +Z and y(t) - — oukm
IE-%? 01 :.?'(;‘.)_ =0, (1) -0 for ¢ =4, and (a(1), y()) € D, for te [0, %)
Y(8) - —oo for t = £, then from (1.5) we have that: - s

H(y, — Y) < o, Yo) — o(x, y)
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from where : ]
p(a(t), y(t) < o(x(t), ¥o) -+ K(y(t) — Yo)-
It results that:
lim p(a(t), ¥(t)) = —oo.
I+t

But thizs means that:

Hm o(t) = Hm (@, + \ o(«(s), y(s))ds) = —oo,
t 1

it

Ot ™y

but that does not agree with x(t) > 0, 1€ [0, 7). sl ot e
i It vesults that the trajectory of systellln ](]1.31)'(111):1,1 Pime onel e
int ither oaches the origin ‘of the Euc 1‘ N
pm.n.t fB Lg;thre;%ag]{g y-axis at a finite distance, let’s s}a;y t0(0,e é/tcgrgzjc;) ; sys)-
i ]]les 'Loq?mjlaa- wafy, if we consider ¢ < 0 we g?t tl e }ol(?e R i
1.3) y ssing through the point B either approac 1e§ ‘Einitebdistance,‘
J;Pm]%'?u)np];ifanebfor t— ¢ or it has to cross the y-axis at a
Tuelideas i
et’s say A0, ya) (¥4 >0). o
Similar results hold in the case _ ‘aio .
Congider now the following conditions :
| e o ing to zero such that
El)) aicli(eclb:a i)s a ;9(11161108 {24}, @s>0, tending to zero such
11 A S€e0
o s 3 0, for
(iii) (fl(;;r’e i)s a ﬁositive number « such that |¢(z, 0)| # 0,
0<w<a and:

1 S 15) 45 > o » %{—, w € (0, al;
o(x, 0) (s, 0)

i —e < @ <0
Lhufiotly ) i y ing to zero such that
Eii?) there is a sequence {z,}, 2, < 0, tending

e v 0 for
(iii’) C’Eh(uﬂ(; il a positive number « such that [e(z, 0)] #

—a < ¢ <0 and:

, € [—a, 0);

1 S g(s)-ds>a>11K
o(z, 0) P (s, 0)

; € a [1].
These conditions are similar to those of Hara and Yoneyama [1]

Uj € C /d/ 1O ( ) d « (A € CONng (i er 1}16 i}(l 8(}1(}‘) 1

; : @, y) = 0},
f system (1.3) passing through a point B(x,, o) €{(z, w)| o(z, ¥) 9
of syste 9) 1
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Zy >0, then there is o >0 such that the trajectory crosses the y-axis at
Ya<< 0 and there is a —tc >0 such that the trajectory crosses the Yy-azis al
Yo > 0. (The situation (2(1), y(1)) — 0 is excluded. ).

Proof. The case (i) If @ >0, then ¢(2,0) >0. If 4 >0 then
(%, y) > 0, so #'(f) > 0. It follows that a(t) > &, and z(t) does not
approach the origin. Tf Y < 0, then y' < 0, g0 y(t) is decreasing and ()
does not approach the origin again,

The case (ii). For ¢+ >0 we have o(@(t), y(t)) < 0. It x(t) > 0.
lm (1) = 0 there is 7 e (0,2) such that o(a(7), Y(1))<<0and o(w(3), 0)=
it
= 0, so, since y > o(x, ¥) is increasing for any @ it follows #(7) < 0.
From here y(1) < Y(i) < 0 for ¢ > l, 50 it is impossible to have y(t) — 0.

The case (iii). It we have (2, 0) >0, «€ (0, a], then Yo < 0 and
Ya < ¥ << 0. If we have ole, 0) <0, ze (0, @], then from Temma 21,
we have y, < 0. We su ppose that y, = 0 and we will get a contradiction.

Let’s take y, — 0 and it resulls that (1) >0, te [0, 7). Then for
any e> 0 and ge [s, Zy) we have ;

- x

V) — y(e) = ;'(/(8)‘-.:.__ g(s) 1 a1l _(/_(.5)_
. S@(s,m» o) oo,y & 5@(8, T

2

£

a

. (8)
Y(@) — y(e) > —- a, 0 S—-———fj————_ ds.
AL E ) o, 0) gls, 0)

If ¢ -0, then:

Y(@) = — gz, 0) S-_.-—__(]_(i)______ d8' 2k lersig(g) o),
&

¢(w, 0) ?(s, 0)

Taking into aecount that :
P(8,9(s)) = 9(8,0) — Ko - ?(8, 0) = (1 — Koa) »(s, 0)
we have that if ol > 1 wegeta coutradiction. Hence oI < 1. It we repeat

step by step the above argument, then we get Y(z) = *o(z, 0)].

— al{
o

1
I — > = e eb again a contradiction S0 we suppose that;
1—oaK K g { PP
. 1 . ) :
— ——. In this way we build up the monotone and bounded
1 — «ll K
Sequence o,y = /(1 — i), and if we take I, = lim oy then L2 —
Hr00
— L4 0=0, which has no real root since 44¢ > 1. From this it follows
that v, < 0,

In a similar way we get that y, > 0,
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LEMMA 2.3. If one of the conditions (i), (¥') or (¥d') is salisfied
and if we consider the trajectory of system (1.3) passing through a point
Blay, yo) €42, 4) | playy) = 0}, @y < 0, then there is o t; >0 such that
the trajectory erosses the y-amis at y, >0 and there 8 —t, >0 such that
the trajectory crosses the y-axis al ye < 0. }

Proof. 1t is analogous.

3. Interseetion property and oseillations. Let us write ¢,(z, 0) =

=max {0, dzo(z, 0)}, and :

T :g 93 . gs.
5 1+ 9.(s,0)

LIMMA 8.1, Under conditions (1.4) end (1.5) and

(3.1) im sup ofe, 0} > —co

A= —030

Hm int o(x, 0) << J- o0,
1>+ co

for each (g, yo) € Dy with xy >0 the trajectory of system (1.3) which pusses
through (24, 3,) crosses the characteristic curve for an @ =, if and only if :
(5.2) Him sup [Ty (w) — o(2, 0)] = 4-co

A—00

Fror each (aq, ¥o) which x, < 0 and (@, Yy) < 0 the trajectory  of
system (1.3) which passes through (2, ye) crosses the characterisiic curve
at an o < @y if and only if:

(3.3) m sup [ (x) 4 oz, 0)] = +co

= -—00
Proof. We prove lere only the first statement. The second one
rins inoa similar way.
Lebt ug suppose thab:
lim sup [1".(2) — ofw, 0)] < 4-co

x=>--00

(3.4)

Trom (3.1) it results that one can find a monotone sequence {«,} tending
t0 -k oo such that o(w,, 0) — ¢ < -+ co, for # — co. From (3.4) it results
that {1,(z,)} is a bounded increasing sequence, hence :

(3.5) S_AEE;ZQ<+m
3 1+ 9.(s,0)
Now, from (3.4) it follows that lim  inf {o(x, 0)} > — co, that is, one

E e o]
can find O, >0 such that ofx,0) = —0C,, for ¢ >0. Then there i8 &
positive a stieh that oz, Oy -F @) > o(2, 0) 4- €5 + 1. We show now that
each trajectory of system (1.3) which starts in Ry = {(»,9) |® >,
y >0, -+ C 4 al lies in Ry, ={(z,9) |2 >0, 9 >0yt a} =D To

1§
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see t}h t CL us cons 2 a ! i3 1 .
3 b S1de Q 3G:Union ofr SYRTeN ( 1 % 1‘ l () E
a l 1 ] 1 h B LETN € \¥ e O [} { 1

(3.6) (o) = Cy 4 a and y(t) > Oy 4-a, 1[0, 7)
From the above relations and (3.5) we have :

) = olalt), y(0) > 9(2(1), Oy + @) > 0(2,0) + 0y + 151 + g,(z, 0)

and
*(7)
mw:%~gmmmw>@+q+a~§-ﬂ1—HM>0+a
S 1 euls, 0) TR

But this is in contradiction with (3.6), 50 (3.3)
‘ Let us see now that if (3.2) holds , then the
intersects the charactervistic curve.

If

is necessarily.
trajectory of system (1.3)

h‘]"ﬂ jnf (?(a}, O) = oo,

¥ 500

thel‘b i" aQ 1’1’10]101‘0]1 5 & = — 1 i
3 S ONG  Seque + 4 L i 7 [
G ence 1 a/”} l..C( r”)}, (L” > ‘[—OO sucn ;h?]w,

o(@y, 0) —» — oo, for # — co. Then, since y' <0,

im o(a,, y(t,)) < Um (@, ly,]) <

n-—>00 N0

< Hm g(w,, 0) + Jyo| - max {A(y) | y € |0, lyo 113,

HFOO

and

lim inf ¢(z,, y(t) < lim o(7p, 0) = — oo,

¥1—>CO

Hence the trajectory interscets the characteristic curve

It "
xii}r; sup I' () = + o
it follows that
xh'ng Pi@) = + oo

Let us take a point (2 & l
506 us & s Yo)y X0 >0, o(zy, ¥) >0 and leb us
ﬁ?ﬁbmﬂ}% (1;](16 3)‘&3@03;01&); whlcih passes 7{;}11'08,@]10 (@gy Yo) does*e ngst 178111;&
@ = 0. It results tI lone this tratect o "
ANt Ti’l‘(}n: results that along this trajectory there holds

0 < ol(t), y(0) < 9(@(t), yo) < o(@(t), ly,|) <
< ¢(@(t), 0) =+ lyo| - max {h(y) |y < [0, Woll} < a1 + o, (2(3), 0))
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for a positive constant . Bub

¢ x(1)

1 9(8)
) =y, —\gle(s) ds < 9y - —+§ ———ds—> —o
y(&) = o Sy( (8)) Yo ——wS 1T 0.5, 0) ,
for ¢ — 1.
Then, using (1.5) we have
lim inf o(a(t), y(9) < lim inf (o(a(t), yo) -+ K(y(8) — yo)] = oo,

which does not agree with the condition that ¢(x,y) >0 along the
trajectory.

Now we can state :

THEOREM 3.2. Let us suppose that for @ >0 one of the conditions
(1), (#2) or (vir) is satisfied, for x << 0 one of the conditions (v'), (40) or
(#12") o5 satisfied and (1.4), (1.5) and (3.1) hold. Then all solutions of (1.3)
oscillate if and only if (3.2) and (3.3) take place.

Proof. It vesults from Lemmas 2.2, 2.3 and 3.1.

Remark. For ¢(z, y) =y — IF(x) we gel a result of G. Villari [2]
and Theorem 5.3 of 1. Hara and T. Yoneyama [1].

4. A different elass of conditions. In the next theorems we consider
that the following conditions are satisfied :

(4.1) lim gz, 0) = -f-oco.

Kb oo 0O

Then it is obvious that there is an #* > 0 such fthat ¢(z,0) > 0
o(-— a,0) < 0 for © > z*,

THEOREM 4.1. Under conditions (1.4), (1.5) and (4.1) if

¥

(4.2) fim sup l g(s) - - = o > —i-—,
o g, 0) ) ola,0) K

then ecach trajectory of system (1.3) which passes through the point (xy, ¥,)
with xy, >0, o(xy, y,) >0 iniersects the curve ¢(x,y) = 0 for an & > ;.
Under conditions (1.4), (1.5) and (4.1) <f

X

s

{4.3) lim sup ol il
(s, 0) K

svmoo (1, 0)
then each trajectory of sysiem (1.3) which passes throwgh the point (4, ¥,)
with ©, < 0, olwy, y,) << O crosses the curve o(@,y) =0 for an @ << x,.

Proof. We prove here only the first part of the theorem. The other
part runs in a similar way.

then each trajectory of system (1.3) whi

: ch passes th
@o > 0, o(xg, ¥o) > 0 crosses the curve o(@, f; e
(1.4), (1.5) and (4.1) and if

then each trajec . )
G a;00< Sa]eotom/ of system (1.3) which passes through the

b
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We prove that the equati
. _tha Juation o(a(t), y(t
i[;e.t us suppose that o(a(t), Y(t)) >0 fcf}(r g é’ f/é )i))
or te|[0,1%) and im @(t) = +co. We maJy’ 8
1

= 0 has at least a root,
. Then &'(t) > 0, y'(1) < 0
- o uppose that z, > p*,

or the first step we show that
moment. Indeed, from ( 4.1) we have thatg{:(
such that ¢(a, 0) > [y - max {i(y) |

t) bt_acomes negative at some
here is an z, > @, large enough
Y €10, 911}, #> 2, and then

(1)

M A1)
y(t)<yo—sﬂds=yo_50(\8)d8_ 98)  qs<
AGED RLCED) o550
Xy g(s) 1 x(2) ( )
< Yo — S—‘—————- ds — —. rsg : a -
; ®(85 Yo) 2 S (s, 0) LT Te
for ¢ —» 1. ’ ”1 -

We may thus suppose that 7o<0. For e e ( 0, « — i] there is a +
such that : =

#(r)
_9(s)
; st; (o — @) - g(a(x), 0).
B e
Irl‘I(‘)O]:Inn “%e?l/ we bhave oz, — (o — &) o(®,0)) < [1 — (o — e)] o(x, 0),
#(1) (x7)
92, (9,3 < of o(), g —\-L i) ~\ e
B EOITR A \ o,y

< e 1);, —(« — ) p(a(),0)) < (1 — Ta — e)) ¢(a(x), 0) < 0,

which is in opposition with (@(t),y (1) > 0.

THEOREM 4.2, ; ; o
and if If the fumction satisfies (1.4), (1.5) and (4.1)
(4.4) lim inf — 1 S 9) g A e )
e 9@ 0)) o(s, 0) 4x’

gh the point (x,,
= 0. If the function @ sat%f@lgg

(4.5) lim fuf — > gﬂ_ds —p 51
#o~co  o(x, 0) - ®(s, 0) 4K

tnt
s P&y ¥o) < O crosses the characteristic curve, pownt (& o)
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Proof. Here we prove only the first statement 01; the 1‘§he(;)rleongé
bof ‘ ir similar k in the pr
¢ ' ne runs in a similar manner. As
The proof of the second o _ Erane e
olfl OTﬁeorem 4.1 we may suppose that a,>a&* and y,< 0. We -also

1 s bherwise we apply Theorem 4.1.
suppose that B < B since otherwise we apply Theo

1
if g € T T | e U 1
From (4.4) we have that if we choose ¢, € (O, B 4K:| then there

is an @, > x,such that for any @ > @, there holds :
0% @ =18 — = ol )
(s, 0)

Let t; besuch that «(t,) = «, and for £ > ¢, we have :

a(t)

ym<yr@J§5M<»4ﬁ~m@mmm
and . L
Cogls) Lo gls) ds 3
ym<%*gwmﬁﬁ Swa~w—m@ww
# ; #(t)
B TN Lo,
S Y8 50 Y o, 0) o I — H(Bi— 12 1 gty )

x, Xy
<

But, from (4.4) if 0 < e, < min{ 2‘

» BR(p — el)} it can De found an

x, > @, such that for @ > z, it holds that :

Sﬂiﬁ>w—%wwm-

o(s, 0)
Let t,he such that x(t,) = @,, then for { > ¢, we have :
%y x(t) X
. gerds (G e . _S 96) _ 46 _
y(t)< 2 —S @(81 0) S CP(S)O) ‘ P tp(.S‘, 0)
(1)
8 — e,
. i ds<yo — : - ¢(x, 0)
L k(B — &) Jols,0 1— KB — ¢
%
Let us write :
e f =5 r
YL kB — ¢y
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For 1> 1, we have :
(1), y(0) < o(a(t), yo — Lyo(@, 0) < (1 — f1l) o(w, 0).
If B 271 s then g(e(t), y(1)) <0 and the theorem is proved. Let ug
't
suppose that £, < %, then for ¢> 1, we have :

- 4 #()

o) = g, — | 20 it ) -,
) @8, y(s)) ®(8, 4(s)) 1 — 8 Jes, 0)
We choose 0 < £5<C 2, an Ty > Ty and 4y : 2(t;) = @, such that for
any >4, it results :
P — e
Yy < — ——2 (), 0),
V)< = S el )
Let us denote
g 3
= > )
82 1 A 7{)(};1 Pl’

and there follows

¢l2(t), ¥(1) < pla(t), — f;/fﬂ Pla(1), 0)) < (1 — Pk ofa(), 0).
B

— ‘922%’ then g(a(1), y(1)) <0, and the theorem is proved. We

1 i .
assime that §, < P I we goon as abovewe get two sequences :{Ba}in
;

inereasing, while { €.} 18 decreasing and tends to zero. If we find a term -

1 .
fu such that p, > i then the theorem is proved. It not, the sequence {0, }

is bounded and monotone, and if we denote by Lits limit, it results that
L<1/k. But I satisfies the equation kL2 — I, - 4 = 05 this equation has
no real root for 4f%> 1.TH means that there is # such that Bp> 1/k.
"IN the next theorem we use the following condition :

(4.6) _ 0 < gulw,y) < hy (@,9) e R?
THEOREM 4.3. We assume that the Junclion o satisfies (1.4), (4.1}
and (4.6) and if

x

(4.7) Iim sup = 98 ds =y < i,
NSHERC oz, 0) (s, 0) 4h

e
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. . Toan ]
then there 4s at least o trajeclory of system (1.3) 'whwth‘ I;Z;St(l)fp tclb}Z c(b):'bdqc,:
the point (@g, Yo) with x,>0, o{@y, Yo) >0 and does not m ¢
Leristic curve. .

[ ¥ Tirst we show @, > ¥, there 18

roof. Let ®, = x*. First we show that for any x, ,
Yo > OPs)gg{l that ghe trajectory passing through the point (@g, ¥o) does
i/](())t meet the w-axis before x;. Indeed, for

*,

_(}_(S_)_ ds
y°>8 o5, 0)

if we would have a t, with @(t) < @, and y(t,) = 0, then :
(s, 0

4 y o I8 2, > @, such
Hence, we choose ¢ € O’E —- p] and then there is 2, 0
that for #>ax, the following inequalities hold :

x

S-”(—”- ds < (p -+ € o#,0)
‘9(310)

®p

x

' gls)
Yo >\ ————ds.
. S (s, 0)

We show that tho trajectory of system (1.3) which passes through

1 -
i ; . - — g2, 0), remaining for
(@4, y,) does nob intersect the curve y = s ¢(2, 0), g

1 .
all t above it, and o(z,y) >0 if y > — —2-h—.cp($, 0). Indeed :
1
1 ) ) ] 2.0)] >
ol@,y) > fp(.’l’:‘, TR o(2, 0)) = g(@, 0) + ¢z, &) [ '21& o, )]

1
> o(a, 0) ﬁ%- oo, 0) =5 " #(@, 0)

Now we assume that the trajectory of system (1.3) passing through
1 i h oment
(20, ¥o) crosses the curve y = _ﬁ' o(z, 0), and let v be the m

of the first intersection. Then x(<)> &, and

#(7)
g(s) as + -1 gla(), 0)>
2h

1
T —_ T), 0) > Yo —
y(=) + o ¢(#( ), 0) o ——?lh—q)(s, s
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#(7)

g(s) 1
2 Y, — 28— s — o(z(x), 0)= 1y, -
” S o, 0 0 ¥ gy P 0> 00 +

%o

+(%— 2 — 25) “o(a(7), 0) >4, > 0.
zly

But this ig a contradiction. Hence, the trajectory of system (1.3) passing

through (z,, Yo) does not meet the curve Yy = a S ¢(w, 0), and this
fact implies that o(2,y) >0 along the trajectory.
The result in the case when # — — oo is similar and we omit it,
e have immediately the following result :
THEOREM 4.4, If the conditions

of the Lemma 2.3 are satisfied
andfl.l’l’?eorem 4.1 or Theorem 4.2 holds, then all solutions of system (1.3)
osctllate.
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