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1. Introduction

Criteria for the continuity of econvex and eoncave functions play an
important role in functional analysis and optimization theory, no matter
whether these funections are single- or set-valued. But in the case of
single-valued tunections it suffices to state such criteria for one of these
two classes of functions, because a real- or vector-valued funection f is
convex (resp. concave) if and only if — f is concave (resp. convex).
Unfortunately, this advantage is lost in the case of set-valued functions.
Although the continuity propertics of convex set-valued functions are
quite-simmilar to those of concave set-valued funetions, they have to be
proved, for each of these classes of functions separately. The present
paper will show that the same phenomenon arises in the case of a pair of
more general set-valued functions. We call these two new types of set-
valued functions (4, s)-convex and (4, s)-concave, respectively. They are
defined as follows.

Assume that A is a subset of the open interval 10, 1[. having zero as
a cluster point, and that s is a positive real number. Throughout the
paper 4 and s will always have this meaning. Let X and Y be real
topological linear spaces, let 2( Y) denote the set consisting of all nonemp-
ty subsets of ¥, and let M be a nonempty convex subset of X. A func-
tion F': M — Z,(Y) is said to be :

(1) (A, s)-convex if

(1 — a)'f(z) + a'Fly) c« F((1 — a)z + ay)
whenever a € 4 and x,ye M ;

(3i) {4, s)-concave if

' (1 — a)z + ay) c (1 — a)li(z) + o*F(y)
whenever a e A and #, ye M. '

Obviously, for special choices of A and s in these definitions, we
obtain certain kinds of convexity and concavity for set-valued funetions
which have alrcady been investigated. So, when 4 =10,1[ and s =1, we
get the convex and concave set valued iunctlom, when A =10,1] n 0
and s = 1, we get the rationally convex and rationally concave set-valued

functions ; ﬁmllv when 4 = {27 : n e N} and s = 1, we get the sequen-
tially nudpoulb com ex and sequentnllv mldpomt concaye set-valued

funct}ons
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d for set-valued functions and so it R, B

Geerel'v fmi single-valued functions has also to he 1110111;10?@3‘1_ hlu_‘f .dl ::ndm'

end, lot K vex cone in Y, ie.a nonempty convex set closec 3
O tition by posiit Tt Y is a function satistying

multiplication by positive scalars, It f: M — Y 1 __ 1 sabisfyi

(La) - A — ayf(a) + e*fly) e L — @) o+ ay) + I ozl

- P 3 r ey = A
whenever a € A and @,y € M, then I : M ‘J".@f‘( YI)’ ‘1(:;?;(}111;3. j\(,ﬁl)(.n {r( l_‘f{
3 SoE e X et '._nnp."_.‘ § ] =
=i -convex sel-valued funetion. In-gy : e iald
+ K, is an (4, s)-col hequality which obviously yields
- ] g es Lo an inequality o J
{ — R, then (1.1) reduc : : Tl E e (i S netions
?11:11 i] ita.{J 1(;;1 and ) diverse convexity ci)nqupw for real-valued fu
; AT functional analvsis. e .
»d in optimization and functio a ; it : v of
e {j]h(el goal of the present paper js to characterize 'thfel"]c(g]'}tégﬁl%é wo
(A ‘-'}-(‘»nmf‘ex and (A, s)-concave set-valued :Euneblonsl. il nec%i‘dn ot
h ;;]1 srove reveal, for each of these classes of fuingtlons,_t e (13;(')1“311't'  ppen
?veenl continuity ; on the one hand, and lower semi-contn 1&’1,0 bilher
scmicont'inuitv,' local boundedness, unif{n’m llu?n(_l:‘:h‘]?*‘i:? t?‘l?ahwf'{ func-
SR . T ag of the two types ol set-v ’
hand. They highlight the usefulnes otting hoth necessary and suffi-
tions introduced here. In a very gene_.l-al_ setting bot ; I o 1ﬁiqsing‘ -
cient conditions are obtained for continuity _'“'h]ch MT% l)'{r]J ' e;mrafl‘ con-
for those particular classes of functions which suggestec fletgre-.’of these
cepl of gonvexity and concavity, respectively. .A.lluﬂ,u’{]?? ﬁqfthet)rems
1'9}:1{[1;% is that thoy arve a set-valued counterpart to well- (1 Opd .fﬂnébion‘%
ec_;rlcer.'ni‘j‘lg the continuity of convex and urénca,v?l_ltt;g;k:afgr, 'clc;;nt-inuih’,
h - I —— some sufficient conditions { 2R
By specializing our results, so e tbatied ¥
1'(’};9111;1\7 oiven by K. Nikodem [3], [4], can be obtained.

2. Preliminaries

To make our paper self-contained we mention in t(’ihis sec,‘gon all
the notions concerning set-valued funptlons we shaﬂ_ 11<>Ic 1-).6 m: n(;nelnl:)-
Tet X and Y be real topological linear spaces, let ﬁ/f o (1 -ROROpID:
ty subset of X, and let J be a funetion from M to Py(Y). For it i 3
o L £ -y ‘ ‘ A :
we shall write |
Ty =\ )
xeT
for any subset 1'of M. . o
if @, is a point in M, we say that s )
» ieiohbour .V of the
(i) lower semicontinuous at a, it for every n(?lglllbamilgl(;;)(?p )TC(I);(( %§+
orizin of ¥ there exists a neighbourhood U of x, sueh that L) £

(=] I :

Viorall xe U n M; . | 3 . R—
" (il) upper semicontinuous at x, if for every )1elgl}]b0;1}120())d¢ ]iv‘(‘(;TE )L+
origin of Y there existsa neighbourhood U of x, such tha w) < F(a,

V for all ze U n M; ; . Cengr E
M (iii) continuous at x, if I' is both lower sewicontinuous and upper
gemicontinuous at x; . . ] %
- (iv) locally prebounded al x, if for every _nelghb(_);;ll‘lalogfhgodofc;dof
oricin: of ¥ there exist a positive integer = and a neighbourhs od, Gifo
2, bsuch that F(z) n oV # O for all ze U N M,
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(v) locally bounded at @, itfor every neighbourhood V' of the origin
of ¥ there exist a positive integer n and a neighourhood U of a, such
that F(U n M) = n).y- ; 1 : : ,

(vi) bounded at o, it the set, F(z,) is bounded, i.e. if for every neigh-
bourhood V' of the origin .of ¥ there exists a positive integer n such
that #(a,) < nV. : '- - :

-The function ¥ is called :

(3) lower semicontinuoys. (vesp. upper  semicontinyous, continuous,
locally. prebounded, locally bounded) on M if it is lower semicontinuous (resp.
upper semicontinuous, continuous, locally prebounded, locally bounded)
at each point of M ; . _

(31) pointwise bounded ow. M if it is bounded at each point of M ;

(33 uniformly bounded on M if for every neighbourhood V of the
origin 'of ¥ there exist a positive integer » and & nonempty open subset
T of M such that F(7) < aV. _

- We note that the above-mentioned concepts of lower semicontinuity,
upper semicontinuity and' continuity of a set-valued funetion are well
known, ‘local preboundedness seemis to be used here for the fir
while the other above-introduced coneepts have been inspir
used in funetional analysis for families of functions.

LEMMA 2.1. Let X and Y be real topological linear spaces, let M . be
o nonempty subset of X, let @, be « point in M, and let F: M — 2,(Y)
be a function which is bounded at X, Then the following assertions are true -

1° If I 48 lower semicontinwous at %o, then it is locally prebounded

st time,
ed by concepts

at x,.

2T K As upper semicontinvous at @y, then 1t 4s locally bounded
at x,.
Proof. 1° Let V' he any neighbourhood of the origin of Y. Choose a
neighbourhood Vv of the origin of ¥ such that Vo —Vy < V. Since 17 is
bounded at-x,, there exists a positive integer # such that F(x,) < nV,.
Taking now into consideration that ¥ is lower semicontinuous at To, We
can conclude that there exists a neighbourhood 17 of @, such that #(a,) <
< fa) + 2V, tor all x€ U n M. Thus we have
el (w) — Flag) < Fla) + nVy— n Voo Flae) —aV

for all @€ U7 n M, and henee F(z) n nV % Ofor all xe U n M. Conse-
quently, /' is locally prebounded at x,.

2°.- Let V be any neighbourhood of the origin of ¥. Choose a neigh-
bourhood V, of the origin of ¥ such that Vo-+ Vo= V. Since F(a,) is
bounded, there exists a positive in teger n such that F(x,) « nV,. In view
of the.upper semicontinuity of ¥ at @, there exists a neighbourhood U
of x, such that MU n M) < B(x,) 4 nV, This inclusion implies
(U0 M) = nVy+ 2Vyc al. Hence F ig locally bounded at 2, @

3. Continuity of (4, s)-eonvex set-valued functions
First we investigate the continuity of an (
funetion at an interior point of its domain,

THEOREM 3.1. If X and Y -are real topological linear spaces, M «
convex subset of X, wg an interior point of My and B M — P(Y)an (4, s)-

A4, s)-convex get-valued
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~convex function, thew the following statements are equivalent:

1° F is both continuous and bounded at .

2° I 18 both wpper semicontinuous and bounded at z,.

3° I is locally bounded al ®,.

4° F is both locally prebounded and bounded al wxg.

‘5 T is both lower semicontinuous and bounded @b .

Proof. The implications 1° = 2 and 3° = 4° are obvious,while the
implication 2° = 3° has heen stated in Lemma 2.1.

Suppose now that 4° is true. Under this assumption # is lower semi-
continuous at z,. Indeed, let V be a neighbourhood of the origin of Y.
Choose a balanced neighbourhood V, of the origin of Y such that V-
+ Vo< V. Since I' 18 bounded at @, there exists a positive integer m
such that F(x,) = mV, and since F is locally prebounded al @, there
exist a positive integer # and a neighbourhood U, of ®, such that F(z) n
nnV,y#£0 forall xelyn M. Take now, on the one hand, & balanced neigh-
bourhood W of the origin of X such that z, + W e U, n M, and, on
the other hand, a number a4 € A which satisfies the following inequalities :

n—-@a— a¥m <1, a'n < 1.

Of course, U = @, -+ oW is a mneighbourhood of contained in
U, n M. We claim that
(3.1) @y = I(x) + VvV for all xe U.

Tt & be a point in U. Then there exists y € W such that & = @ +
4 ay. Trom I'(ap + gy nonl,# 0 it follows that 0 e f(xy + ¥) — 0V,
Consequently, we have

0eca B, y) —a’nlVy = & I(xy -+ ¥)+ Vo
MTaking into account this result as well as the (4, s)-convexity of ¥, we
obtain
Py < (L — ayB(ay) + aWzo + ) + [1— (L — ayi@o) + Vo <
c Fla) b 1 — (O — aylmVo+ Vo = Flo) + Vot Vo = Fa) £ -
Heneco (3.1) is proved. Therefore I is lower semicontivuous ab . So the
implication 4 = 5° is stated.

To complete the proof we show now that 5° implies 1°, Let V be
any neighbourhood of the origin of Y. Choose & balanced neighbourhood
Vn' of the origin of Y such that Vo4 Vo+ Ve V. Singe I' i8 bounded
at @, there exists a positive integer n such that I'(z,) = nV,. On the other
hand, since I is lower cemicontinuous at a, there exists for V, a neigh-
bourhood U, of @, such that Frg) © F(w) 4 Vo for all we Uy 0 M.

Take now a balanced neighbourhood W of the origin of X such
that x, + W = Up N M. Also select a number ¢ e 4 which gatisties the

following inequalitics :

o1 & chs) __1_—) ~1]% <1, ( £ n < 1.
2 1 —a 1 —a
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a

U=z +— 1w
is a:'nieghbourhood ¢ Ve
(3.2)" + ot @ contained in 7, n 3. Furtn
. 1 G ermore, we }
(&) = Play) 4- V for an sel ] e =

I dze ¥ < l =
]f Q@
) 4 1 Cca (S ()l In ‘l e “Dll[l
R

T = x, + Ly v,
where y e W, Since (zy) < B B
it follows Iy the (4. s penn 7
(1 ows by the (4, s)-convexi%\:,‘oﬂzé)]f—’kthzl?tand P =~ detalapty)
— a)F 5] > » ’
@) F(2) + @ P (1 — a)'F(z) + oI
and henge -

F(z) {2 )Sw 1y
. ,(1 —a Fla) C(l I ) () ‘F( & )SV 2 (e L | el
& 1—a) °\1 %) Fay)+ 7,

— &

m1)+7/) -+ (b‘yvoclﬂ(a%) +a'V
0y

This result implies

P(z) ¢ ¥(z) 4 ( “« \, ;
B 1 — a) Flag) — (—IL(L) F(mg)'c
1y ;
(1 = a‘) F,) —(1 ja') F () +V, <
< Flag) 4 ( L )s = 7
—a 1]1(%)_(13(») F(wy) + Vo
L a

a) -IJ"VO~(»1 - )s'ﬂVo—l- Vo -

1

< Play) + [ ( -

v .
" | < B (2p) + Vo Vo -F Ve e Fwy) - v
'.}]:nus (3.2) holds. In other words we ha .
Jin (?ltl);]stat #. Being both ’

uous at g the functi

57 implies ?l"’. ] L

COROLLARY 3.2. Let ¥
' ! s Lt X oand Y pe p ]

a conver subsel ¢ ] ntoriongot s ol lingar
be an ( A, 3}—66??1{6 ;} ;c «ﬁcf{'ﬂ. ::e a;n. m}n(m‘{m‘ po-:?a£ o;yigdﬂiig?;:‘ }}? aj*}efs, o be
at @y if and only if Con whach 1s bounded o " Then I is compin L)
. . ‘ e b ¢ . at xy. Th . tim

e kA ccmdimjmi,; ! here exists a function ( - er—» Q;f(?%’ ‘)illﬂ :rft{(;;ﬁ{mmm

) sahsfying the

(1) G s lbcally prebounded at g, -
(11)1) G(a) « F(z) for all we M i
roof. Necessity. Obvious in view of Theorem 3.1

a

ve proved that 77 i
v u J - 3 j IS
1.0“ er semicontinuou
18 continunous at; &z,

upper semie

iy .\ On_

% eanfl upper semiconti-
> we have shown that
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- 7 i loeally prebounded at Xy-
Ficiency. Tt i8 easily seen that I7 is lccally § o W
Sufficiency. L3 1 it results that # is continuous at . "
7ing Theorem 3.1 £ s B rostioy the continuil
B.Y &PDI} mng i ol" 3111{101.0111 3 1 we call Nnow inv (,Stlig&‘te --1L1h( C¢O y
7 means =L ks R T » dlomain.
B‘ e nvex set-valued function on its w 110_1‘? 2o N T
o et If X and Y are real topological linear si’;;!rc")s? rex
‘WEOREM 3.3. If A anc il v P(Y) an (A,5)-conrve
; P-}?E}lf‘;ﬂopml- convex subset of X, and I': {‘;le;t? o) ’
}bl::(‘iw{n then the following statements fme e.q?l‘y: ; ndf,;d on BM. b 13
- 1° ’F‘ is boll continuous and -?m'”um?g -fo;:ru.{s;e bounded on M.
o 18 both lower semicontinuous a-nd-_PmJ!'.' t : ‘éfz bounded on M.
‘20 I a:3 both upper semicontinuous and pornii mbmmdﬂd on I
:{0 n ,,19 both Tocally prebounded and porntwise boun
L unded on M. .
5 ' 4s locally bounded . ) ded on M.
gﬂ B sa'both uniformly and Pfi’f-'*”'w;se bmlﬁilreedonlv to show tliat the
) T “heorem 3.1 we nhay R —
Proof. According to 1.h s flearly, 5° implies 6°. So it remains to
" s 5° and 6° are equivalent. Clearly,
statements ! o 1 TR . _— .
! ot yhies o, . DT ¢ the iein of
prove that 6 1“1-} t e M. Let V be a nmghbomlmr;)d Ofi tll"ms &11{_—, that
Tix any point x, € 4. Le iR o oriein of Y suc
) F ix ‘;n}h ::'lanceﬂ neighbourhood 1, of the 1?1 lsm_e exist for ¥, a
X 1. Sinee I is uniformly bounded o f)t‘-‘\l_;l. 7' of M such that
Vg ol 0 'cljlfl §.’E{‘1' m and a nonempty open subset
Stive intege 3
positive

) = mVy.
Select a point 1,
cluster point of 4, we

LA e d TOTO 2
c 7. Sinee M is a neighbourhood oflto an%ltzom
=Y . ghbo d of :
can find a number « € A such that the po

42

y p— tO _J|_ (IO - 5170)

1 —a

1 . o . 5 . . "
< » 0 g ishs i : t v 1 1}0 or 17 sUC
i bl . L LS k al mn le e SUS r oPYT

that h
(1 T (t‘) _F-(y) < w¥,.
a

iti i el P S 1 that
Finall‘y choose a ])()Sltl\fe 11'1(36{;01 p sucl
g -

he set
Then the o 1
U = y+ 1
= "

gatisties the following inequalilty :
F(Un M)yc (n+ »vV.

(33) Fat e 7o - -
Indeed, if ¢ is in U n M, then there exists ¢ € 7'such that
ndeed, §
— il
A
i a 43
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and consequently we have ¢ — (I — a) ¥ + ax. By the (4, s)-convexity
of I' it follows that

(1 — a)'l' () + a*F(z) B(t) < mV,.
which implies that

L—ay ,
(— ) #) + @) < v, <,
& a’

So we obtain
Pa) < ( e a)sw) + Fz) — ( 1“—") Hy)
‘ a @
cpVy —nVyc (0 + PV + V) < (4 PV,

Thus (3.3) is true, as elaimed.
On the other hand, notice that

1
U=a+—=(1— ty).
a

Therefore U is a neighbourhood of @,. Together with (3.3) this remark
expresses that /' is locally bounded af, To. W

COROLLARY 3.4, Let X and Y be real topological linear spaces, let M be
& norempty open convew subset of X, and let ¥ : M — Py(Y) be an (A, s)-
convex function which s pointwise bounded on M and for which there
ewisis a point wye M such that one (and hence aill) of the following state-
ments 18 trye:

(i) F 18 continuous at @y 2

(ii) B i lower semicontinuous al Do s

(iii) B 18 upper semicontinuous ai Ty

(iv) I s locally prebounded af X ;

(V) B 18 locally bounded at &y,

Then I is continvous on M,

Proof. The function 7 is uniformly bounded on M, beeause it is
locally bounded at x, B y applying Theorem 3.3 it follows that F is
continuous on M,

COROLLARY 3.5. Let X and ¥ be real io: ological linear spaces, let M be
@ nonemply open convex subset of X, and let B : M — Py Y) be an A, s)-con-
vex function which is pointwise bownded on M and for which there exists a
nonempty open subset 1 of M such thai B(T) is bounded. Then I is con-
tinous on M.

Proof. Since F(T) is bounded, the function £ is uniformly bounded
on }. By applying Theorem 3.3 it follows that & is continuous on M, g

4. Continuity of (4, s)-coneave set-valued functions

We start by proving an auxiliary lemma,

LeMMA 41, If X and Y are real topological linear spaces, M a
Convex subsel of X, xy an interior point of M, and F:M — Py Y)an (A, s)-
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ng statements are
function which 18 bounded at xq, then the following :
concave  f1
equivalent : et X
o T g per semieontinuonu Sy 1ty o aiiins
flo J:" (L'Sp::ep?i neighbourhood V of the ong:o% ?jl} }g tg;;‘eceo%(wo) ;z_ b
bl et rhood U of @, such that N M) og) + m¥.
e of the origin of Y there eaist a p

such that

?:'”-f'f’Efeg;” TFor every neighbourhood V

teqer n and a neighbourhood U of @ i
N (U n M) — F(zg) = nV. ol
o g rious. In order to prove
implication 1° = 2° is obvious.. igin of Y. Then
Proof. The 11.‘1.1131153 ny neighbourhood V of the or 15;1111 nt.ll'ht V. +
9° — 3° holds, consider any of the origin of ¥ such tha 0

) :ohhourhood
: sed neighbourhood Vu intecer m and a neighhourhoo
choose 2 balanced e oxist a positive integer
7. By 2° there exi
+ Ve V. B}

U of x, such that

(4.2) ' -4
On the other hand, since lv“(wo) — P(x,)
positive integer p such that 7

3) P(wg) — Flxg) = Voo
(4.

TFrom (4.2) and (4.3) we btain

2 .2) (4.3) 0 ‘ “

1 1(‘(1) n M) — F(xg) < F(my) — F(ao) +mVo < pVo+ mbVo <
H

< (p4m)(Vo+ Vo) = (p+m)V. .
i ica-
p -+ m, we can conclude that (4.1) holds. Thus the imp
If we set n = 3
ik o V i d of the
o tm::r that 3° holds. Let V be & ne1g}flbt%u:h(§;?om Iy the
A a balanced neighbourhood V, of t SIEEe &
oign % Yff ﬁhngbc V. By 3° there exist a positive mnteg
that - V& ¥ D4 i
f:el-.(i}:;hhom‘hoc;]d U, ot x, such that ) :
' (U, 0 M) — Pla,) = nVe. .
i f holds. Taking
i or p for which F(x) < pVo L
1;1 t;gglusg;er point of A, we can find an a ed

wm
(4.1)

' m V.
U n M) < Flag + mVy, :
( is a bounded setl, there exists a

3 sitive
ext choose a POsI !
Elto account ghat Z€ro 1
tisfying bot | ey |
e an <1 and 1 —a)f +a —1|p <1 .
i i f z, contai-

: M) is a neighbourhood of x,
i ~En%( i[{lo lnY ’l‘}len there exists ye Uy, n M suqh

and hence we have

N that U =(
i}l{;{ein M. Let x be a po
that @ = (1 — @)% + ay,

P(z) = (1 — aYFag) + ¢F(y)
< Pl 4 @[ — Flag) ]+ [(1 — o) + o' — 1] Flag)
e Play) + @0V + [(1L —a) + " —1]pV,
c Flag) + Vo + Vo © Flmy) + V.
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—_—

Since » was arbitrarily chosen in U, we have F(z) F(zg) + V for all
# e U. Thus ¥ is upper semicontinuous at z,. Consequently, the impllica-
tion 3’ = 1° is also true. ]

Like in Section 3 we begin with the investigation of the continuity

of an (4, s)-coneave set-valued function at an interior point of itg
domain.

TureorREM 4.2. If X and Y are real topological linear spaces, M @
convew subset of X, @, an interior pornt of M, and It : 37 — 2y(Y) an (4, s)-
concave function, then the Jollowing statements are equivalent :

1% K is both contimuwous and bounded at i,

2° I" is both upper semicontinuous and bounded at w,.

3% I is locally bounded ai @y

Proof. The implieation 1° = 2° is obv
2° = 3° has been stated in Lemma 21.7
that 3° implieg 1°.

It F' is locally bounded af ¥g, i i3 evident that # is bounded ato,.
Moreover, I' is lower semicon tinuous at x,. Indeed, let. ¥ be any mneigh-
bourhood of the origin of ¥. Choose a balanced neighbourhood v, of
the origin of ¥ such that Vo+ Vo< V. Since I ig locally bounded at &,
there exist a positive integer » and a neighbourhood Uy of @, such that

(4.4) F(U, n M)  nv,

Taking into account that zero iy a cluster point of A, we can find an
@ € 4 satistying the following inequalitics :

ious, while the implication
herefore it is sufficient to prove

a < %, on <1, [1— (1 — a)n < 1.

Select now a balanced neighbourhood W f the origin of X such that
o+ W < Uy n M, and then set

U =2, + il

V.
a — 1 .

Obviously, U is a neighbourhood of x, contained in Ug N M. Let z be a

point in U, Then there exists iy € I such thag ’

a
T =y |-

Y.
a—lJ

Accordingly we have Ty = (1 — a)z - af

%o + ). In view of the (4, s)-
concavity of # it follows that

(4.5 (o) = (L — ay F() + a*F(w, + Y) = H(z) |
& 1
T [ —a)f —11¥(2) + a*P(a, 1 y).

But the points & and %o -+ y belong to U, n M. Therefore (4.4) and (4.5)
yield

Hlwy) < Flz) + [(1 —a)y — 1nV, 4 a’nV, c Flg) + Vo -
+ Vo < H(a) 4 V.
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I I - for-all
Since x was arbitrarily chosen in U, we ]1gwe_ H(wm,) = F(z) —l—_V :
12011 Hence F' is lower semicontinuous at 2o : ] e
® F i 1y, we prove that F is also upper Sem_lc011L1n1_1(?]111b0urho% v
V be alll];angi’o-hbourhood of the origin of ZTX; S()J_llll(()lgs:gj {a; II(l)(Zla,blly e,
kD) =) 4 N vy . :
Y T 7 such that Vy — V4 = V. i all deda
. t’gﬁer(él 15,}1{111%02 %0%;;;?1‘76 integ%r n and a neighbourhood U of w4 su
o, ‘ ) .

that ' S
(4 6) ! F(U N ﬂ[) = 'ni_fg_.

In particular, we have ,
(4.7) | Flwg) < @V,
From (4.6) and (4.7) it results that

U n M) —F(xy) c.nVy—nlVycnl.

AN . . oy Y
it f s that 17 is upper semicontinuous a b
ing Lemma 4.1 it follows that T o
By appl?ulf% both lower semicontinuous and upper sgmt(_,oﬁtg;u:}_lllso =
thlgeflsﬁetion I is continuous at wx, Hence the implicatio |
x 1l
PTO,OVGd- . ¢ 4 logical linear spaces, let M be
COROLLARY 4.3. Let X and Y be real _tog)ojg%zl Al S i
;X n anterior point of M, : )
e 75 Ojéafe’ %nfgzzfz“ Then I 1s both aonmmﬁousl gm’ad bc;;;ﬁ_(i:tlf;::
v C'L)Zb (l%l, gzi-lcz;)ﬁf there exists a function G : M — P(X) which salisft
@, tf an ly 4, .
foollm,o'ifng condittons :
(i) @ s locally bounded at o5
i) Mx) < Glx) for allmeM.' )
(11;)?00'/”( lzTeceSSity. Obvious in view of Theorem 4.3. et S-S
S ffi(;iency Tt is evident that 7 is locally bounded a (;cod &%r e
h 'erl; 4.2 it result that F is both continuous and boun 7elued :ﬁ(l);mﬁon
' eOIConoérniO' the continuity of an (4, s)-concave set-va
0.0 . o e L lts.
its whoie domain we have the following resu . gl
.y :\'h(ﬁt i?li 4, If X and Y are real topological ZWMZI (i{m;)e—sc’mfgx v(;
1]1;13()(1)\'17;% convew subset of X, and F: M — g)(]t(-Y) an ,
”0?62&17)1,!/ 'thgn, the following statements M-e e.quwalen . ;
e 2 ,F is both continuous and potntwise bounded OZ Ml
é“ F 45 both upper semicontinuous and pointwise bo v
o 1 is loc lly bounded on M.
i° é‘ ?qss ll())(c)gz {mifm*mly and pomtun;e bozmdiedtgﬁr;hlél“} o o stadd.
Proof rding to Theorem 4.2 we ave only to § ] stage-
t Pg‘?ogﬁéciglai}: gequivalent. Clearly, 3° implies 4°. So it remain
ments ; - ar 0
5 4° implies 3°. _ e
VRIS ;1211;11: @y € M. Lot V be a neighbourhood off %16g &glllgli;lh gf}
o 1 neigh ¥, of the origin of .
hbourhood 7, of g
r g 1]/{')&1%]111%(131(1 tﬁgi% exist a positive integer m and a nonempty
(I);;)e;l}_ %K?os((:at T of M such that (T =« mV,.

locally bounded at %o- By applying Theore
tinous on' M,

be a nonempty open convew subset of X, and let 7+ yr —
-concave function which 1g poindwise bounded on M

ewists a nonempty open subset T' of M such that 2
18 conlinuous on M.

on M. By applying Theorem 4.4 i follows that 7

category, let Y be a real topological Ulinear
open convex subset of X, and let B - M~ P(Y) be
ton which 1s pointwise bounded on M. Then B
only if it 1s lowep semicontinuous on M.
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Choose a, pointit, € 7. Since M isa neighly

mrhood of z, and zero a
cluster point of A, we can find a number q

€ 4 such that the point
a
Y =Byt ———— (3, — ly)
1L —a

lies in M. iSécarusc-}f‘(;y) I8 bounded, there exists a
that F(y) < g Vo Set now- ¢/ = (L —a)yy + am.
M we conclude that 7 18 contained in 7 Further

(4.8)
holds,

Indeed, if @ is in U, then there exists 7 e 7' such that.
& = (1 — a)y + at. Therefore it follows that,

positive integer n such
By the convexity of
more, the inclusion

E(U) < (m )V

la) < (1 — a)* F(y) 4 @) (1 — a)y’ nV, 4 a my,

= mVy+ 0V, c (m ) (Vo+ Vo) © (m 4 n) V.
Thus (4.8) is true.

On the other hand, notice that the equality U = g, -1 a( 1" — 1.}
holds. Therefore [T is a neighbourhood of . Together with (4.8) this
remark expresses that # is locally bounded at; . M

COROLLARY 4.5, Let X and Y be real topological linear gpaces, let M be
& nonempty open conver subset of X, and let F: o Po(XY) ve an (4, s)-
~concave function which iz pointwise bounded on M and for which there
Catisls a point wy € M such that one (and hence all) of the Jollowing properties.
holds :

() F s continuous at @y

(1) 7 4s upper semicontinuous at g, ;

(iii) ¥ 4s locally bounded at @y,
Then B 4s continuous on M .

Proof. The function F iy uniformly hounded on jr , because it ig,
m 4.4 it follows that # is con-
COROLLARY 4.6. et X and ¥ be reql lopological linear spaces, let M
Zo(Y) be an (A, s)-
and for which there
18 bounded. Then B

Proof. Since F( Ty is bounded, the function 7 i8 uniformly hounded

is continuous on . g
X be areal lopological linear space of the second
space, let M be a nonemply

an (4, s)-concave func-
8 continuous on M if and;

THEOREM 4.7, Tet

Proof. Necessity. Obvious,

4 — ¢, 9787
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igi Y. Take
ig z of the origin of Y.
Sufficiency 7 be -any neighbourhood A
It X ?&iglwehl;}gl.n‘{f)%({ V, of the 01‘fgin of such that V, < ¥, an n
a closec oy Y
. M, = {.L‘ e M :F(m) < 'N,VO}

for e h |)()S]‘,|V(3 mteger ¥ i y jne sevs I( ?/Gl\)alle C]_OS
iti i !‘ y R ) 1(‘,6 llad) a]_l 1)11(_/ D et _.l ‘nr A h |
] ] ac-i - 1 t::pO]Og‘(‘: /01’: M(. Indeed, fIX a.lny })O%ll)l" e""lnteger n Ile'] :UO
1.) 1 int in M \\ M : B Y 'h(} deflnll iOn of l‘In it follows t Ila t
e a ‘)01 ne }

F(zy) N (Y \nV,) # 0.

: J V. is a nieghbourhood
' Since Y N\ nl,; is anieg .

. int o e F(a) n (Y N\ nV,). £ ; din of Y such that y—W o
e p:)p}i&ea n(eig'hbuurhﬂnd W of the or 1g1]1;_;| : P’lgv;r il o
i :'/7\thge (%[“\:::Li‘nff no\; into consideration that F'is )
= Y V. g

', such that
it follows that there is a neighbourhood U of x, such ¢
7 1 ) - » i v . » :
o F(wy) < F(w) 4 W for all @€ Un M.

' M. E there
. Vior all xe U N M. Hence
: ion implies that y € F(z) + W for a T such that y = 2, +
This jnolusion “}iplg&nthM a/ pair (2, w.) in I(x)x Hﬁ ’C’u_ch‘,‘géayj\avﬂ/’;for
i tf‘-:r ﬂ%gj'lhgjvee 2pc F(x) as well as 2, =y — W, €Y .
iy ‘( we T . ’ \
':Il w;e ,rn n M. This shows that

' ) for all € U n M.
F(z) n (Y\nV,) # O for all z€

{ efore @, is an interior
. we have U n M c MN\Ma. Thej.etuuiau:r,%[EMN o
Culmcquf‘-ntl}, we Since ©, WAS &l“)it]ultllﬁr (,,}mﬁml_ i 2 ’M.
point of M\.r’lﬂﬁfﬂce’ M, Dp-., closed in the induced Llaupg%tfm 888,
o Mﬁ mf:ﬂi:(!:ll.l 1{:1.0\'\’11 result from L‘lo])o];fugyl gﬂan m.w 1 Trldljlccd- I;ol)ology.
y a well-known resu woond. category he d topolog
: et M is of the second calegor v bile X OpeLogy-
{9'1'11)]') the f:b:ju':fll.lbl;ﬂat the pointwise boundedness of /1 imj
Taking into acco |
cquality. = LJ\ i,
neN . B
has interior
silive i - n such that M, hé_Ls, in
s that there is a positive 1.ni=egf*.1_ 'nl uch _ D
e c{m{:‘ludb th’dtd:ll:-?‘; topollogy on M. Thus ther %I eén%‘?fa éo ] fo(ilows
points in. the I?ghh;):urhod L R o L A
and an open neig 0w . . st il
kgt 0 f{)iocu H:;?é have shown that for alfy ﬂgfé;g;ﬁ]g?{m subset 7
G 2t Dositive i teger nand an ) S
. ; here exist a positive mteg : B O et TP is
origin of Y Ll.lf-li‘ I;\t}:;’)t = 1,1-[;, In other words, we 11119*\:& 11:111031; blal P
of 3 such ‘tt‘h{ttudeﬂ on M. By Theorem 4.4 it follow:
uniformly bov - ]
nuous on M. M

: ' T Was
. 2 was written while the a.-ut.hu_l ¥
nts. This paper was W iversity of Duisburg
Aclum“rlied}g;::“"“t of Mabhomabion o th? %ﬁ::t(;lcsﬁg Akademische
visitiﬂi-"‘ ?}?lw]is{isl}éa to express his gratitude WL hg? lthiﬂ.‘ visit and Professor
in1991. 16 W18 58 2 e finanoial support g caieg
) nst for the fin e ; hurg. i
Ar\‘rl Stm}scﬂhgllfﬁlﬁgnu for the kind .aﬁmstaﬁfﬁq;‘i?‘tﬁﬁi ‘méll,hol‘ —_— &\Vagg glt
Werner = ey this paper has been finishe " or : T. Cardinall
Note. After this pay he topic of the present paper : T. Cax 3 moF
ing paper related to the topic to di midpoint convessild pe
the following Hap a estensione del conceito di ma —131.
dnd;s}‘n;«ﬁﬁfhﬂll’v it Ty, Parma (4) 15 (1989), 119
MU WRZL0T. )
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