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Abstract. In these paper we study the univariate Shepard-Birkhoff operators.
We give an error estimation for the aproximation with these operators and some
examples and graphs.
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1. INTRODUCTION

Given a set of n + 1 pairwise distinct points X = {zg,z1,...,2,} C I =
[a,b],a,b € R,a < b, the classical Shepard interpolation operator [13] given by

n

(1) (Spuf) (z) = kZ::o wg(z) f (k)

(2) wk(fﬂ) = %a
> | — a7
k=0

has a low degree of exactness.

REMARK 1. The form of weights functions given by is the barycentric
form; it is not suitable when x = z; or when z is close to x;. In these cases
the following form is more convenient:

(3) wi(z) = [[j=olx — zx|" / > [Tj=olz — @i ]".
Gk k=0 j#k
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In order to increase the degree of exactness one tries to replace the values
f(zx) with the values of an interpolation operator: Taylor [2], [11], [3], [6], [4],
Lagrange ([5], [7] for the multivariate case and [I4] for the univariate case),
Hermite [§], [7], Birkhoff [9], [7].

In this paper we shall consider the following univariate Shepard-type oper-
ator

n

(4) (St f) (x) = 3= wi(2)(Byf)(w; an),

k=0

where (B f)(x; xy) is a suitable ¢g-th degree polynomial interpolatory operator
(in our case a Birkhoff-type operator, see ):

o) (Buf)) = 35 52 b3g(a) ) (r1s),

rj € Nand I;  {0,...,7;}, 7 =0,n.
REMARK 2. We suppose (B, f)(z; x)) exists.

If (Byf)(x;xg) in is the Taylor polynomial

(6) (Tof) ) = 3 470 () (@ — )

v=0

we obtain the Shepard-Taylor operator

() (SPAF) (1) 1= (ST, f) (@) = 30 30 1O () (@ — ) i ().

k=0v=0

This operator was investigated in [1], [2], [4], [3] for the univariate case and in
[11], [6] for the multivariate case.
We set

By(2) =[x — p,5 + ol
inf{p>0:Ve e A, Jue X ue B,(x)}, and
M = supcard(B,(Y)N X)

y

ﬁ
|

(i.e. M is the maximum number of points from X contained in an interval

By (x)).
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2. ERROR ESTIMATIONS

First we give an error estimation for the Shepard-Taylor operator given by

.

THEOREM 3. If f € CL(I), then

(8) 54,0 = £, < onm||seD)| s,
wherd)
|10g17“|‘17 p=1
(9) eulr) = ;z_lilog T, ii/;ig+ ’
ratl w>q+2.

and C'is a positive constant independent of x and X. If f € C(I), then

152 . = fIl; < CMw(f;ep(r).
Proof. We define

n n
sh(x) = Y |o—ap |1 )3 o — a7
k=0 k=0

We have
[(Rof) (@ )| = |(Tyf)(m;2x) — F(2)| = cqlw — il £V,

where ¢, =1/(p+1)! for p >0 or ¢, =1 for p=0.
If fe C(I), then

|59, (@) — f)] < éo (Rof) (s )| wie(w) < € || f@D]|, 58 ().
‘We shall show that
sh(x) < MCel(r)

where C is a positive constant independent of z and X.

Let be N = [(b—a)/(2r)] + 1, Q(u) be the interval (v — r,u + r], and

Tj = Qp(x+2rj) UQr(z + 2rj).
The set

Y f1l4 means sup{|f ()| : x € A}
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N
U Qr(x +2rj)
j=—N
constitutes a disjoint covering of I with half-open intervals. Obviously, for
z € I NT; we have

(2 —)r<|z—ap| <@+, j=1,N
and
1 <card(X NTj) < M.
Also, n = cardX = O(r~1).
Defining x4 as being the closest point to z and since
n
> |z —alt = |z — xq| ™
k=0

we get

z€TH 7j=1 xkETj

N
si(@) < |z — zal" ( PO A Lt S D DR xk|q+1—u>

N
=" (Mrm_“ +M Y (25 + 1>r]q+1u>
j=0

J=1

N
< Mratt (1 +CY qu—M) :

Case 1. (u>1)
subcase la. If 1 < p < g+ 2, then

N

ritl(1+C leq"'l_“) = O(r*1).
]:
subcase 1b. If y = ¢ + 2, then
N
3 jaHH =1og N = |logr|.
j=1

N

subcase lc. If g > ¢+ 2, then > j9F17# is bounded.
j=1

Case 2. (= 1) The function s}, becomes

qx:na:—xq nx—a: -1
(10) 1) = Slo - / poltEe
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The numerator in is less than or equal to
N
>l =m0 X -l
z, €10 7=1 J)kETj
and the denominator is greater than or equal to
N
Sz —ap TP+ Y e x> Y Jr T+ %|logr|.
xR €TH j=1x €T} xR €TH

Applying the inequality

(]

BN

a

> b;

a;
<D
we get

OES |x—xk\q+1+cl|logﬂz S o —

T €Th 7=1 Z‘kGT

N
<Mritt 14 C q
< Mr <+ 2|10 r|]z::1”7

< Mrat! (1 L& O(r_q_1)>

| log 7|
= O(|logr|™h).
If feC(I), setting e(r) = 62(7’), since
ot =w (5:2) = (14 2) wtrie) < Sutrio)

we have successively

[SEuf@) = f@)]< X wfie)we(@)+ X (@)~ flan)|wi()

|z—z|<e(r) k

w(f;e(r)) (1 + g(cr)sg(:c)> .
O

The next theorem gives an error estimation for the Shepard-Birkhoff oper-
ator given by
THEOREM 4. If f € CHL(I), then

|sEas ~ £, < D ||| =),

where D is a constant independent of x and X.
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Proof. Since B, is a projector, we have

1f = Bofll < IIf = Tof Il + [ Taf = By fl|
<|f = Taf Il +[1ByTn f — By f|]
< (L BgD 1 = Tofll;

and

St f(x) = f(2)] < [Sydf(z) = ST f ()] +[S] .f (z) — f(2)]

> wi(x) (Bef)(x) = (T f)(x))

k=1

3 (@) (F(@) - (T,)@)

) ‘

< +

+

< (L4 1Bqgll) | 22 wi(z) (f (2) — (T4 f)(x))

k=1

Applying now the Theorem [3] the conclusion follows immediately. O

3. PARTICULAR CASES

The existence and uniqueness of Birkhoff interpolation polynomial is not
assured for the general case. We shall considered some particular cases when
the existence and the uniqueness of Birkhoff interpolation polynomial is guar-
anteed and the corresponding Shepard-type operators.

The Birkhoff interpolation has as particular cases the Hermite interpolation,
the Lagrange interpolation and the Taylor interpolation.

The Shepard-Taylor interpolation was treated in sections 77 and ?77?7. Let’s
consider now the Shepard-Hermite and Shepard-Lagrange interpolation.

We put Zpip = Tpn_mik_1, for k=1,n.

In the case of Shepard-Hermite interpolation for the sake of simplicity we
choose node multiplicities equal: r¢ =71 = ... = 1, = r. Thus we obtain the
following operator

(SHAf) () = > wila) (Hyf) (x; 2),

k=0

where
(Hof)(wiar) = 32 3 hyp(a) fP (),
j=0p=0

hjp being the basic Hermite’s polynomial.
The Shepard-Lagrange interpolation operator has the form
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(SEOf) (@) = 32 we@) (Lo f) (x5 2),

k=0

where
n
(qu)(ac; TE) = kEO lj,k(ff)f(il‘k+j)
and [y ; are the basic Lagrange’s polynomials, i.e.

(@ — k) (@ = Thyj—1) (T — Tpgjm1) - (T — Thyg)
(Thaj — k) - (Thtj — Thaj—1) (Trty — Trgjm1) - - (Thtj — Thoag)

Lik(z) =

Finally, we give an example based on Abel-Gontcharoff interpolation (see
[10]):

(SPAf) (2) = 3 wi(@) (Byf) (3 0x)

k=0

where (B f)(z;xy) is the Birkhoff interpolation polynomial which is the solu-
tion of Abel-Gontcharoff interpolation problem, that is

(BoH)D (s ax) = fD (wpay), k=0, j=04.

For this problem the existence and the uniqueness of Birkhoff interpolation
polynomial is guaranteed.

4. EXAMPLES AND GRAPHS

Let us consider the function f : [—1,1] = R, f(z) = sin 2wz. In the sequel,
for each class of example, we shall choose 4 = 2 and ¢ = 3 and equispaced
and Chebyshev nodes.

The example classes which we consider are the following;:

- simple Shepard interpolation:
(S0,.f) (@) = ,E (@) f (@r);
- Shepard-Taylor interpolation for ¢ = 1:
(SE,f) (@) = 32 wile) [f (m) + (2 — 2) /(20):

k=0

- Shepard-Lagrange interpolation for ¢ =1 :
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(Swuf) = i w () | =2 f(2g) + i f (@) | -

Tk —Tk+1 Tk —Tk+1
k—0 + +

- Shepard-Birkhoff interpolation (Abel-Gontcharoff) for ¢ =1

(SELF) (@) = 32 we@) [F (@as) @ — ) + F(a)]

k=0

Figure [1] gives the graphs of various Shepard interpolants for equispaced
nodes and the figure [2| gives the graph of the same interpolants for Cebyshev

nodes. The graphs were generated using a MATLABE| toolbox, written by the
authors (see [12]).
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Fig. 1. Various Shepard interpolants for equispaced nodes, p =2 and p =3

2MATLAB® is a trademark of MathWorks Inc, Natick, MA.
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(a) Simple Shepard, Cebyshev (b) Shepard-Taylor, Cebyshev
nodes nodes
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(c) Shepard-Lagrange, Cebyshev (d) Shepard-Birkhoff, Cebyshev
nodes nodes
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Fig. 2. Various Shepard interpolants for Cebyshev nodes, p =2 and u =3
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