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EFFECT OF THE MAGNETIC FIELD AND HEAT GENERATION
ON THE FREE CONVECTION FLOW IN A TALL CAVITY FILLED

WITH A POROUS MEDIUM‡

CORNELIA REVNIC∗, TEODOR GROŞAN† and IOAN POP†

Abstract. A analytical study of the steady magnetohydrodynamics (MFD) free
convection in an tall cavity filled with a fluid-saturated porous medium and with
internal heat generation has been performed. It is considered that the Darcy law
model is used. It is assume that a uniform magnetic field normal to the walls of
the cavity is externally imposed. The values of the governing parameters are as
follows: Hartmann number Ha = 0, 10 and 50, Rayleigh number Ra = 103, and
the aspect ratio a = 0.01. The velocity and temperature profile are determined.
These profiles are presented graphically at the center line of the cavity. It is
found that the analytical solution is in very good agreement with the numerical
solution which is obtained by solving partial differential equations using a finite-
difference method.
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1. INTRODUCTION

In many engineering applications, enclosures with fluid-saturated porous
media are encountered in grain storage, high-performance insulation of build-
ings, geophysical problems, biological tissues, in the thermal insulation of
buildings, in geothermal energy convection, in petroleum reservoirs, etc. These
applications can be found in the recent books and review papers, such as, Nield
and Bejan [1], Ingham and Pop [2], Vafai [3], Bejan et al. [4], etc. Buoyancy
induced flow and heat transfer in enclosures of different geometries and filled
with a fluid-saturated porous medium has been widely studied in literature
using different numerical technique (Manole and Lage, [5]; Goyeau et al., [6];
Saeid and Pop, [7]; Varol et al., [8]). Recent demands in heat transfer engineer-
ing have requested researchers to develop various new types of heat transfer
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Fig. 1. Physical model and coordinates system.

equipments with superior performance, especially compact and light-weight
ones. Increasing the need for small-size units, focuses have been cast on the
effects of the interaction between the fluid flow in a cavity and a magnetic field
which usually affects the flow development. This type of treatment is com-
pletely justified in many practical problems of the magnetohydrodynamics
(MHD) generators. There have recently been published a number of research
papers which investigate MHD flows of conducting fluids in cavities.

This paper presents an analytical solution of the effect of a magnetic field
on the steady free convection in a tall cavity filled with a porous medium
saturated with an electrically conducting fluid using a semi-analytical method
proposed by Joshi et al., [9]. This analytical solution is compared with the
numerical solution obtained in a previous paper by Groşan et al., [10]. This
type of problem arises in geophysics when a fluid saturates the earth’s mantle
in the presence of a geomagnetic field.

2. BASIC EQUATION

The conservation equations for mass, momentum under the Darcy approx-
imation, energy and electric transfer are give by

(1) ∇.V = 0,
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(2) V = K
µ (−∇p+ ρg + I×B) ,

(3) (V.∇)T = αm∇2T + q′′′0
ρ0cp

,

(4) ∇.I = 0,

(5) I = σ (−∇φ+ V×B) ,

(6) ρ = ρ0[1− β(T − T0)],
where V is the fluid velocity vector, T is the fluid temperature, p is the pres-
sure, B is the external magnetic field, I is the electric current, φ is the electric
potential, g is the gravitational acceleration vector, K is the permeability of
the porous medium, αm is the effective thermal diffusivity, ρ is the density,
µ is the dynamic viscosity, β is the coefficient of thermal expansion, cp is the
specific heat at constant pressure, σ is the electrical conductivity, ρ0 is the
reference density and −∇φ is the associated electric field. As discussed by
Garandet et al. [11], Eqs. (4) and (5) reduce to ∇2φ = 0. The unique solution
is ∇φ = 0 since there is always an electrically insulating boundary around
the enclosure. Thus, it follows that the electric field vanishes everywhere (see,
Alchaar et al., [12]).

Eliminating the pressure term in Eq. (2) in the usual way, the governing
equations (1) to (3) can be written as

(7) ∂u
∂x + ∂v

∂y = 0,

∂u
∂y −

∂v
∂x = −gKβ

υ
∂T
∂x + σKB2

0
µ

(
−∂u
∂y sin2 ϕ+ 2∂v∂y sinϕ cosϕ+ ∂v

∂x cos2 ϕ
)
,(8)

(9) u∂T∂x + v ∂T∂y = αm
(
∂2T
∂x2 + ∂2T

∂y2

)
+ q′′′0

ρcp
,

subject to the boundary conditions

u = 0, T = T0 at x = 0 and x = l, 0 ≤ y ≤ h,(10)
v = 0, ∂T∂y = 0 at y = 0 and y = h, 0 ≤ x ≤ l.

Using non-dimensional variables

(11) X = x
l , Y = y

h , U = h
αm
u, V = l

αm
v, θ = (T−T0)

(q′′′l2/k) ,

Eqs. (8) and (9) can be written as
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(12)
∂2ψ
∂x2 + a2 ∂2ψ

∂y2 = −Ra ∂θ∂x −Ha2
(
a2 ∂2ψ

∂y2 sin2 ϕ+ 2a ∂2ψ
∂x∂y sinϕ cosϕ+ ∂2ψ

∂x2 cos2 ϕ
)
,

(13) ∂2θ
∂x2 + a2 ∂2θ

∂y2 + 1 = a
(
∂ψ
∂y

∂ψ
∂x −

∂ψ
∂x

∂θ
∂y

)
,

where the stream function ψ is defined as U = ∂ψ/∂Y and V = −∂ψ/∂X.
We consider a long cavity with h� l, with heat generation. In this case, it

can be assumed that in the central region, the flow is only in vertical direction,
that is, u = 0, υ = υ(x) and ψ = ψ(x). Under this assumption, Eqs. (12) and
(13) reduce to

(14) Ad2ψ
αx2 = −Ra ∂θ∂x ,

(15) ∂2θ
∂x2 + a2 ∂2θ

∂y2 + 1 = −adψ
dx

∂ψ
∂y ,

where

A = 1 + Ha2 cos2 ϕ.

The left hand side of Eq. (14) is function of x only. Therefore, the right
hand side term Ra ∂θ/∂x must be a functional x only. Thus,

∂θ
∂x = h(x)

and

(16) θ =
∫
h(x)dx+ g(y) = f(x) + g(y).

Substituting (16) into (14) and (15), we get

(17) Ad2ψ
dx2 = −Raf ′(x),

(18) − ag′(y)dψ
dx = f ′′(x) + a2g′′(y) + 1.

Differentiating these equations with respect to x, we obtain

(19) Ad3ψ
dx3 = −Raf ′′,

(20) − ag′(y)d2ψ
dx2 = f ′′′.
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Since in this problem v = −dψ
dx is not constant on the vertical walls of the

cavity it implies that d2ψ
dx2 6= 0 for all values of x. Hence, from Eq. (20), one

can write

−g′(y) = f ′′′(x)

a
d2ψ
dx2

.

The left hand side of this equation is a functional of y only, while the right
hand side is a function of x only. Therefore, we must have
(21) g′(y) = γ,

where γ is a constant. It can be conducted from Eqs. (16) and (21) that
the temperature gradient in the vertical direction is constant. Using (21) and
(18), Eqs. (19) reduced to

(22) Ad3ψ
dx3 − aRaγ dψ

dx − Ra = 0.
We define

(23) ψ1 = ψ
Ra , γ1 = γRa, v1 = − v

Ra

and Eq. (22) become

(24) Ad2v1
dx2 − aγ1v1 − 1 = 0,

the general solution of this equation is of the from

(25) v1(x) = c1emx + c2e−mx − 1
Am2 ,

where c1 and c2 are constants of integration and m is given by

m =
(γ1
A

)1/2 =
(
γaRa
A

)1/2
.

It should be noted that in the present problem v2(0) 6= 0 and v1(1) 6= 0 so
that we have to use other conditions to determine the constants c1 and c2. A
condition is the conservation of mass

(26)
∫ 1

0
v1dx = 0

which gives

(27) ψ1(0) = ψ1(1) 6= 0
if (23) is used and the fact that ψ = ψ(x) is not valid near the boundary of
the cavity. Using (27) it gives
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(28) c1 (em − 1)− c2
(
e−m − 1

)
= 1

Am .

Using the symmetry of the velocity profile about the centerline, some of the
constants, can be delimited, we have

v1(x) = v1(1− x)
which gives

(29) c1em = c2.

Solving the system of Eqs. (28) and (29) we obtain the constant c1 and c1:

c1 = e−m

2mA(1−e−m) , c2 = 1
2mA(1−e−m) .

In order to determine θ we use Eqs. (16), (17), (21) and (23). Thus, from
these equations, we have

(30) Ad2ψ
dx2 = −Raf ′(x) or −Adv1

dx = f ′(x)
which gives

f(x) = Av1 + δ1,

where δ1 is a constant. Then, from (21), we get
g(y) = γy + δ2,

where δ2 is a constant. Therefore, θ given by (16), can be written as

θ(x, y) = −Av1 + Am2

aRa y + δ,

where δ is a constant. Substitute v1 from (25), we get

(31) θ(x, y) = −A(c1emx + c1e−mx) + Am2

aRa y + 1
m2 + δ.

Since ψ = ψ(x) is not valid near the boundaries of the cavity, the expression
(33) for θ cannot satisfy all the boundary conditions. The value of δ can be
calculated in terms of m by substituting θ(x, y) = 0 at the bottom corner of
the cavity x = 0 and y = 0 in Eq. (33). This gives

δ = A(c1 + c2)− 1
m2 .

In this analysis, the value of m, which depend on the vertical temperature
gradient γ, remains undetermined. It can be, however, determined from the
fact that under natural convection, the maximum temperature attained must
be lower than maximum temperature in conduction region, that is

(32) ∂2θ
∂x2 + ∂2θ

∂y2 + 1 = 0,

in the central of the cavity the boundary conditions is
(33) θ = 0 at x = 0 and x = 1.
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Solution at this problem is given by

θ = x(1−x)
2 .

We notice that the temperature is maximum at x = 1/2 and the maximum
value θmax = 1/8

θ = 1
2

[
−
(
x− 1

2

)2
+ 1

4

]
.

Similarly, the temperature cannot be less than the wall temperature, i.e.
θmin = 0. Therefore, substituting θmax = 1/8 in (33), we get

1
8 = −A(c1emx + c2e−mx)max + Am2

a2Ra −A(c1 + c2).

This expression gives the value of m as a function of a2Ra and A.

1
8 = 1

2mA(1−e−m)

[
−2e−m/2 + e−m

]
+ Am2

a2Ra

3. RESULTS AND DISCUSSIONS

The obtained analytical solutions in the centerline on the cavity is shown
in Figs. 2 to 5 for the temperature and velocity profiles. The values of the
parameters considered are the Rayleigh number Ra = 103, Hartmann number
Ha = 0, 10, 50 and aspect ration a = 0.01. These solution is shown by circle.
In additions the numerical results are included in these figures, which are
shown by full line. It is seen that there is a very good agreement between
the analytical and numerical solutions obtained. Therefore, we are confident
that the present analytical solution is accurate. We notice that the effect
of the Hartmann number is not significant for the temperature profile, while
it’s effect is more significative for the velocity profiles. This is because the
magnetic term thus not directly enter in the energy equation. Figs. 3 to 5
shows that the vertical component of the velocity is positive in the center of
the cavity and negative close to the vertical walls. This is because of the
conservation of mass, Eq. (26).

4. CONCLUSION

In this paper analytical expression are obtained to describe the free con-
vection in a tall cavity filled with the porous medium and with an applied
magnetic field and volumetric heat generation. Because of the volumetric
generation, the central region is of high temperature, and therefore the flow is
driven upwards due to buoyancy, in the central part of the cavity and driven
downwards in the relatively colder boundary regions.
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Fig. 2. Temperature profiles for Ra = 1000 and Ha = 0 at the centerline of the cavity
(y = 1/2).
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Fig. 3. Velocity profiles for Ra = 1000 and Ha = 0 at the centerline of the cavity (y = 1/2).
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Fig. 4. Velocity profiles for Ra = 1000 and Ha = 10 at the centerline of the cavity (y = 1/2).
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Fig. 5. Velocity profiles for Ra = 1000 and Ha = 50 at the centerline of the cavity (y = 1/2).
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