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Abstract. In this paper the method of quasiliniarization, an application of New-
ton’s method, recently generalized in [1], is used for the quadratic, monotonic,
bilateral approximation of the solution of the delay problem (5). The result is
applied to an integral equation from biomathematics.
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1. INTRODUCTION

In the papers [3]–[6] we investigated the following delay integral equation

(1) x (t) =

∫ t

t−τ
f (s, x (s)) ds

arising naturally from the study of the spread of virus diseases or, more gen-
erally, of the growth of single species populations. For example, we dealt with
the initial values problem for (1) and looked for a continuous solution x (t) of
(1), for −τ ≤ t ≤ T , when it is known that

(2) x (t) = ϕ (t) for − τ ≤ t ≤ 0.

Obviously, we had to assume that

(3) ϕ (0) =

∫ 0

−τ
f (s, ϕ (s)) ds.

Under assumption (3), problem (1)-(2) is equivalent with the following initial
value problem
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(4)

{
x′ (t) = f (t, x (t))− f (t− τ, x̃ (t− τ)) for 0 < t ≤ T
x (0) = x0

where x0 = ϕ (0) , x ∈ C1 [0, T ] and x̃ (t) =

{
ϕ (t) for − τ ≤ t ≤ 0
x (t) for 0 < t ≤ T .

We obtained several existence and approximation results for the solutions
of (4) by means of the monotone iterative method, assuming that f (t, x) is
monotone (increasing or decreasing) with respect to x. Such a result is the
following one:

Suppose that ϕ ∈ C [−τ, 0] and let u0, v0 ∈ C1 [0, T ] such that u0 (0) =
v0 (0) = x0 and u0 < v0 on (0, T ]. Define

Ω = {(t, x) ; 0 < t ≤ T, u0 (t) < x < v0 (t)}
and

Ω̃ = Ω ∪ {(t, ϕ (t)) ;−τ ≤ t < 0} .

Proposition 1. Assume

(h1) For 0 < t ≤ T, one has

u′0 (t) ≤ f (t, v0 (t))− f (t− τ, ṽ0 (t− τ))

and

v′0 (t) ≥ f (t, u0 (t))− f (t− τ, ũ0 (t− τ)) ;

(h2) f ∈ C(Ω̃), f (t, .) is decreasing on [u0 (t) , v0 (t)] for each t ∈ (0, T ],
and there is L ≥ 0 such that

|f (t, x)− f (t, y)| ≤ L |x− y| for t ∈ [0, T ] and x, y ∈ [u0 (t) , v0 (t)] .

Then (4) has a unique solution x ∈ C1 [0, T ] such that u0 ≤ x ≤ v0, and
xn, yn → x uniformly on [0, T ], where x0 = u0, y0 = v0 and

xn (t) =

∫ t

t−τ
f (s, x̃n−1 (s)) ds, yn (t) =

∫ t

t−τ
f(s, ỹn−1 (s))ds.

Moreover, the sequences (x2n) and (y2n+1) are increasing, while (x2n+1) and
(y2n) are decreasing.

Unfortunately, the convergence of the sequences (xn) and (yn) is only linear,
more exactly

|xn − x|∞ ≤ c |xn−1 − x|∞ , |yn − x|∞ ≤ c |yn−1 − x|∞ .

In this paper we prove that, if f is also convex, then there exist two mono-
tone sequences (un) and (vn) whose members are solutions of some linear
equations, that converge quadratically to the unique solution of (4) from both
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directions. We say that the convergence of (un) and (vn) is quadratic provided
that

|un − x|∞ , |vn − x|∞ ≤ c1 |un−1 − x|2 + c2 |vn−1 − x|2 .

We succeed this by adapting to (4) the recent quasilinearization method used
in [1] for equations without delay. A second ingredient is the step method
which is well known in the theory of delay equations.

2. RESULTS

We shall discuss a more general problem of type (4), namely

(5)

{
x′ (t) = f (t, x (t)) + g (t− τ, x̃ (t− τ)) for 0 < t ≤ T,
x (0) = x0.

Theorem 1. Assume

(H1) For 0 < t ≤ T, one has

u′0 (t) ≤ f (t, u0 (t)) + g (t− τ, ũ0 (t− τ))

and

v′0 (t) ≥ f (t, v0 (t)) + g (t− τ, ṽ0 (t− τ)) ;

(H2) f ∈ C(Ω), g ∈ C(Ω̃), the derivatives fx, fxx, gx and gxx exist and are
continuous on Ω, and satisfy

(6) fxx ≥ 0, gx ≥ 0 and gxx ≤ 0 on Ω.

Then there exist the sequences (un) increasing and (vn) decreasing which con-
verge uniformly on [0, T ] to the unique solution x ∈ C1 [0, T ] of (5) satisfying
u0 ≤ x ≤ v0, and the convergence is quadratic.

Proof. We use the convexity of f and concavity of g by means of the fol-
lowing two inequalities:

(7)
f (t, x) ≥ f (t, y) + fx (t, y) (x− y) ,
g (t, x) ≥ g (t, y) + gx (t, x) (x− y) ,

which are true for all (t, x) , (t, y) ∈ Ω.
Suppose we have already constructed the functions

u0 ≤ u1 ≤ ... ≤ un ≤ vn ≤ ... ≤ v1 ≤ v0.
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Then we take un+1 = α and vn+1 = β, α and β being the unique solutions
of the following linear initial value problems with delay

(8)

{
α′ (t) = Fn (t, α (t) , α̃ (t− τ)) for 0 < t ≤ T,
α (0) = x0,

respectively

(9)

{
β′ (t) = Gn

(
t, β (t) , β̃ (t− τ)

)
for 0 < t ≤ T,

β (0) = x0,

where

Fn =

{
f (t, un (t)) + fx (t, un (t)) (α (t)− un (t)) + g (t− τ, ũn (t− τ))

+gx (t− τ, ṽn (t− τ)) (α̃ (t− τ)− ũn (t− τ))

and

Gn =

{
f (t, vn (t)) + fx (t, un (t)) (β (t)− vn (t)) + g (t− τ, ṽn (t− τ))

+gx (t− τ, ṽn (t− τ))
(
β̃ (t− τ)− ṽn (t− τ)

)
.

From (6) and (7) we easily see that the following inequalities hold:

u′n (t) ≤ Fn (t, un (t) , ũn (t− τ)) ,
v′n (t) ≥ Fn (t, vn (t) , ṽn (t− τ)) .

�

Next we need the following lemma:

Lemma 1. Let u, v ∈ C1 [a, b] such that u ≤ v, and let H (t, x) be continuous
for t ∈ [a, b] and u (t) ≤ x ≤ v (t) . Suppose that

u′ (t) ≤ H (t, u (t))

and

v′ (t) ≥ H (t, v (t))

on [a, b] . Then, for each α0 ∈ [u (a) , v (a)], there exists a solution α ∈ C1 [a, b]
of the problem {

α′ (t) = H (t, α (t))
α (a) = α0

such that u ≤ α ≤ v.

The proof of the Lemma can be given by using Corollary 3.1.2 in [2].
Now, we successively apply Lemma to the intervals [0, τ ] , [τ, 2τ ] , ..., [kτ, T ],

where kτ < T ≤ (k + 1) τ. Thus we prove the existence of the solution α =
un+1 of (8) satisfying un ≤ α ≤ vn on [0, T ] . Similarly, we find a solution β of
(9) such that un ≤ β ≤ vn on [0, T ] .
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Furthermore, since on [0, T ] one has

α′ (t) ≤ f (t, α (t)) + g(t− τ, α̃ (t− τ))

and
β′ (t) ≥ f (t, β (t)) + g(t− τ, β̃ (t− τ)),

by a comparison result (see Theorem 2.3 in [1]), and making use again of the
step method, we can derive the inequality α ≤ β, that is un+1 ≤ vn+1, on
[0, T ] .

Finally, by similar arguments, we can prove that the sequences (un) and
(vn) converge to the unique solution x, uniformly and quadratically.

Corollary 1. Assume ϕ ∈ C [−τ, 0], u0, v0 ∈ C1 [0, T ], u0 (0) = v0 (0) =

x0, u0 < v0 on (0, T ] and f ∈ C(Ω̃). In addition suppose that

u′0 (t) ≤ f (t, u0 (t))− f (t− τ, ũ0 (t− τ))

and
v′0 (t) ≥ f (t, v0 (t))− f (t− τ, ṽ0 (t− τ)) .

If the derivatives fx and fxx exist and are continuous on Ω, and

fx ≤ 0, fxx ≥ 0 on Ω,

then there exist the sequences (un)increasing and (vn) decreasing which con-
verge uniformly on [0, T ] to the unique solution x of (4) satisfying u0 ≤ x ≤ v0,
and the convergence is quadratic.
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