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Abstract. We give a necessary and sufficient condition for representing finitely
defined functionals in terms of divided differences. As particular cases we obtain
formulas of Tiberiu Popoviciu, Newton, etc.
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1. PRELIMINARIES AND NOTATIONS

Let n be a positive integer. We use the following notations and abbrevia-
tions:

Pn, the linear space of polynomials of degree at most n;

e; € Pn, ei(t) = ti, 1=0,...,n;

X0, - - -, Tn, distinct points of an interval [a, b];

F, the linear space of all real functions defined on {zo, ..., z,};
A, a set of linear finitely defined functionals,

A, = {A:]—"—HR ‘ A(f):iaif(xi), ao,...,aneR};
i=0

® [t1, ..., ty; f], the divided difference of the function f, with respect to
the distinct nodes t1, ..., tp;
o {Zi0, ..., Tin}, P =0, ..., n, nonempty subsets of {xg, ..., zp};

if <05 .
o Uy = { 0, i w<l; the positive part of u;

u, if w>0,

LEMMA 1. If fo, ..., fn € F are linearly independent and Fy, ..., F, € A,
satisfy the condition

(1) d :=det(F;(f;))ij—0 # 0,
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then, for any A € Ay, the following formula is satisfied

A(fo) - A(fn)
Fo(fo) - Fo(fa)

N (D : : ,
@) A‘,;) T H) S H |

(the notation I%g means that the k-th row is canceled).

Proof. Let f € F. Taking into account the fact that f is a linear combination
of fo, ..., fn, it follows that

A(f)  A(fo) - A(fn)
Fo(f) Fo(fo) -+ Folfn)

=0.

We expand the determinant in terms of the first column and we take into
consideration . O

Consider the polynomials

£(t)
(t—xig)...(t —xip,)’
i=0, ..., n, where {(t) :== (t — o) ... (t — zp).

For yo, ..., yp € {z0, ..., xn}, the reduction formula for divided differences
gives

(3) Pi(t) :=

(20, @05 ol P )], = 0, 1.

The the polynomials P; satisfy
(4) [0, s Pi- f] = [wio - Tigs [

LEMMA 2. If Q € P, and

[0, ..., 2n; PQ] =0, VP € Py,

then @ = 0.

Proof. By virtue of ({), with P;(t) = £(t)/(t — x;), i =0, ...,n, we obtain

Qzi) = [zi; Q] = [zo, ..., 2n; - Q] =0,  1=0,...,n,

hence @ = 0. g
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2. MAIN RESULTS
THEOREM 3. Any functional A € A, can be written in the form

(5) A:Z)\k [xk,()a"'vxk’,nk; ']7
k=0

for some Ag, ..., \p € R, if and only if the polynomials are linearly inde-
pendent.

Proof. Necessity. Let P € P, be an arbitrary polynomial of degree n.
Consider the linear functional

A(f) = [zo, ..., zn; P+ f].
It follows that there exist A\p, € R, k =0, ..., n, such that

AF) = Melzh0s- - - Thmgs [, VfeF.
k=0
By using , we obtain

k=0

k=0
Consequently,

{J;g,...,xn; (P— > MP) f} —0, VfeF
k=0

therefore, by Lemma [2] we obtain

n
P=> " \Px,
k=0
that is the set {Py, ..., P,} is a basis in P,. It follows that the polynomials
Py, ..., P, are linearly independent.

Sufficiency. Suppose that the polynomials Py, ..., P, are linearly indepen-
n
dent and let A € A, A(f) = X apf(zk). There exist Ao, ..., A, € R such
k=0
that

Zaktf_(;)k :Z)\kpk(t), t € {zo,...,zn}.
k=0 k=0

It follows that

S a () =S MP(OF(E),  tE {wo,... 0},
k=0 k=0

hence

xo,...,xn;zakﬂgﬂw] - [xo,...,xn;zka(t)f(t) ,
k=0

t k=0 t
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therefore
n

> [z0n s emian AL ()] =D [wo, o s PO S D).
k=0 k=0

Consequently, by using , it follows that

D anf(xe) =D A [@h0s- - Thonys £
k=0 k=0

that is,
AF) = MelTh0s- - - Thomys f-
k=0

In what follows we consider the functionals
(6) Dy = [Tk0,- s Thomys ], k=0,...,n.
LEMMA 4. If det(F;(7;))ij—0 # 0, then ¢ :=det(Dy(5;))]4—o # 0.
Proof. We consider the functionals A; € A,,
Ai(f) = flzj),  7=0,....n.

Since the polynomials are linearly independent, by virtue of Theorem |3} it
follows that there exists numbers Ajx such that

n
A; =" N Dy,
k=0
hence

Pi(zj) = Aj(P) = > A\jk Di(Py),
k=0
1,7 =0, ..., n. We get
det(P;(2;))i =0 = det(Ajk)i j—o - det(Dy ()i k=0
hence det(Dg(F;))i =0 # 0. O

In the next theorem we give a representation of \; from Eq. in terms of
the functionals @

THEOREM 5. If det(P;(x;))ii—o # 0 and A € Ay, then

A(Py) - A(Pn)
Do(Py) -+ Do(Fn)

—1)* : :

= | T Thon,; -
A=S 5 iny iy | e |

Do(Py) -+ Dy(Py)
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Proof. We use Theorem [3] Lemma [I] and Lemma [4] O

3. APPLICATIONS

COROLLARY 6 (Popoviciu’s Transformation Formula [4, Eq. (17)]). If r is
an integer, 0 < r < n, then for all A € A,, there exist numbers «; such that

A(f) = Z Q; [1’0,...,1’1‘; f]+ Z Q; [.Z‘i_r,...,l'i; f]

0<i<r—1 r<i<n
Proof. In Theorem [3] we take

469) .
o). =z O0=i<r—1,

0t )
mv r<i<n.

0

COROLLARY 7. [2]. Ifa<xzy < - - < xp <band U : Fla,b] — Fla,b] is a
linear operator, then
U(f;x) = Uleo; x)f(x0) + Uler — w0 eo; @) [zo,21; f]
n—2

+ ) (@hr2 — 2R)U(( — Tha1)+3 @) [0, Togr, Thgo s £
k=0

for all f € Fla,bl], x € [a,b].

Proof. For fixed = € [a,b], we consider the functional U(-; ) € A,. The
polynomials

£(t) £(t) £(t) . £(t)
t—xo’ (t—zo)({t—z1)’ (t—z0)(t—21)(t—22)’ ’ (t—xp—2)(t—Tn—1){t—2zn)"’

are linearly independent. Therefore, by virtue of Theorem [3] it follows that
there exist a(x), B(x), ax(x) € R, k=0, ..., n — 2, such that

n—2

U(f; z) = o) [xo; f1 + B(x) [wo, 21 f1+ Y an(@) [mg, Tps1s Thyas £,

k=0

for all f € Fla,b].
Taking successively f = eg and f = e1, we obtain

a(z) =Uleo; ) and  B(z) =Uler; ©) — xo Uleo; ),

hence

U(f;x) = Uleo,z)f(wo) + (Uler; ©) — w0 Uleo; v)) [0, 215 f]
n—2

+ Z (lk(fx) [:Ek?xk-‘rlvxk-i-Q;f]’ v f € f[a7 b]
=0

In order to compute the numbers ay(z) we consider the functions

@i(t) == (t — Tit1)+,
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1 =0, ..., n— 2. They satisfy the relations

0, if k=1,
T, T y L ; Pi| = .
[Ths Thy1s Tho2; Pl L ke
Ti+2—T4
i,k=0, ..., n— 2. From here, we deduce
co) — _ak(@)
U(@k, J") - xk+2_$k’
and the proof is completed. ]

COROLLARY 8 (T. Popoviciu [6, p.151]). If A = {xo,...,zn}, then the
broken line SA(f) associated to f on A can be represented in the form

Sa(f)(x) = f(zo) + (x — z0) [w0, 215 f]
n—2
+ Z(fﬂkﬂ = @) (@ = Thot1)+ [T, Thop1, Tt25 f] z e R.
k=0

Proof. If in Corollary [7] we take U := Sa and use the fact that S preserves
broken lines, i.e.,

or(r) = Saler)(z),
the proof is completed. O

COROLLARY 9 (Newton Interpolating Formula). If x, zg, ..., x, are distinct
points in [a,b], then

n
Z$—$O .’E—ﬁk 1)[$0,...,1U}g;f]
=0

—i—(a: x0) ... (x — xn) [T0y - s Tny 5 f],
for all f € Fla,b).
Proof. Let A ={xg, ..., zpy1} and A € A,, A(f) := f(xn+1). The polyno-

mials

£(t) £(t) £(t)

t—xo’ (t—zo)({t—x1)? """ (t—z0)(t—z1) - (t—2n+1)’
where £(t) = (t—z0)(t—z1) - - - (t—xp41), are linearly independent. Therefore,
by Theorem [3] it follows that there exist A\, € R, k=0, ..., n+ 1, such that

n+1
anrl Z/\k mOa"ka;f]?

for all f € Fla,b]. In order to calculate the numbers A, we consider the
functions

wo(t) :=1, wi(t):=t—x9)...(t—zi—1), i=1,....,n+1.

We have
[0y ..., 2k @i]| = 0k, k,i=0,...,n+ 1
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We obtain
/\i:(pi(l'nJrl), 1=0,....,n+4+ 1.
Consequently,
n+1
f(xn—H) - Z ka('xn-i-l) ['TOa ey Tk f] 3
k=0
for all f € Fla,b]. With z,.1 = = the proof is completed. O
+
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