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1. INTRODUCTION

In [6] Tiberiu Popoviciu obtained that Bernstein operators preserve conve-
xity of higher orders. On the other hand the sequence of Bernstein operators
has the property of the uniform approximation of the derivatives of higher
order. This is a fact more general. Sendov and Popov obtained in [8] that,
roughly speaking, if a sequence of linear positive operators that preserve con-
vexity of higher orders has the property of the uniform approximation of con-
tinuous functions then it has also the propriety of the uniform approximation
of derivatives of higher orders on any compact subinterval strictly contained
in the interval of definition of functions.

In this paper we shall obtain two theorems concerning the uniform approxi-
mation of derivatives of higher orders by using sequences of nonlinear operators
having the propriety of preservation of some type of generalized convexity of
higher orders. As regard to [8] our scheme of the proof is simplified, but it
requires a supplementary order of derivability.

2. CONVEX OPERATORS FOR APPROXIMATION OF VECTOR-VALUED

FUNCTIONS

Let [a, b] be an interval of the real axis and let F be an Euclidean space with
the scalar product 〈, 〉 and the corresponding norm ‖ · ‖. Denote respectively
by F

(
[a, b], F

)
the space of functions defined on [a, b] and with values in F , by

C
(
[a, b], F

)
the subspace of continuous funtions, endowed with the Chebysev

norm ‖ · ‖[a,b] and for the integer m ≥ 1 denote by Cm
(
[a, b], F

)
the subspace

of m times continuously derivable functions. In the the case F = R we omit
to write F . If x0, x1, . . . , xm+1, m ≥ −1 are distinct points of [a, b] then, for
a function f : [a, b]→ F denote by [f ;x0, x1, . . . , xm+1] the divided difference
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of function f on the points xi, 0 ≤ i ≤ m + 1. We introduce the following
definition:

Definition 1. A function f : [a, b] → F is c-nonconcave of order m ≥
−1, if for any choice of two sequence of distinct points x0, x1, . . . , xm+1 and
y0, y1, . . . , ym+1 of [a, b] we have:

(1)
〈
[f ;x0, x1, . . . , xm+1], [f ; y0, y1, . . . , ym+1]

〉
≥ 0.

In a similar mode, by replacing in (1) the inequality ”≥” by ”>”, or ”=” one
can define the functions that are c-convex, respectively c-polynomial of order
m. Denote by Km

(
[a, b], F

)
the space of functions that are c-nonconcave of

order m.

Remark. In the case F = R a function is c-nonconcave of order m ≥ −1 if
and only if it is either usual nonconcave of order m or it is usual nonconvex
of order m (see [5]). �

Lemma 2. If a, b, v ∈ F , ‖a‖ = ‖b‖ = ‖v‖ = 1, 〈a, b〉 ≤ 0 then
max{〈a, v〉, 〈b, v〉} ≥ −

√
2/2.

Proof. Let p := dimF . If p = 1 Lemma 2 is obvious. Let p ≥ 2. We have
a 6= b. First consider the case a 6= − b. Let {ε1, . . . , εp} be an orthonormal
basis of the space F such that ε1 = (a+ b)/‖a+ b‖ and ε2 = (b− a)/‖b− a‖.
Represent v = λ1 · ε1 + . . . + λp · εp, where (λ1)2 + . . . + (λp)2 = 1. We have
〈v, a〉 = λ1(1+〈a, b〉)/‖a+b‖+λ2(〈b, a〉−1)/‖b−a‖; 〈v, b〉 = λ1(〈a, b〉+1)/‖a+
b‖ + λ2(1−〈a, b〉)/‖b−a‖. Hence max{〈a, v〉, 〈b, v〉} = λ1(1+〈a, b〉)/‖a+b‖ +
|λ2|(1−〈a, b〉)/‖b−a‖. By considering a and b fixed one obtains the minimum
value of max{〈a, v〉, 〈b, v〉} in the case λ1 = −1 and λ2 = . . . = λp = 0 and it
is equal to −(1 + 〈a, b〉)/‖a + b‖ = −(1/

√
2)
√

1 + 〈a, b〉 ≥ −
√

2/2. The case
a = − b is immediate. �

Theorem 3. If the sequence of functions (fn)n, fn ∈ C1([a, b], F ) is uni-
formly convergent to the function f ∈ C1([a, b], F ) on [a, b] and if f ′n ∈
K0
(
[a, b], F

)
, n ∈ N, then, for any subinterval [c, d] ⊂ (a, b), the sequence

(f ′n)n is uniformly convergent on [c, d] to the function f ′.

Proof. Consider ad absurdum that there is a number λ > 0, a sequence
(xk)k of points xk ∈ [c, d] and a subsequence (nk)k of indices such that

‖f ′(xk)− f ′nk
(xk)‖ > λ, k ∈ N.

There is a number δ1 > 0 such that

‖f ′(x)− f ′(y)‖ < λ/4, if |x− y| < δ1.

Put δ := min{δ1, c− a, b− d} and ρ := λδ/8. Afterwards fix k such that

‖f − fnk
‖[a,b] < ρ.
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Define g := fnk
, y := xk and

I1 :=
∫ y

y−δ
(g′(t)− g′(y)) dt,

I2 :=
∫ y+δ

y
(g′(t)− g′(y)) dt.

Here it is used the Riemann integral for functions with values in an Euclidean
space.

Since g′ ∈ K0([a, b], f) it follows for any points a ≤ t1 < y < t2 ≤ b:〈
g′(t1)− g′(y), g′(t2)− g′(y)

〉
≤ 0.

By approximating I1 and I2 by Riemann sums we obtain
〈I1, I2〉 ≤ 0.

First consider the case I1 6= 0 and I2 6= 0. Set α := I1/‖I1‖, β := I2/‖I2‖
and v := u/‖u‖, where u := δ(g′(y) − f ′(y)). From Lemma 2 it follows
max{〈α, v〉, 〈β, v〉} ≥ −

√
2/2. Suppose, for a choice, that 〈β, v〉 ≥ −

√
2/2. We

have
‖g(y + δ)− f(y + δ)‖

=
∥∥∥∥g(y) +

∫ y+δ

y
g′(t) dt − f(y) −

∫ y+δ

y
f ′(t) dt

∥∥∥∥
≥
∥∥∥∥ ∫ y+δ

y
(g′(t)− f ′(t)) dt

∥∥∥∥ − ρ

≥
∥∥∥∥ ∫ y+δ

y
(g′(t)− f ′(y)) dt

∥∥∥∥ − ∥∥∥∥ ∫ y+δ

y
(f ′(y)− f ′(t)) dt

∥∥∥∥ − ρ

≥
∥∥∥∥ ∫ y+δ

y
(g′(t)− f ′(y)) dt

∥∥∥∥ − 3ρ

= ‖I2 + u‖ − 3ρ

≥
(
‖I2‖2 + ‖u‖2 −

√
2‖I2‖ · ‖u‖

)1/2
− 3ρ

≥ ‖u‖/
√

2 − 3ρ

> λδ/
√

2 − 3ρ
> ρ.

One obtains a contradiction. In the case I2 = 0 one obtains as above that
‖g(y + δ)− f(y + δ)‖ ≥ ‖u‖ − 3ρ > ρ. The case I1 = 0 is similar. Theorem is
proved. �

Remark. In the case F = R the result in Theorem 3 is given in [8]. �

Lemma 4. Let [a, b] ⊂ R and f : [a, b] → F. For any xi, ∈ R, 1 ≤ i ≤ n,
and any t ∈ R such that xi and xi + t, 1 ≤ i ≤ n, are 2n distinct points of
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the interval [a, b], by denoting ft(x) := (f(x + t) − f(x))/t, x ∈ [max{a, a −
t}, min{b, b− t}], we have

(2) [ft;x1, . . . , xn] =
n∑
k=1

[
f ;x1 + t, . . . , xk−1 + t, xk + t, xk, xk+1, . . . , xn

]
.

Proof. For p ≥ 1, u 6= 0, yi, 1 ≤ i ≤ p, such that y1 6= yi, y1 6= yi − u, 2 ≤
i ≤ p, denote

Θp
u(y1, . . . , yp) :=

p∑
j=1

j∏
i=2

(y1 − yi)−1 ·
p∏
i=j

(y1 + u− yi)−1.

(For j = 1 take
∏j
i=2 = 1). Using the relation

Θp+1
u (y1, . . . , yp+1) = (y1 + u− yp+1)−1

[
Θp
u(y1, . . . , yp) +

p+1∏
i=2

(y1 − yi)−1
]
,

one can proved by induction with regard to p that

Θp
u(y1, . . . , yp) =

(
u ·

p∏
i=2

(y1 − yi)
)−1

.

We have

[ft;x1, . . . , xn] =
n∑
k=1

f(xk + t)− f(xk)
t

∏
1≤i≤n,i 6=k

(xk − xi)−1

=
n∑
k=1

f(xk + t) ·Θn−k+1
t (xk, . . . , xn) ·

k−1∏
i=1

(xk − xi)−1

+
n∑
k=1

f(xk) ·Θk
−t(xk + t, . . . , x1 + t) ·

n∏
i=k+1

(xk − xi)−1

=
n∑
k=1

[
f ;x1 + t, . . . , xk−1 + t, xk + t, xk, xk+1, . . . , xn

]
. �

Theorem 5. If f ∈ Ck
(
[a, b], F

)
∩Km

(
[a, b], F

)
, k ≥ 1,m−k+ 1 ≥ 0, then

f (k) ∈ Km−k
(
[a, b], F

)
.

Proof. Using Lemma 4 it is easy to obtain that if
f ∈ C1([a, b], f) ∩Kn−1

(
[a, b], F

)
, n ≥ 1,

then it follows f ′ ∈ ∩Kn−2
(
[a, b], F

)
. Afterwards the theorem results by in-

duction. �

Now consider the following definition.

Definition 6. An operator L : V → F
(
[a, b], F

)
, V ⊂ F

(
[a, b], F

)
is said

to be k-convex, k ≥ −1, if
(3) L(f) ∈ Kk

(
[a, b], F

)
, for any f ∈ V ∩Kk

(
[a, b], F

)
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and
(4) L(f)− L(g) ∈ Kk

(
[a, b], F

)
, for any f, g ∈ V, f − g ∈ Kk

(
[a, b], F

)
.

The main result of this section is the following one.

Theorem 7. Let (Ln)n, Ln : Ck+1([a, b], F )→ Ck+1([a, b], F ), k ≥ 1, be a
sequence of j-convex operators, for 1 ≤ j ≤ k. If we have
(5) lim

n→∞
‖Ln(f)− f‖[a,b] = 0, for all f ∈ Ck+1([a, b], F ),

then for any f ∈ Ck+1([a, b], F ), for any subinterval [c, d] ⊂ (a, b) and for any
j, 1 ≤ j ≤ k, one has

(6) lim
n→∞

∥∥(Ln(f))(j) − f (j)∥∥
[c,d] = 0.

Proof. Fix the interval [c, d] and let the subintervals [cj , dj ], 1 ≤ j ≤ k such
that [c0, d0] = [a, b], (cj , dj) ⊃ [cj+1, dj+1] and [ck, dk] = [c, d]. First note that
for any function g ∈ Cm

(
[a, b], F

)
, m ≥ 0 and for any points y0 < . . . < ym of

[a, b] we have (m!)‖[g; y0, . . . , ym]‖ ≤ ‖g(m)‖[a,b]. This one is a consequence of
the Peano’s formula:

[g; yo, . . . , ym] =
∫ ym

y0
φ(t) · g(m)(t) dt,

where φ : [y0, ym]→ R is a continuous positive function independent of g.
Fix now f ∈ Ck+1([a, b], F ). Denote ρ := max{|a|, |b|} We can choose by

induction the numbers λj > 0, 2 ≤ j ≤ k + 1, such that:

(λj)2 ≥ 2λj
( k+1∑
i=j+1

(i
j

)
ρi−j · λi + (j!)−1‖f (j)‖[a,b]

)

+
( k+1∑
i=j+1

(i
j

)
ρi−j · λi + (j!)−1‖f (j)‖[a,b]

)2
, 2 ≤ j ≤ k + 1,

(for j = k + 1 take
∑k+1
i=j+1 = 0). Let v ∈ F with ‖v‖ = 1, and consider the

function:

h(x) := f(x) +
( k+1∑
j=2

λj · xj
)
v, x ∈ [a, b].

We have h, h − f ∈ Kj([a, b], F ), (1 ≤ j ≤ k). Indeed, let 2 ≤ j ≤ k + 1 and
two sets of distinct points of I: x0, . . . , xj and y0, . . . , yj . Using the inequalities
above one obtains:〈

[h;x0, . . . , xj ], [h; y0, . . . , yj ]
〉

=

=
〈(

k+1∑
i=j

(i
j

)
λiξ

i−j
i

)
v + [f ;x0, . . . , xj ],

(
k+1∑
i=j

(i
j

)
λiη

i−j
i

)
v + [f ; y0, . . . , yj ]

〉
≥ 0,
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where ξi, ηi ∈ [a, b], for j ≤ i ≤ k + 1. Hence h ∈ Kj−1([a, b], F ). In a similar
mode we can see that h− f ∈ Kj−1([a, b], F ).

From Theorem 5 it follows (Ln(h))(j), (Ln(h) − Ln(f))(j) ∈ K0
(
[a, b], F

)
,

1 ≤ j ≤ k, n ≥ 1, and from Theorem 3 it can deduce by induction, for
1 ≤ j ≤ k:
lim
n→∞

‖(Ln(h))(j)−(h)(j)‖[cj ,dj ] = 0 = lim
n→∞

‖(Ln(h)−Ln(f))(j)−(h−f)(j)‖[cj ,dj ].

From these limits it follows (6). �

3. CONVEX OPERATORS FOR APPROXIMATION OF REAL-VALUED FUNCTIONS

Recall that for n ≥ 1, a subset Z ⊂ C[a, b] is named n-parameter family if for
any distinct points xi ∈ [a, b], 1 ≤ i ≤ n, and any real numbers yi, 1 ≤ i ≤ n
there is an unique ψ ∈ Z such that ψ(xi) = yi, 1 ≤ i ≤ n. Convexity with
regard to a n-parameter family was introduced by Tiberiu Popoviciu in [7] and
was extensively studied by L. Tornheim in [9] and E. Popoviciu in [3] (and in
others).

Definition 8. [7]. If Z ⊂ C[a, b] is a n-parameter family, n ≥ 1, then a
function f ∈ C[a, b] is named Z-convex if for any points a ≤ x1 < . . . < xn <
t ≤ b, it results f(t) > ψ(t), where ψ ∈ Z is the unique function such that
ψ(xi) = yi, 1 ≤ i ≤ n.

We consider the following definition.

Definition 9. Let Z ⊂ C[a, b] be a n-parameter family, n ≥ 1. An operator
L : C[a, b]→ F [a, b] is Z-convex if the following conditions are verified
(7) If f ∈ C[a, b] is Z-convex then L(f) is usual convex of order n− 1

If f − g is Z-convex , f, g ∈ C[a, b],(8)
then L(f)− L(g) is usual convex of order n− 1.

The main result of this section is the following.

Theorem 10. Let k ≥ 1 and for each 2 ≤ j ≤ k + 1 let Zj ⊂ Ck+1[a, b] be
a j-parameter family. Suppose that there are the numbers Mj > 0 such that

(9) ‖ϕ(j)‖[a,b] ≤Mj , for any ϕ ∈ Zj , 2 ≤ j ≤ k + 1.

If (Ln)n is a sequence of operators Ln : Ck+1[a, b]→ Ck+1[a, b] such that
(10) Ln is Zj-convex for any n ≥ 1 and 2 ≤ j ≤ k + 1,

(11) lim
n→∞

‖Ln(f)− f‖[a,b] = 0, for any f ∈ Ck+1[a, b],

then for any f ∈ Ck+1[a, b], any subinterval [c, d] ⊂ (a, b) and any j, 1 ≤ j ≤
k, one has
(12) lim

n→∞

∥∥(Ln(f))(j) − f (j)∥∥
[c,d] = 0.
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Proof. First note that if g ∈ Cj [a, b], j ≥ 2 and g(j)(x) > Mj , x ∈ [a, b],
then g is Zj-convex. Indeed, let a ≤ y1 < . . . < yj < t ≤ b and ϕ ∈ Zj the
unique function such that ϕ(xi) = g(xi), 1 ≤ i ≤ j. Since the function g − ϕ
is usual j − 1 convex it follows g(t) > ϕ(t).

Now fix f ∈ Ck+1[a, b] and [c, d] ⊂ (a, b). Denote ρ := max{|a|, |b|}. We
can choose by induction the numbers λj , 2 ≤ j ≤ k + 1, such that

(j!)λj >
k+1∑
i=j+1

(i!)ρi−j · λi + ‖f (j)‖[a,b] + Mj .

(For j = k + 1 take
∑k+1
i=j+1 = 0). Define the function h by

h(x) := f(x) +
k+1∑
j=2

λj · xj , x ∈ [a, b].

Then h and h− f are Zj-convex for 2 ≤ j ≤ k + 1 and consequently Ln(h)
and Ln(h)− Ln(f), n ≥ 1, are usual convex of order j − 1, for the same j.

Consider the intervals [cj , dj ], 0 ≤ j ≤ k, such that [c0, d0] = [a, b],
[cj+1, dj+1] ⊂ (cj , dj), [ck, dk] = [c, d]. Then by using the result in Theorem 3
in the case F = R, it follows by induction that
lim
n→∞

∥∥(Ln(h))(j)−h(j)∥∥
[cj ,dj ] = 0 = lim

n→∞

∥∥(Ln(h)−Ln(f))(j)−(h−f)(j)∥∥
[cj ,dj ],

1 ≤ j ≤ k, and consequently (12) is true. �
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