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ON THE CAUCHY TRANSFORM AND COMPLEX CUBIC SPLINES

CRACIUN IANCU,* TIBERIU OPROIU," ALEXANDRU POP' and VASILE POP*

Abstract. In this paper one approximates the Cauchy transform of a complex
function on a simple closed curve, using an interpolation cubic spline function
given by Iancu (1987).
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1. INTRODUCTION

Atkinson (1972) considered the Cauchy transform

(1) Tf(z) = ;/Fcf(_@zdg, ZeT,

where I' is a simple closed curve, in the complex plane, with continuously
differentiable parametrization. For the evaluation of T'f(z) there are investi-
gated numerical methods which are based on replacing f(z) by a uniformly
convergent sequence {®,(z) | n > 1} to f(z). Based on the fact that, if @,
converge to f, then T®,, converge to T'f with the same speed, Atkinson (1972)
has studied the cases in which the functions ®,(z) are defined as piecewise
linear and piecewise quadratic interpolation function to f(z) at a given set of
node points on T'.

In this paper we give an extension of Atkinson’s results for the case when
®,,(z) are taken as interpolating complex cubic spline functions for f on the
' curve, and, also, an extension of our previous results (Iancu, 1987; 1989).

2. THE INTERPOLATION CUBIC SPLINE FUNCTION

Let I" be a closed rectifiable curve in the complex plane. On I' curve one
considers the partition

(2) Ar :{Py, P1,..., Py, Poy1 | Py = Py},

of which points are arranged in trigonometric direction. The points of partition
(2) divides the curve I' in the arcs I'y from Py to Py, kK =1,2,...,n+ 1.
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One denotes
(3) hy =2z — 2,1, k=12,...,n4+1,
where z, = i +iyk, Tk, yr € R, is the affix of Py, k = 1,2,...,n+1 (obviously

20 = Zn+1)- Let f be a continuous function on I', about which we know that
it takes the values:

(4) fk:f(zk)7 k;:071727"'7n+1'
Let us consider the interpolating function of the form (Iancu, 1987):
(5) Op(z) = MMtz g ) 4 Motz - 5 )? +

+mp—1(2 — zx—1) + fi-1,

with z € Ty and z € [z_1,2], K = 1,2,...,n+ 1. The function ®,(z) is
uniquely determined by the conditions system:

My = 6R5h=t — 67 — 2Miy,
(6) my = 3050 oy — My, k=T +1

My = Mpt1, mo = mpg,
with Mj = @) (z;), mj = ®,(z), j=1,2,...,n+ 1.
3. THE ERROR ANALYSIS
Next, we prove the following:

LEMMA 1. Let be the complez spline function (5) determined by the condi-
tions (6). For any function f € C(T') that is interpolated by the spline function
(5), we have:

(7) If = @nll < 6w(f5h) + 2h(2mu—1| + |mucl),
where
(8) w(f,h) = sap  [f(w1) — fw2)
|wi —wa|<h
wl,w2€F
is the modulus of continuity of f onT' and h = max |-
ke{1,2,...,n+1}

Proof. On the base of uniform norm definition, we have:
(9) [f = Pnlloc = sup |f(z) - <I>n(z)|.
zel
By using (5), one obtains:
F2) = @alz) = [fle) = gt (2 = men)® = (2 - a)® -

—mp_1(z — 2k-1) — fr-1,

with z € I'y and z € [z;_1,2%), K = 1,2,...,n+ 1. With aid of system (6),
having in view the definition of the modulus of continuity (8), the expression
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of the interpolating cubic spline (5), by using Eq. (9), we can give a simple
formula for the difference f(z) — ®,(z). So, we have

. (z—z_1)3 fe—fr— mp_ m
£ = Bale) = S2) - e (12 o v o ) -

(z—2p_1)? fro—fr— mp—
_ I2cl (6 khikl_él }Izkl_2T}I’LL:>_
—mk_l(z—zk_l) _fk—la k= 1,2,...,n—l—1.

From here, one obtains:

w(f;h)h3 mp_1|h3 my,|h?
(10)  |f(2) = Pu(z)] < w(fsh)+ 20000 4 Imiopl oy lpelis o

-h)h2 X h2
+ 34 + 2R B+ I

If the node points of the partition (2) are taken so that |hg| = h, then, from
(10), results:

(11) 1f(2) = @n(2)] < w(f;h) + 20(f; h) + [mu—1|h + [me|h+
+ 3w(fs h) + 2lmp—1|h + [mg|h + [mi_1|h
=6w(f;h)+2h(2|mg_1| + |mgl). O

REMARK 1. Because the system (6) determines uniquely the complex values
M; and m;, where j = 1,2,...,n, the formula (9) can be written in the form:

1 = @all < w(f5h) + R(GI M| + B My | + [mg—1]). O
Let the Banach space H#(I") of the functions which satisfy the Holder con-
dition
If(E) = fE) <At =, v "el, uwe(0,1],
where A is the Holder constant and p € (0, 1] is the Holder exponent.
We have the following result:

THEOREM 1. Let be the functions f and {®,, n > 1} from Lemma 1. If
f,®, € HYT), p € (0,1] and if, for all t',t" € Ty, k = 1,2,...,n+ 1 is
fulfilled the condition [t' — t"| < h, then

1f = @ully < A+ 6w(f; h) + 4hlmy_1| + [my| (20 + B 7H).

Proof. Taking into account the results of Atkinson (1972), Chien-Ke Lu
(1982), Muskhelishvilli (1953) we obtain:

Hf_canu: Hf_q)n|’oo+Mu(f_q)n)a

where

|(F(#) = @u(t) = (F(") = ("))

Mu(f_(bn) - sup |t/_tl/|u

t t"eR
t/;ét//
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By using (5), and taking into account the conditions of the Theorem 1 we have
obtained the evaluation of M,(f — ®,). So we have:

(12) B = [(F(#) = @u(t)) = (ft") = ®u(t"))
< ) = FE)] + [@n(t") — @0 (t))]
< A‘t/ . t”|’u + ‘ngé\zlk_l (t” . t/)[(t// _ Zk—l)Z +
+ (t// — Zk_l)(t, — Zk—l) + (t, — Zk_1)2] +

+ 3 My (" =) [(t" = 2i1) + (V= 25-1)] + mya (7 — 1)

Considering the case when the node points are equidistant |hy| = h, k =
1,2,...,n+ 1 and taking into account (6), we have:
(13)

E < A’t/ . t//‘,u + |t” . t,|

Me Mt (B2 4 hh 4 h%) + S My 1 (h+ B) +my_y
= At =P+ |t =] .

In conclusion,

E

Mﬂ(f - (I)n) == sup m

t' t"ely
tl;ét//
A — t"]F |t — ¢y
|tl _ t”’“

(14) sup
t t"ely
t/¢t//

= A+ |my|h'H

and, so, the theorem is proved. ]

4. THE CAUCHY TRANSFORM OF &,

We have the following proposition:

PROPOSITION 1. Let us consider a complex cubic spline function of the form
(5) in the conditions (6). Then, for the Cauchy transform T®,(z), by using
the formula (1), we obtain the following result:

n+1
(15) T, (z) = — S [Tia(2) + Thalz) + Tha(2),

1 =1
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Tea(z) = gitfng[L(er — 2)2 + 1z = 2o1) (3 + 25 — 22) +
+3(2 = 202 + (2 = 21  (2) |,

Toa(z) = M=t {Rg[22222 o(e — o )] + (2 — 21)? (2) |

Tia(2) = my—1lhg + (2 — 26-1) Ii(2)] + fo—11k(2),

2k
d
Ik(Z) = /z C_CZ'

k—1

5. NUMERICAL RESULTS

For the third function in the example set 1 (Atkinson, 1972), we obtained

the results given in Table 1 (see Table 2 of Atkinson (1972), p. 295). In that
example, the contour I' is an ellipse with the center at the origin, given by
z(t) = cost + iAsint, where t € (0,27) and X € (0, 1].

Error, A = 1.0 Error, A =0.2
n | Atkinson (1972) | Present paper | Atkinson (1972) | Present paper
32 9.59-1077 1.59-1071 6.44-1077 3.67-10 1
64 1.18-1073 1.36-107° 1.49-1072 3.61-107°
128 1.59-1071 1.02-107° 2.61-1073 3.30-107°
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