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1. INTRODUCTION

This note is a continuation of the paper [4]. We shall establish here the opti-
mal methods for the efficiency index of the class of Steffensen-type methods.

We adopt the efficiency index of an iterative process as being the number
I (o, p) givenin[1] by: 1

(1.1) I(o,p)=0P

where @ is the convergence order of the iterative method and p represents the
number of function evaluations that must be performed at each step. As it results
from [1] and [4], the efficiency index can be defined as in (1.1) if we admit that the
number of function evaluations is constant beginning from a certain step.

Let 7 < R denote an interval of the real axis, and consider the equation

(1.2) Sx)=0,

where f: I — R. Suppose that equation (1.2) possesses a unique root ¥ e /. Also
suppose that fadmits derivatives up to the order m+1, m € IN, the (m+1)-th deriva-
tive of f is bounded on /, and f'(x) # 0 for all x € L. If F = f{), then there exists the
function f~1; F — Tand ¥ =£-1(0).

It is obvious that for approximating the solution of (1.2) it is sufficient to
approximate f 1 aty =0,

From the derivability hypotheses conceming fit follows that £~ also possesses
derivatives up to the order m+1, which are given by [2]:

Ut ey A k=14 "y i (k)x %
(1.3) [f—l (_V)]( ) =/Z 52!1‘;!'2./.1: ;Ef('(i))]z,c_l (fl(' )J [fk'( )J
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k= 1,m+1, where the above sum extends over all the integer nonnegative solu-

tions of the system:
il +i2+... +ik=k— 1

(1.4)

We shall consider the following general iterative process for solving the
equation (1.2):

(15) xn+k+1 =g(xk,xk+1, ...,xk+”), nZO,k= 1,2,...,

where g : I"* ! — [is a function whose restriction to the diagonal of 7"*1 coincides
with a function A: I — I, whose fixed pointis ¥ ,i.e. g(x,x, ..., x)= h(x) forallx e I
and /(%)= X .

In order to establish the optimal efficiency index of the class of Steffensen
methods we shall adopt, as in [4], the following assumptions:

We consider as a function evaluation

a) the evaluation of the function or of any ofits derivatives at a certain point;

b) the evaluation by (1.3) of any of the derivatives of /1 at a certain point;

¢) the evaluation of g from (1.5) at a certain point, ;

2. GENERALIZED STEFFENSEN METHOD
Let:
2.1
( ) X1 X500 Xy 1
be n+1 interpolation nodes from I and

(22) y17y2"-‘,y"+1

the values of fat x,, y, = fx), i=1n+1 .
Consider n+1 natural numbers ay, dy,..., @, g suchthata; > 1i=1,n+1 , and
artayt..ta, ta, ;= m+1. Supposing that at each x,i=Ln+1 | we know the

values of fand of its derivatives up to the order a-1, i.e, we know Sx), f(x), ...y

ifi (a-1) (x;:), by (1.3) we can get the values of -1 and of its derivatives up to the

order a;~1.

We can now construct the Hermite inverse interpolation polynomial cor-

responding to £ 71, nodes (2.2), i.e. the following polynomial exists and is
unique:
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H(yl, ;Y2505 Yol > By ;f’lly) =

(2.3)
; a0 10
n+l a;-1 a'il [f—] (y )](J) 1 (y - yl) (0] (y) —
B i=1 j=0 k= , kY| o(y) i y=-»)"
where L b il
(2.4) o (»)=(-n)"-»)" (=)
If x, ,, denotes the value of H at y = 0 we have
My | a @ L
(2.5) 5 Iy Xaa] G ;:+11)| If(xl) 1 ’f(xz)‘ "'If(xn+1) 5

m+1)

[ (y)](_

Ifxp, Xppqs oo s Xpay € I are n+1 approximations of X, then a new approxima-
tion x,,,,; can be obtained by (2.3):

where M ., =sup
yeF

(26) xk+n+1 - H(ykaal; yk+1’ 02; e yk+,,’ an; f-l IO)’ k= 1, 2, )
with the error evaluation _

M , a
2.7 [ - K| S 722 lf (xk)la lf (xk+1)| : If (%esn)

(m+1)!

Method (2.6) is called Hermite-like iterative method.

Consider a function ¢ : 7 — I whose fixed point from I'is ¥ i.e. ¢(X)= ¥,
and suppose there exists a real number a > 0 such that

(2.8) | £ (0)| < als(x)], for all xer.

psy

Let @, (x) = 9(x), 9,(¥) = ¢(; (x)), 93(¥) = @(9(x)), ..., 9,(x) = @(P,,_; (x)), be
the iterations up to the order n of the function ¢. 8=
To increase the convergence order of method (2.6) we can do as it follows.

Let x, € I be a certain approximation of the solution X of equation (1.2) and
Uy =X, Uy yq =@, ... u,,+k¥¢,,(x,). Consider the values 3, =f(w;) i=k,n+k
as interpolation nodes in (2.3). Then x,,,, the next approximation of ¥, is
given by: i ¥ ¥

2.9) Xp4p = H(?k, a5 Vhets Bseos Vians Gusts S |0) :

Repeating this process, called Steffesen type iterative method, we obtain a
sequence (x,),o of approximations for x .



218 Ion Pi#viloiu 4

Using (2.8) and (2.7) it can be easily seen that the convergence order of
2.9) is m+1.

3. THE EFFICIENCY INDEX OF STEFFENSEN-TYPE METHODS

As it can be seen above, at each iteration step in (2.9) we have the following
function evaluations:

1) n values of ¢ to obtain the interpolation nodes u,,,, i = lyn,.
2) n+1 values of fat the nodes w,,, 1= 0,n i

3) at each interpolation node ,;, i = 0,n we compute the values of suc-
cessive derivatives of fup to the order a,, | — 1, altogether m—n function evaluations;

4) by (1.3) we evaluate the successive derivatives of /=1 at 3, ,, = f( Upii)s
i= m up to the order a;,; — 1, altogether m-n function evaluations;

.5) finally, consider (2.9) as a single function evaluation.

Summing up, we obtain altogether 2(m+1) function evaluations.

Using (1.1) we obtain the following expression for the efficiency index of
the class of Steffensen-type methods:

2(m+1)

(3.1) I(m+1,2(m+1))=(m+1)

Elementary considerations on the behaviour of the function 4:(0,+e0) — R,

1
h(z) = ¥ lead us to the conclusion that the function I(m+1, 2(m+1)) attains its

maximum at m=2.

Note that the efficiency index (3.1) does not depend on the number of inter-
polation nodes. :

Fromm=2anda; +ta,+..ta ,=mtl,a;21i=1,n+1 itfollows
that n < 2.

We shall successively analyse all the cases that lead us to the optimal
methods from (2.9).

A.a;+a,+ay=3,ie a;=a,=ay=1.Then (2.3) becomes the Lagrange's
inverse interpolation polynomial, and (2.9) is written:

S(x) i [xk’(p(xlf)vq)((?(xk));f] f(%) f((P(xk)> _
5@ (o0 ) S % 0(0()s [0 ) @(0(x))i s |

(3.2) xy €1, k' O3NS

X1 = X — [
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where [u,v; f] respectively [u,v,w; f] denote the first, respectively the second order
divided differences of /.

B.a, +a, =3,ie.a;=2,a,=lora; =1 anda,=2. Whena, =2,a,=1we
obtain the following method: :
£() , (/)= 0l ]) ()

BT [ TS 0 -5)
x€l, k=0,1,.,

(3.3)

and when a;=1, a,=2 it follows:
Flot) | (e eb)is]- S o)/ (0bx)

F000) [r 0l T 7 (0000 0ee) - 3)
xgel, k=0,1,...,

C. a. = 3. In this case we get from (2.9) the third order Chebyshev iterative
method, studied in [4].

In conclusion, the following theorem holds:

THEOREM 3.1, Under the assumptions a) — ¢) from 1., in the class ?f Stejfensen—
type iterative methods any of the methods (3.2), (3.3) or (3.4) is optimal, i.e. has
the greatest efficiency index. :

Remark. For the particular case when a; = ay = ... = a4 = q the condition of
optimality for the efficiency index gives us two possibilities, namely ¢ = 3, n= 0,
hence the case C. or q =1, n =2, hence the case A.

(3'4)xk+1 = (%) -
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