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Abstract. In this paper we shall present some results on spaces with asymmet-
ric seminorms, with emphasis on best approximation problems in such spaces.
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1. INTRODUCTION

Let X be a real vector space. An asymmetric seminorm on X is a positive
sublinear functional p : X → [0,∞), i.e. p satisfies the conditions:
(AN1) p(x) ≥ 0;
(AN2) p(tx) = tp(x);
(AN3) p(x+ y) ≤ p(x) + p(y),
for all x, y ∈ X and t ≥ 0.

The function p̄ : X → [0,∞) defined by p̄(x) = p(−x), x ∈ X, is another
positive sublinear functional on X, called the conjugate of p, and

(1.1) ps(x) = max{p(x), p(−x)}, x ∈ X,

is a seminorm on Xand the inequalities

(1.2) |p(x)− p(y)| ≤ ps(x− y) and |p̄(x)− p̄(y)| ≤ ps(x− y)

hold for all x, y ∈ X. If the seminorm ps is a norm on X then we say that p is
an asymmetric norm on X. This means that, beside (AN1)–(AN3), it satisfies
also the condition
(AN4) p(x) = 0 and p(−x) = 0 imply x = 0.

The pair (X, p), where X is a linear space and p is an asymmetric seminorm
on X is called a space with asymmetric seminorm, respectively a space with
asymmetric norm, if p is an asymmetric norm.
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The function ρ : X ×X → [0;∞) defined by ρ(x, y) = p(y − x), x, y ∈ X,
is an asymmetric semimetric on X. Denote by

B′p(x, r) = {x′ ∈ X : p(x′ − x) < r} and Bp(x, r) = {x′ ∈ X : p(x′ − x) ≤ r},

the open, respectively closed, ball in X of center x and radius r > 0. Denoting
by

B′p = B′p(0, 1) and Bp = Bp(0, 1),
the corresponding unit balls then

B′p(x, r) = x+ rB′p and Bp(x, r) = x+ rBp.

The unit balls B′p and Bp are convex absorbing subsets of the space X and
p agrees with the Minkowski functional associated to any of them. Recall that
for an absorbing subset C of X the Minkowski functional pC : X → [0;∞) is
defined by

pC(x) = inf{t > 0 : x ∈ tC}.
If C is absorbing and convex, then pC is a positive sublinear functional, and

{x ∈ X : pC(x) < 1} ⊂ C ⊂ {x ∈ X : pC(x) ≤ 1}.

An asymmetric seminorm p generates a topology τp on X, having as basis of
neighborhoods of a point x ∈ X the family {B′p(x, r) : r > 0} of open p-balls.
The family {Bp(x, r) : r > 0} of closed p-balls is also a neighborhood basis at
x for τp.

The topology τp is translation invariant, i.e. the addition + : X ×X → X
is continuous, but the multiplication by scalars · : R × X → X need not be
continuous, as it is shown by some examples (see [7]).

The ball B′p(x, r) is τp-open but the ball Bp(x, r) need not to be τp-closed,
as can be seen from the following typical example.

Example 1.1. Consider on R the asymmetric seminorm u(α) = max{α, 0},
α ∈ R, and denote by Ru the space R equipped with the topology τu gener-
ated by u. The conjugate seminorm is ū(α) = −min{α, 0}, and us(α) =
max{u(α), ū(α)} = |α|. The topology τu, called the upper topology of R,
is generated by the intervals of the form (−∞; a), a ∈ R, and the family
{(−∞;α + ε) : ε > 0} is a neighborhood basis of every point α ∈ R. The set
(−∞; 1) = B′u(0, 1) is τu-open, and the ball Bu(0, 1) = (−∞; 1] is not τu-closed
because R \Bu(0, 1) = (1;∞) is not τu-open. �

The topology τp could not be Hausdorff even if p is an asymmetric norm
on X. A necessary and sufficient condition in order that τp be Hausdorff was
given in [22]. Putting

(1.3) p̃(x) = inf{p(x′) + p(x′ − x) : x′ ∈ X}, x ∈ X,

it follows that p̃ is the greatest (symmetric) seminorm majorized by p and the
topology τp is Hausdorff if and only if p̃(x) > 0 for every x 6= 0. Changing x
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to −x and taking x′ = 0 it follows that, in this case, p(x) > 0 for every x 6= 0,
but this condition is not sufficient for τp to be Hausdorff, see [22].

Spaces with asymmetric seminorms were investigated in a series of papers,
emphasizing similarities with seminormed spaces as well as differences, see
[1, 2, 3, 7, 17, 18, 19, 21, 22], and the references quoted therein. Among the
differences we mention the fact that the dual of a space with asymmetric semi-
norm is not a linear space but merely a convex cone in the algebraic dual X#

of X. This is due to the fact that the continuity of a linear functional ϕ on
(X, p) does not imply the continuity of −ϕ. For instance, ϕ(u) = u is contin-
uous on (R, u) but ψ(u) = −u is not continuous. For an other example see
[7]. The study of spaces with asymmetric norm was motivated and stimulated
also by their applications in the complexity of algorithms, see [20, 40].

Some continuity properties of linear functionals in the symmetric case have
their analogs in the asymmetric one.

Proposition 1.2. [21] Let (X, p) be a space with asymmetric seminorm
and ϕ : X → R a linear functional. Then the following are equivalent.

(1) ϕ is τp-τu-continuous at 0 ∈ X.
(2) ϕ is τp-τu-continuous on X.
(3) There exists L ≥ 0 such that

(1.4) ∀x ∈ X, ϕ(x) ≤ Lp(x).
(4) ϕ is upper semi-continuous from (X, τp) to (R, | |).

A linear functional satisfying (1.4) is called semi-Lipschitz (or p-bounded)
and L a semi-Lipschitz constant. Denote by X[

p the set of all bounded linear
functionals on the space with asymmetric seminorm (X, p). As we did mention,
X[
p is a convex cone in X#.

One can define a norm ‖ |p on X[
p by

(1.5) ‖ϕ|p = sup{ϕ(x) : x ∈ Bp}, ϕ ∈ X[
p .

Some useful properties of this norm, whose proofs can be found in [9, 12],
are collected in the following proposition. We agree to call a linear functional
ϕ on (X, p), (p, p̄)-bounded if it is both p- and p̄-bounded, where p̄ is the
seminorm conjugate to p.

Proposition 1.3. If ϕ is a bounded linear functional on a space with asym-
metric seminorm (X, p), p 6= 0, then the following assertions hold.

(1) ‖ϕ|p is the smallest of the numbers L ≥ 0 for which the inequality (1.4)
holds.

(2) We have
‖ϕ|p = sup{ϕ(x)/p(x) : x ∈ X, p(x) > 0}(1.6)

= sup{ϕ(x) : x ∈ X, p(x) < 1}(1.7)
= sup{ϕ(x) : x ∈ X, p(x) = 1}.(1.8)
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(3) If ϕ 6= 0, then ‖ϕ|p > 0. Also, if ϕ 6= 0 and ϕ(x0) = ‖ϕ|p for some
x0 ∈ Bp, then p(x0) = 1.

(4) If ϕ is (p, p̄)-bounded, then
ϕ(rB′p) = (−r‖ϕ|p̄ , r‖ϕ|p) and ϕ(rB′p̄) = (−r‖ϕ|p, r‖ϕ|p̄)

where B′p = {x ∈ X : p(x) < 1}, B′p̄ = {x ∈ X : p̄(x) < 1} and r > 0.
(5) If ϕ is p-bounded but not p̄-bounded, then

ϕ(rB′p) = (−∞, r‖ϕ|p).

Remark 1.4. A linear functional ϕ : X → R is (p, p̄)-bounded if and only
if
(1.9) ∀x ∈ X, |ϕ(x)| ≤ Lp(x),
for some L ≥ 0. �

Indeed, if L1, L2 ≥ 0 are such that
ϕ(x) ≤ L1p(x) and ϕ(x) ≤ L2p(−x),

for all x ∈ X, then −ϕ(x) = ϕ(−x) ≤ L2p(x), x ∈ X, so (1.9) holds with
L = max{L1, L2}.

Denote by X[
p̄ the dual cone to (X, p̄) and let X∗ be the conjugate of the

seminormed space (X, ps), where ps is the symmetric seminorm associated to
p and p̄ (see (1.1)).

Since
ϕ(x) ≤ Lp(x) ≤ Lps(x), x ∈ X,

implies |ϕ(x)| ≤ Lp(x), x ∈ X, it follows that X[
p is contained in the dual X∗

of (X, ps). Similarly, X[
p̄ is contained in X∗ too.

For x∗ ∈ X∗ put
‖x∗‖ = sup{x∗(x) : x ∈ X, ps(x) ≤ 1}.

Then ‖ ‖ is a norm on X∗ and X∗ is complete with respect to this norm, i.e.
is a Banach space (even if ps is not a norm, see [11]).

Proposition 1.5. Let (X, p) be a space with asymmetric seminorm.
(1) The cones X[

p and X[
p̄ are contained in X∗ and

‖ϕ|p = ‖ϕ‖, ϕ ∈ X[
p and ‖ψ|p̄ = ‖ψ‖, ψ ∈ X[

p̄ .

(2) We have ‖ϕ|p = ‖ − ϕ|p̄ , so that

ϕ ∈ X[
p and ‖ϕ|p ≤ r ⇐⇒ −ϕ ∈ X[

p̄ and ‖ − ϕ|p̄ ≤ r.

The properties of the dual space X[
p were investigated in [21] where, among

other things, the analog of the weak∗ topology of X was defined. This is
denoted by w[ and has a neighborhood basis at a point ϕ ∈ X[

p, the family

Vx1,...,xn; ε(ϕ) = {ψ ∈ X[
p : ψ(xk)− ϕ(xk) < ε, k = 1, ..., n},
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for n ∈ N, x1, ..., xn ∈ X and ε > 0. The w[-convergence of a net (ϕi : i ∈ I)
in X[

p to ϕ ∈ X[
p can be characterized in the following way

ϕi
w[

−→ ϕ ⇐⇒ ∀x ∈ X, ϕi(x)→ ϕ(x) in (R, u).
It was shown that w[ is the restriction of the topology w∗ = σ(X∗, X) on X∗

to X[
p (see [21]). This study was continued in [9] where separation theorems for

convex sets and a Krein-Milman type theorem were proved. In [10] asymmetric
locally convex spaces were introduced and their basic properties were studied.

Another direction of investigation is that of best approximation in spaces
with asymmetric seminorm. Due to the asymmetry of the seminorm we have
two distances. For a nonempty subset Y of a space with asymmetric seminorm
(X, p) and x ∈ X put
(1.10) dp(x, Y ) = inf{p(y − x) : y ∈ Y },
and
(1.11) dp(Y, x) = inf{p(x− y) : y ∈ Y }.

Note that dp(Y, x) = dp̄(x, Y ).
Duality formulae and characterization results for best approximation in

spaces with asymmetric norm were obtained in [5, 6, 9, 12, 34, 35]. The
papers [32, 33, 39] are concerned with best approximation in spaces of semi-
Lipschitz functions defined on asymmetric metric spaces (called quasi-metric
spaces) in connection with the extension properties of these functions. In the
papers [13, 24, 25, 36], supposing that p is the Minkowski functional pC of a
bounded convex body C in a normed space (X, ‖ ‖), some generic existence
results for best approximation with respect to the asymmetric norm pC were
proved, extending similar results from the normed case. As in the symmetric
case, the geometric properties of the body C (or, equivalently, of the func-
tional pC) are essential. A study of the moduli of convexity and smoothness
corresponding to pC is done in [43].

Best approximation with respect to some asymmetric norms in concrete
function spaces of continuous or of integrable functions, called sign-sensitive
approximation, was also studied in a series of papers, see [14, 15, 16, 41], the
references quoted therein, and the monograph by Krein and Nudelman [23,
Ch. 9, §5]).

The present paper, which can be viewed as a sequel to [12] and [9], is
concerned mainly with characterizations of the elements of best approximation
in a subspace Y of a space with asymmetric norm (X, p) and duality results
for best approximation. As in the case of (symmetric) normed spaces the
characterizations will be done in terms of some linear bounded functionals
vanishing on Y . The duality results will involve the annihilator in X[

p of the
subspace Y. For this reason we start by recalling some extension results for
bounded linear functionals on spaces with asymmetric seminorm. For proofs,
all resorting to the classical Hahn-Banach extension theorem, see [9, 12].
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Theorem 1.6. Let (X, p) be a space with asymmetric seminorm and Y a
linear subspace of X. If ϕ0 : Y → R is a linear p-bounded functional on Y
then there exists a p-bounded linear functional ϕ defined on the whole X such
that

ϕ|Y = ϕ0 and ‖ϕ|p = ‖ϕ0|p.

We agree to call a functional ϕ satisfying the conclusions of the above
theorem a norm preserving extension of ϕ0.

Based on this extension result one can prove the following existence result.

Proposition 1.7. Let (X, p) be a space with asymmetric seminorm and
x0 ∈ X such that p(x0) > 0. Then there exists a p-bounded linear functional
ϕ : X → R such that

‖ϕ|p = 1 and ϕ(x0) = p(x0).

In its turn, this proposition has the following corollary.

Corollary 1.8. If p(x0) > 0 then
p(x0) = sup{ϕ(x0) : ϕ ∈ X[

p , ‖ϕ|p ≤ 1}.

Moreover, there exists ϕ0 ∈ X[
p , ‖ϕ0|p = 1, such that ϕ0(x0) = p(x0).

The following proposition is the asymmetric analog of a well known result
of Hahn.

Proposition 1.9. ([12]) Let Y be a subspace of a space with asymmetric
seminorm (X, p) and x0 ∈ X.

(1) If d := dp(x0, Y ) > 0, then there exists ϕ ∈ X[
p such that

(i) ϕ|Y = 0, (ii) ‖ϕ|p = 1, and (iii) ϕ(−x0) = d.

(2) If d̄ := dp(Y, x0) > 0, then there exists ψ ∈ X[
p such that

(j) ψ|Y = 0, (jj) ‖ψ|p = 1, and (jjj) ψ(x0) = d̄.

2. BEST APPROXIMATION IN SPACES WITH ASYMMETRIC SEMINORM

Let (X, p) be a space with asymmetric seminorm, p̄ the seminorm conjugate
to p and Y a nonempty subset of X. The distances dp(x, Y ) and dp(Y, x) from
an element x ∈ X to Y are defined by the formulae (1.10) and (1.11). An
element y0 ∈ Y such that p(y0 − x) = dp(x, Y ) will be called a p-nearest point
to x in Y , and an element y1 ∈ Y such that p(x− y1) = p̄(y1 − x) = dp̄(x, Y )
is called a p̄-nearest point to x in Y.

Denote by

(2.1)
PY (x) = {y ∈ Y : p(y − x) = dp(x, Y )}, and
P̄Y (x) = {y ∈ Y : p(x− y) = dp(Y, x)},

the possibly empty sets of p-nearest points, respectively p̄-nearest points, to
x in Y . The set Y is called p-proximinal, p-semi-Chebyshev, p-Chebyshev if
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for every x ∈ X the set PY (x) is nonempty, contains at most one element,
contains exactly one element, respectively. Similar definitions are given in the
case of p̄-nearest points. A semi-Chebyshev set is called also a uniqueness set.

For a nonempty subset Y of a space with asymmetric seminorm (X, p),
denote by Y ⊥p the annihilator of Y in X[

p , i.e.

Y ⊥p = {ϕ ∈ X[
p : ϕ|Y = 0}.

We start by a characterization of nearest points given in [12] we shall need
in the sequel.

Proposition 2.1. ([12]) Let (X, p) be a space with asymmetric seminorm,
Y a subspace of X and x0 a point in X.

(1) Suppose that d := dp(x0, Y ) > 0. An element y0 ∈ Y is a p-nearest
point to x0 in Y if and only if there exists a bounded linear functional
ϕ : X → R such that

(i) ϕ|Y = 0, (ii) ‖ϕ|p = 1, (iii) ϕ(−x0) = p(y0 − x0).

(2) Suppose that d̄ := dp(Y, x0) > 0. An element y0 ∈ Y is a p̄-nearest
point to x0 in Y if and only if there exists a bounded linear functional
ψ : X → R such that

(j) ψ|Y = 0, (jj) ‖ψ|p = 1, (jjj) ψ(x0) = p(x0 − y0).

From this theorem one can obtain characterizations of sets of nearest points.

Corollary 2.2. Let (X, p) be a space with asymmetric seminorm, Y a
subspace of X, x ∈ X, and Z a nonempty subset of Y .

(1) If d = dp(x0, Y ) > 0 then Z ⊂ PY (x) if and only if there exists a
functional ϕ ∈ X[

p such that

(i) ϕ|Y = 0, (ii) ‖ϕ|p = 1, (iii) ∀y ∈ Z, ϕ(−x0) = p(y − x0).

(2) If d̄ = dp(Y, x0) > 0 then Z ⊂ P̄Y (x) if and only if there exists a
functional ψ ∈ X[

p such that

(j) ψ|Y = 0, (jj) ‖ψ|p = 1, (jjj) ∀y ∈ Z, ψ(x0) = p(x0 − y).

In the next proposition we extend to the asymmetric case some charac-
terization results for semi-Chebyshev subspaces (see [42, Chapter I, Theorem
3.2]).

Theorem 2.3. Let Y be a subspace of a space with asymmetric norm (X, p)
such that p(x) > 0 for every x 6= 0. Then the following assertions are equiva-
lent.

(1) Y is a p-semi-Chebyshev subspace of X.
(2) There are no ϕ ∈ Y ⊥p and x1, x2 ∈ X with x1−x2 ∈ Y \{0}, such that

(i) ‖ϕ|p = 1 and (ii) ϕ(−xi) = p(−xi), i = 1, 2.
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(3) There are no ψ ∈ Y ⊥p , x ∈ X, and y0 ∈ Y \ {0} such that
(j) ‖ψ|p = 1 and (jj) ψ(−x) = p(−x) = p(y0 − x).

Proof. (1)⇒ (2) Suppose that (2) does not hold. Let ϕ ∈ Y ⊥p and x1, x2 ∈
X with x1−x2 ∈ Y \ {0}, such that the conditions (i) and (ii) of the assertion
(2) are satisfied, and put y0 = x1 − x2. Then

ϕ(−x2) = p(−x2) ⇐⇒ ϕ(y0 − x1) = p(y0 − x1),
and

ϕ(−x1) = p(−x1) ⇐⇒ ϕ(0− x1) = p(0− x1).
By Proposition 2.1, it follows that 0 and y0 are p-nearest points to x1 in Y .
(2)⇒ (3) Suppose that (3) does not hold. Then there exist ψ ∈ Y ⊥p , x ∈

X, and y0 ∈ Y \ {0} such that the conditions (j) and (jj) of the assertion (3)
are fulfilled. It follows that the conditions (i) and (ii) of the assertion (2) are
satisfied by ϕ = ψ, x1 = x and x2 = y0 − x, i.e. (2) does not hold.

(3)⇒ (1) Supposing that (1) does not hold, there exist z ∈ X \ Y and
y1, y2 ∈ Y, y1 6= y2, such that

p(y1 − z) = p(y2 − z) = dp(z, Y ).
If dp(z, Y ) = 0, then y1 = y2 = z, a contradiction which shows that

dp(z, Y ) > 0.
If x := z − y1, then

dp(z − y1, Y ) = inf{p(y + y1 − z) : y ∈ Y }
= inf{p(y′ − z) : y′ ∈ Y }
= dp(z, Y )
= p(y1 − z)
= p(y2 − z).

By Proposition 2.1, there exists ψ ∈ Y ⊥p , ‖ψ|p = 1, such that
ψ(y1 − z) = p(y1 − z) = p(y2 − z),

or, denoting y0 := y2 − y1, this is equivalent to
ψ(−x) = p(−x) = p(y0 − x),

showing that (3) does not hold. �

Remark 2.4. Obviously that a similar characterization result holds for p̄-
semi-Chebyshev subspaces. �

Using Corollary 2.2, one can extend Theorem 2.3 to obtain characterizations
of pseudo-Chebyshev subspaces, a notion introduced by Mohebi [28] in the
case of normed spaces. Concerning other weaker notions of Chebyshev spaces
– quasi-Chebyshev subspaces, weak-Chebyshev subspaces, as well as for their
behaviour in concrete function spaces, see the papers [26, 27, 29, 31]. For a
subset Z of a vector space X denote by aff(Z) the affine hull of the set Z, i.e.
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aff(Z) = {x ∈ X : ∃n ∈ N, ∃ z1, ..., zn ∈ Z, ∃ a1, ..., an ∈ R, a1 + ... + an =
1 such that x = a1z1 + ... + anzn}. There exists a unique subspace Y of X
such that aff(Z) = z + Y, for an arbitrary z ∈ Z. By definition, the affine
dimension of the set Z is the dimension of this subspace Y of X.

A subspace Y of a space with asymmetric norm (X, p) is called p-pseudo-
Chebyshev if it is p-proximinal and the set PY (x) has finite affine dimension
for every x ∈ X.

The following theorem extends a result proved by Mohebi [28] in normed
spaces.

Theorem 2.5. Let Y be a subspace of an asymmetric normed space (X, p)
such that p(x) > 0 for every x 6= 0. The following assertions are equivalent.

(1) The subspace Y is p-pseudo-Chebyshev.
(2) There do not exist ϕ ∈ Y ⊥p , x0 ∈ X, and infinitely many linearly

independent elements xn ∈ X, n ∈ N, with x0 − xn ∈ Y, n ∈ N, such
that

(i) ‖ϕ|p = 1 and (ii) ϕ(−xn) = p(−xn), n = 0, 1, . . . .

(3) There do not exist ψ ∈ Y ⊥p , x0 ∈ X, and infinitely many linearly
independent elements yn ∈ Y, n ∈ N, such that

(j) ‖ψ|p = 1 and (jj) ψ(−x0) = p(−x0) = p(yn − x0), n = 1, 2, . . . .

Proof. (1)⇒ (2) Suppose that (2) does not hold. Then there exist ϕ ∈
Y ⊥p , x0 ∈ X, and infinitely many linearly independent elements xn ∈ X, with
x0 − xn ∈ Y, n ∈ N, satisfying the conditions (i) and (ii). The elements
yn := x0 − xn, n ∈ N, all belong to Y , are linearly independent, and

ϕ(yn − x0) = ϕ(−xn) = p(−xn) = p(yn − x0),

so that, by Corollary 2.2, they are all contained in PY (x0), showing that Y is
not p-pseudo-Chebyshev.

(2)⇒ (3) Suppose again that (3) does not hold, and let ψ ∈ Y ⊥p , x0 ∈ X,
and the linearly independent elements {yn : n = 1, 2, ...} ⊂ Y fulfilling the
conditions (j) and (jj).

Then xn := x0 − yn, n = 1, 2, ..., are linearly independent elements in X
and

ψ(−xn) = ψ(yn − x0) = p(−xn), n = 0, 1, 2, ...,
showing that (2) does not hold.

(3)⇒ (1) Supposing that (1) does not hold, there exist an element z ∈
X and an infinite set {yn : n = 1, 2, ...} of linearly independent elements
contained in PY (z).

By Corollary 2.2, there exists ϕ ∈ Y ⊥p , ‖ϕ|p = 1, such that

ϕ(yn − z) = dp(z, Y ) = p(yn − z), n = 1, 2, . . . .
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Putting x := z − y1 we have
dp(x, Y ) = inf{p(y + y1 − z) : y ∈ Y } = inf{p(y′ − z) : y′ ∈ Y } =

= dp(z, Y ) = p(yn − z) = p(yn − y1 − x), n = 2, 3, ...,

showing that {yn − y1 : n = 2, 3, ...} ⊂ PY (x). By Corollary 2.2, there exists
ψ ∈ Y ⊥p with ‖ψ|p = 1 such that

ψ(yn − yy − x0) = p(yn − y1 − x0), n = 2, 3, ...,
showing that (3) does not hold. �

Phelps [37] emphasized for the first time some close connections existing
between the approximation properties of the annihilator Y ⊥ of a subspace
Y of a normed space X and the extension properties of the subspace Y . A
presentation of various situations in which such a connection occurs is done in
[8]. The case of spaces with asymmetric norms was considered in [34, 35].

Let (X, p) be a space with asymmetric seminorm and Y a subspace of X.
For a p-bounded linear functional ϕ : Y → R denote by

Ep(ϕ) = {ψ ∈ X[
p : ψ|Y = ϕ, ‖ψ|p = ‖ϕ|p},

the set of all norm-preserving extensions of the functional ϕ. By the Hahn-
Banach theorem (Theorem 1.6) the set Ep(ϕ) is always nonempty.

For ϕ ∈ X[
p consider the following minimization problem

(2.2) γ(ϕ, Y ⊥p ) := inf{‖ϕ+ ψ|p : ψ ∈ Y ⊥p }.

A solution to this problem is an element ψ0 ∈ Y ⊥p such that ‖ϕ + ψ0|p =
γ(ϕ, Y ⊥p ). Denote by ΠY ⊥p

(ϕ) the set of all these solutions.

Theorem 2.6. If the linear functional ϕ : X → R is (p, p̄)-bounded then the
minimization problem (2.2) has a solution and the following formulae hold

(2.3) γ(ϕ, Y ⊥p ) = ‖ϕ|Y |p and ΠY ⊥p
(ϕ) = Ep(ϕ|Y )− ϕ.

Proof. Let ϕ ∈ X[
p ∩X[

p̄ and ψ ∈ Y ⊥p . Then
‖ϕ+ ψ|p ≥ ‖(ϕ+ ψ)|Y |p = ‖ϕ|Y |p,

implying γ(ϕ, Y ⊥p ) ≥ ‖ϕ|Y |p.
If Φ ∈ Ep(ϕ|Y ) then, because ϕ is (p, p̄)-bounded, −ϕ ∈ X[

p (see Propo-
sition 1.5, ψ := Φ − ϕ ∈ Y ⊥p , and γ(ϕ, Y ⊥p ) ≤ ‖ϕ + ψ|p = ‖Φ|p . Therefore
γ(ϕ, Y ⊥p ) = ‖ϕ|Y |p and

Ep(ϕ|Y )− ϕ ⊂ ΠY ⊥p
(ϕ).

Conversely, if ψ ∈ ΠY ⊥p
(ϕ), then Φ := ϕ + ψ satisfies Φ|Y = ϕ|Y and

‖Φ|p = ‖ϕ+ ψ|p = γ(ϕ, Y ⊥p ) = ‖ϕ|Y |p, i.e. Φ ∈ Ep(ϕ|Y ) and
ϕ+ ΠY ⊥p

(ϕ) ⊂ Ep(ϕ|Y ) ⇐⇒ ΠY ⊥p
(ϕ) ⊂ Ep(ϕ|Y )− ϕ.
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�

Denoting by

(2.4) Y ⊥ = {ψ ∈ X∗ : ψ|Y = 0},

the annihilator Y ⊥ of a subspace Y of X in the symmetric dual X∗ of the
seminormed space (X, ps)∗, it follows that Y ⊥ is a subspace of X∗. Consider
on X∗ the asymmetric extended norm ‖ |∗p : X∗ → [0;∞] defined by

‖ϕ|∗p = supϕ(Bp).

We have for any ϕ ∈ X∗

ϕ ∈ X[
p ⇐⇒ ‖ϕ|∗p <∞,

and ‖ϕ|∗p = ‖ϕ|p for ϕ ∈ X[
p (see Proposition 1.5).

For ϕ ∈ X[
p consider the distance from ϕ to Y ⊥ defined by

dp(Y ⊥, ϕ) = inf{‖ϕ− ψ|∗p : ψ ∈ Y ⊥}.

Because ‖ϕ− 0|∗p = ‖ϕ|p <∞ this distance is always finite. Put

PY ⊥(ϕ) = {ψ ∈ Y ⊥ : ‖ϕ− ψ|p = dp(Y ⊥, ϕ)}.

Theorem 2.7. Every ϕ ∈ X[
p has a p̄-nearest point in Y ⊥ and the following

formulae hold

dp(Y ⊥, ϕ) = ‖ϕ|Y |p and PY ⊥(ϕ) = ϕ− Ep(ϕ|Y ).

Proof. For ψ ∈ Y ⊥ we have

‖ϕ− ψ|∗p ≥ ‖(ϕ− ψ)|Y |∗p = ‖ϕ|Y |p,

implying dp(Y ⊥, ϕ) ≥ ‖ϕ|Y |p . If Φ ∈ Ep(ϕ|Y ), then ψ := ϕ− Φ ∈ Y ⊥ and

dp(Y ⊥, ϕ) ≤ ‖ϕ− ψ|∗p = ‖Φ|p = ‖ϕ|Y |p.

Therefore dp(Y ⊥, ϕ) = ‖ϕ|Y |p and ϕ− Ep(ϕ|Y ) ⊂ PY ⊥(ϕ).
If ψ ∈ PY ⊥(ϕ) and Φ := ϕ − ψ, then Φ|Y = ϕ|Y and ‖Φ|p = ‖ϕ − ψ|p =

dp(Y ⊥, ϕ) = ‖ϕ|Y |p, i.e. Φ ∈ Ep(ϕ|Y ), showing that ϕ− PY ⊥(ϕ) ⊂ Ep(ϕ|Y ),
or equivalently, PY ⊥(ϕ) ⊂ ϕ− Ep(ϕ|Y ). �

From these theorems we obtain some uniqueness conditions for the mini-
mization problems we have considered, in terms of the uniqueness of norm-
preserving extensions.

Corollary 2.8. Let (X, p) be a space with asymmetric seminorm and Y a
subspace of X.

(1) If every f ∈ Y [
p has a unique norm preserving extension F ∈ X[

p ,
then the minimization problem (2.2) has a unique solution for every
ϕ ∈ X[

p .
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(2) Every point ϕ ∈ X[
p has a unique p̄-nearest point in Y ⊥ if and only if

every f ∈ Y [
p has a unique norm-preserving extension F ∈ X[

p .

Proof. (1) If every f ∈ Y [
p has a unique norm-preserving extension F ∈ X[

p ,
then for every ϕ ∈ X[

p the set ΠY ⊥p
(ϕ) = ϕ + Ep(ϕ|Y ) contains exactly one

element.
(2) Similarly, PY ⊥(ϕ) = ϕ−Ep(ϕ|Y ) contains exactly one element, provided

every f ∈ Y [
p has exactly one norm-preserving extension F ∈ X[

p .

Conversely, suppose that there exists f ∈ Y [
p having two distinct norm-

preserving extensions F1, F2 ∈ X[
p . Then

PY ⊥(F1) = F1 − Ep(F1|Y ) = F1 − Ep(f) ⊃ {0, F1 − F2}.

�

Remark 2.9. We can not prove the reverse implication in the assertion (1)
of the above corollary. To do this we would need an extension theorem for
(p, p̄)-bounded linear functionals, preserving both p- and p̄-norm, and we are
not aware of such a result. �

Some results connecting the ε-approximations and ε-extensions were ob-
tained by Rezapour [38]. In the next proposition we transpose these results
to the asymmetric case.

Let (X, p) be a space with asymmetric seminorm and Y a subspace of X.
For x ∈ X and ε > 0 let

P εY (x) = {y ∈ Y : p(y − x) ≤ dp(x, Y ) + ε}

and
P̄ εY (x) = {y ∈ Y : p(x− y) ≤ dp(Y, x) + ε}

denote the nonempty sets of ε-p-, respectively ε-p̄-nearest points to x in Y .
For ϕ ∈ X[

p consider the set of ε-solutions of the minimization problem (2.2)

Πε
Y ⊥p

(ϕ) = {ψ ∈ Y ⊥p : ‖ϕ+ ψ|p ≤ γ(ϕ, Y ⊥p ) + ε}

and, finally, denote by

Eεp(f) = {F ∈ X[
p : F |Y = f and ‖F |p ≤ ‖f |p + ε},

the set of ε-extensions of a functional f ∈ Y [
p .

These two sets are related in the following way.

Proposition 2.10. Let (X, p) be a space with asymmetric seminorm, Y a
subspace of X and ϕ ∈ X[

p . Then

Πε
Y ⊥p

(ϕ) = Eεp(ϕ|Y )− ϕ.
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Proof. Indeed, by Theorem 2.6,
ψ ∈ Πε

Y ⊥p
(ϕ) ⇐⇒ ψ ∈ Y ⊥p and ‖ϕ+ ψ|p ≤ γ(ϕ, Y ⊥p ) + ε = ‖ϕ|Y |p + ε

⇐⇒ ϕ+ ψ ∈ Eεp(ϕ|Y ).
�

Working with the annihilator Y ⊥ of the subspace Y in the symmetric dual
X∗ = (X, ps)∗ given by (2.4) and putting

P̄ εY ⊥(ϕ) = {ψ ∈ Y ⊥ : ‖ϕ− ψ|p ≤ dp(ϕ, Y ⊥) + ε},
we have

Proposition 2.11. Let Y be a subspace of a space with asymmetric semi-
norm (X, p), ε > 0, and ϕ ∈ X[

p . Then

P̄ εY (ϕ) = ϕ− Eεp(ϕ|Y ).

Proof. Indeed, by Theorem 2.7,
ψ ∈ P̄ εY ⊥(ϕ) ⇐⇒ ψ ∈ Y ⊥ and ‖ϕ− ψ|p ≤ dp(Y ⊥, ϕ) + ε = ‖ϕ|Y |p + ε

⇐⇒ ϕ− ψ ∈ Eεp(ϕ|Y ).
�
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