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Abstract. We are concerned with the problem of approximating a solution of
an operator equation using Newton’s method. Recently in the elegant work
by Ferreira and Svaiter [6] a semilocal convergence analysis was provided which
makes clear the relationship of the majorant function with the operator involved.
However these results cannot provide information about the local convergence
of Newton’s method in their present form. Here we have rectified this problem
by using two flexible majorant functions. The radius of convergence is also
found. Finally, under the same computational cost, we show that our radius of
convergence is larger, and the error estimates on the distances involved is finer
than the corresponding ones [1], [11]–[13].
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
x? of equation

(1.1) F (x) = 0,

where F is a continuously Fréchet–differentiable operator defined on a convex
subset D of a Banach space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time–invariant system is driven by the equation
ẋ = Q(x), for some suitable operator Q, where x is the state. Then the equi-
librium states are determined by solving equation (1.1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
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(single algebraic equations with single unknowns). Excpet in special cases,
the most commonly used solution methods are iterative–when starting from
one or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

The most popular method for generating a sequence {xn} approximating
x? is undoubtedly Newton’s method:

(1.2) x0 ∈ D, xn+1 = xn − F ′(xn)−1 F (xn) (n ≥ 0).

Here F ′(x) ∈ L(X ,Y), the space of bounded linear operators from X into Y,
denotes the Fréchet–derivative of operator F [4], [8].

There is an extensive literature on local as well as semilocal convergence
theorems for Newton’s method, see, e.g. [1]–[4], and the references there.

In particuar, we are motivated by the elegant work of Ferreira and Svaiter
[6] where a semilocal convergence was provided for Kantorovich’s theorem [8]
which makes clear the relationship of the majorant function and operator F .
However the main result (see Theorem 2 in [6]) cannot provide in its present
form information about the local convergence of Newton’s method. Here, we
rectify this problem. We introduce two flexible majorant functions to provide
a local convergence for Newton’s method (1.2). The radius of convergence is
also given.

Finally, under the same computational cost we show that for special choices
of the majorants functions involved, our radius of convergence is larger, and
the error estimates on the distances involved is finer than the corresponding
ones [1], [11]–[13].

2. LOCAL CONVERGENCE ANALYSIS OF NEWTON’S METHOD (1.2)

We need a result from convex analysis [9], [10]:

Proposition 2.1. Let I ⊂ (−∞,+∞) be an interval, and g : I −→
(−∞,+∞) be convex.

(1) For any s0 ∈ int (I), the correspondence s −→ g(s0)−g(s)
s0−s , s ∈ I, s 6= s0,

is increasing, and there exist in (−∞,+∞)

D−g(s0) = lim
s→s−0

g(s0)−g(s)
s0−s = sup

s<s0

g(s0)−g(s)
s0−s .

(2) If s, v, t ∈ I, s < t, and s ≤ t ≤ v, then

g(t)− g(s) ≤ (g(v)− g(s)) t−s
v−s .

We now state a portion of a theorem (see Theorem 2 in [6]) due to Ferreira
and Svaiter, needed for what follows:
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Theorem 2.2. Let F : D ⊆ X −→ Y be a continuous operator, contin-
uously Fréchet–differentiable on int (D). Take x0 ∈ int (D) with F ′(x0)−1 ∈
L(Y,X ). Suppose there exist R > 0, and a continuously differentiable function
f : [0, R) −→ (−∞,+∞), such that U(x0, R) = {x ∈ X , : ‖ x − x0 ‖< R}
⊂ D, and

H1 ‖ F ′(x0)−1 (F ′(y)−F ′(x)) ‖≤ f ′(‖ y−x ‖+‖ x−x0 ‖)−f ′(‖ x−x0 ‖),
for x, y ∈ U(x0, R), ‖ x− x0 ‖ + ‖ y − x ‖< R,

H2 ‖ F ′(x0)−1 F (x0) ‖≤ f(0),
H3 f(0) > 0,
H4 f ′(0) = −1,
H5 f ′ is convex and strictly increasing and f(t) = 0 for some t ∈ (0, R).

Then f has a smallest zero t? in (0, R), the sequences generated by Newton’s
method (1.2) for solving f(t) = 0, and F (x) = 0 with starting point t0 = 0 and
x0, respectively,

tn+1 = tn − f ′(tn)−1 f(tn), xn+1 = xn − F ′(xn)−1 F (xn), n ≥ 0

are well defined, {tn} is strictly increasing, is contained in [0, t?), and con-
verges to t?, {xn} is contained in U(x0, t?), and converges to a point x? in
U(x0, t?), which is the unique zero of F in U(x0, t?).

Theorem 2.2 provides a semilocal convergence result for Newton’s method,
and cannot give us information about the local convergence of Newton’s
method in this form. Indeed for e.g. when x0 = x?, hypotheses (H2) and
(H3) are contradicting each other. In what follows we rectify this problem.

We state the main local convergence result for Newton’s method (1.2):

Theorem 2.3. Let F : D ⊆ X −→ Y be a continuous operator, continu-
ously Fréchet–differentiable on int (D). Suppose that there exist:
x? ∈ int (D) with F ′(x?)−1 ∈ L(Y,X ), and F (x?) = 0;
R > 0, and continuously differentiable function f0, and f : [0, R) −→
(−∞,+∞), such that U(x?, R) ⊂ D,
and

(2.1) ‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖≤ f ′0(‖ x− x? ‖)− f ′0(0),

(2.2) ‖ F ′(x?)−1 (F ′(y)−F ′(x)) ‖≤ f ′(‖ y−x ‖ + ‖ x−x? ‖)−f ′(‖ x−x? ‖),
for x, y ∈ U(x?, R), and ‖ x− x? ‖ + ‖ y − x ‖< R;
functions f ′0 and f ′ are convex and strictly increasing with

(2.3) f ′0(0) = f ′(0) = −1,

(2.4) f ′0(t) ≤ f ′(t) ≤ 0, t ∈ [0, R];

let x, y ∈ U(x?, R), and 0 ≤ t < v < R, then for all x ∈ U(x?, R), ‖ y − x ‖≤
v − t, define function rf0, f

: [0, R)4 −→ [0,+∞) by

(2.5) rf0, f
= rf0, f

(t, v, ‖ y − x ‖, ‖ x− x? ‖) = − e(t,v) ‖y−x‖
(v−t)2 f ′0(‖x−x?‖) ,
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and set

(2.6) t? = sup{t ∈ [0, R] : rf0, f
≤ 1},

where

(2.7) e(t, v) = f(v)− f(t)− f ′(t) (v − t).
Then, sequence {xn} generated by Newton’s method (1.2), is well defined, re-
mains in U(x?, t?) for all n ≥ 0, and converges to x? Q–linearly, so that

(2.8) ‖ xn+1 − x? ‖≤ 1
2 ‖ xn − x

? ‖,
provided that x0 ∈ U(x?, t?).

Moreover, if

(2.9) f ′0(t?) < 0,

then the following estimate holds for all n ≥ 0

(2.10) ‖ xn+1 − x? ‖≤ D−f ′(t?)
−2 f ′0(t?)

‖ xn − x? ‖2 .

Furthermore, x? is the unique zero of F in U(x?, t?).

From now one we assume hypotheses of Theorem 2.3 hold, with the excep-
tion of (2.9), which will be considered to hold only when explicitly stated.

We shall show Theorem 2.3 through a series of lemmas:

Lemma 2.4. If x ∈ U(x?, t), t ∈ [0, t?), then

F ′(x)−1 ∈ L(Y,X ),

and

(2.11) ‖ F ′(x)−1 F ′(x?) ‖≤ − 1
f ′0(‖x−x?‖) ≤ −

1
f ′(t) .

Proof. Let x ∈ U(x?, t), t ∈ [0, t?).
Using hypotheses (2.1), (2.3), and (2.4), we obtain in turn

(2.12)
‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖ ≤ f ′0(‖ x− x? ‖)− f ′0(0)

≤ f ′0(‖ x− x? ‖) + 1
≤ f ′0(t) + 1 < 1.

It follows from (2.12), and the Banach Lemma on invertible operators [4], [8]
that F ′(x)−1 ∈ L(Y,X ), so that (2.11) holds true.

That completes the proof of Lemma 2.4. �

Lemma 2.5. Let x, y ∈ U(x?, R), and 0 ≤ t < v < R.
If x ∈ U(x?, t), and ‖ y − x ‖≤ v − t, then for

E(z, w) = F (w)− F (z)− F ′(z) (w − z), z ∈ U(x?, t), w ∈ D,
we have the following estimates

(2.13) ‖ F ′(x?)−1 E(x, y) ‖≤ e(t, v) ‖y−x‖
2

(v−t)2 ,
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and

(2.14) rf0, f
≤ 1,

where funtion rf0, f
is given by (2.5).

Proof. Using the convexity of f ′, hypothesis (2.2), and the definition of
operator E we obtain in turn:

‖ F ′(x?)−1E(x, y) ‖≤(2.15)

≤
∫ 1

0
‖ F ′(x?)−1

(
F ′(x+ θ (y − x))− F ′(x)

)
‖ ‖ y − x ‖ dθ

≤
∫ 1

0

(
f ′(‖ x− x? ‖ +θ ‖ y − x ‖)− f ′(‖ x− x? ‖)

)
‖ y − x ‖ dθ

≤
∫ 1

0

(
f ′(t+ θ (v − t))− f ′(t)

)
‖y−x‖
v−t dθ,

which implies estimates (2.13).
In view of hypothesis (2.4), we get

(2.16)

∫ 1

0

(
f ′(t+ θ (v − t))− f ′(t)

)
dθ

−f ′0(t)
≤ 1

which together with (2.5) imply (2.14). That completes the proof of Lemma
2.5. �

As in [6] let us denote by ηf0, f
and NF the maps:

(2.17)
ηf0, f : [0, t?)× (t, R) −→ (−∞,+∞)

(t, v) −→ t− e(t,v)
f ′0(t)

,

and

(2.18)
NF : U(x?, t?) −→ Y

x −→ x− F ′(x)−1 F (x).

According to (2.4) and Lemma 2.4, we have: f ′0(t) 6= 0, F ′(x)−1 ∈ L(Y,X )
respectively.

Let x ∈ U(x?, t?), then NF (x) may not belong to U(x?, t?) or even not
belong in the domain of F . That is, we can only guarantee, on U(x?, t?), well
definedness of only the first iteration. Therefore, we need additional results to
guarantee that Newton iterations can be repeated indefinitely.

Let us define subsets of U(x?, t?) on which Newton’s method (2.18) is “well
behaved”:

(2.19)
K(t) = K(t, v) = {x ∈ U(x?, t), t ∈ [0, t?], v ∈ (t, R),
y ∈ U(x, v − t) : ‖ F ′(y)−1E(x, y) ‖≤ rf0,f ‖ x− y ‖},
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and

(2.20) K = ∪t∈[0,t?]K(t).

Lemma 2.6. If t ∈ [0, t?), v ∈ (t, R), then the following hold true:

K(t) ⊂ U(x?, t?),

and
NF (K(t)) ⊂ K(ηf0,f (t)).

Proof. Simply replace x0 by x? in the proof of Lemma 8 in [6] (see also
Proposition 4 in [6]). That completes the proof of Lemma 2.6. �

In view of (1.2) and (2.18) we have:

(2.21) xn+1 = NF (xn) (n ≥ 0).

Proof of Theorem 2.3. According to Lemmas 2.4–2.6, it is only left to show
xn ∈ U(x?, t?) (n ≥ 1), lim

n→∞
xn = x?, so that estimates (2.8) and (2.10) hold

true for all n ≥ 0.
By hypothesis x0 ∈ U(x?, t?). Let us assume xk ∈ U(x?, t?) for all k ≤ n.

We shall show xk+1 ∈ U(x?, t?). Using (2.21), and Lemma 2.5 for y = x?,
x = xn, we get

(2.22) ‖ xk+1 − x? ‖≤‖ xk − x? ‖< t?,

which show xk+1 ∈ U(x?, t?), and lim
k→∞

xk = x?.

The proof of estimates (2.8) and (2.10) is given as in [6] with function f ′0
replacing f ′ in the denominator of the estimates involved.

Finally, to show uniqueness in U(x?, t?), let y? be a zero of F in U(x?, t?).
Define linear operator M by

(2.23) M =

∫ 1

0
F ′(x? + θ (y? − x?)) dθ,

Using (2.1), and the estimate (2.12) for x? + θ (y? − x?) ∈ U(x?, t?), replacing
x, we conclude M−1 exists. It then follows from the identity

(2.24) F (y?)− F (x?) =M (y? − x?),
that x? = y?. That completes the proof of Theorem 2.3.

3. APPLICATIONS

Example 3.1. Let us assume there exist L > 0 such that the Lipschitz
condition
(3.1)
‖ F ′(x?)−1 (F ′(y)− F ′(x)) ‖≤ L ‖ x− y ‖ holds for all x, y ∈ U(x0, R) ⊆ D.

Define scalar majorant function f : [0, R] −→ (−∞,+∞) by

(3.2) f(t) = L
2 t

2 − t+ β for some β ≥ 0,
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and set

(3.3) f0(t) = f(t) t ∈ [0, R].

It then follows from (2.16) that we can set:

(3.4) t?R = R = 2
3L ,

which is the radius of convergence obtained by Rheinboldt [11], [4].
It follows from (3.1) that there exists L0 > 0 such that:

(3.5) ‖ F ′(x?)−1 (F ′(x)−F ′(x?)) ‖≤ L0 ‖ x− x? ‖, for all x ∈ U(x0, R).

Clearly

(3.6) L0 ≤ L
holds and L

L0
can be arbitrarily large [2]–[4].

Let us define function f0 by

(3.7) f0(t) = L0
2 t2 − t+ β.

It then follows from (2.16) that we can set:

(3.8) t?A = R = 2
2L0+L .

By comparing (3.4) with (3.8) we conclude:

(3.9) t?R ≤ t?A.
Note that if strict inequality holds in (3.6), then so does in (3.9).

Example 3.2. Let f : [0, R) −→ (−∞,+∞) be a twice continuously dif-
ferentiable function with f ′ convex. Then F satisfies (2.2) if and only if:
(3.10)
‖ F ′(x?)−1 F ′′(x) ‖≤ f ′′(‖ x− x? ‖) for all x ∈ D, such that x ∈ U(x?, R)

(see Lemma 14 in [6] or [13]).
Let us define function f on [0, R) by

(3.11) f(t) = γ t2

1−γ t − t+ β.

where R < 1
γ , for some γ > 0.

If for example F is an analytic operator, then (3.10) is satisfied for

(3.12) γ? = sup
k≥2
‖ F ′(x?)−1F (k)(x?)

k! ‖
1

k−1 .

Smale [12], and Wang [13] have used (3.11) to provided a convergence analysis
for Newton’s method (1.2).

In particular Wang [13] showed convergence for F being only twice Fréchet
continuously differentiable for γ satisfying

(3.13) γ? ≤ γ.
We have also used (3.11) to provide a convergence analysis for the Secant
method [5] (see also [4]).
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Let us also define function f0 by

(3.14) f0(t) = f(t) t ∈ [0, R).

By solving (2.16) we obtain for analytic operators F Smale’s radius of conver-
gence [12]:

(3.15) t?S = 5−
√

13
6 γ? ,

and for twice Fréchet continuously differentiable operator F Wang’s [13]:

(3.16) t?W = 5−
√

13
6 γ .

In what follows we shall show that we can enlarge radii given by (3.15) and
(3.16).

We can see that for function f given by (3.11), condition (3.10) or equiva-
lently (2.2) imply that there exists γ0 > 0 satisfying

(3.17) γ0 ≤ γ,
so that function f0 : [0, 1

γ0
) −→ (−∞,+∞) satisfies condition (2.1) for R ∈

[0, 1
γ0

).

Note also that γ
γ0

can be arbitrarily large [2]–[4]. It follows by (3.17) that

there exists a ∈ [0, 1] such that

(3.18) γ0 = a γ.

Set

(3.19) b = 1− a,
and define scalar polynomial Pa by

(3.20) Pa(t) = 3 a2 t3 + a (6 b− a) t2 + (3 b2 − 2 a b− 1) t− b2.
By the definition of polynomial Pa and for fixed a, we get

(3.21) Pa(0) = −b2 ≤ 0, and Pa(1) = 1.

Using (3.21) and the intermediate value theorem we conclude that there exists
ta ∈ [0, 1) such that Pa(ta) = 0. Let us denote by ta the minimal number in
[0, 1) satisfying Pa(ta) = 0.

Define

(3.22) t?a = 1−ta
γ .

In particular for a = 1, t1 = 1+
√

13
6 , and consequently

(3.23) t?a = 5−
√

13
6 γ = t?W .

It is simple algebra to show that for all a ∈ [0, 1], Pa(t1) ≥ 0, which implies

(3.24) ta ≤ t1.
and

(3.25) t?1 ≤ t?a.
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We also note that strict inequality holds in (3.24), and (3.25) for a 6= 1.
As an example, let a = 1

2 . Then we obtain

t1/2 = .65185 < t1 = 1+
√

13
6 = .76759,

and

(3.26) t?1 = .23241
γ < .34815

γ = t?1/2.

Finally note that clearly if strict inequality holds in (2.4), i.e., in (3.6) or
(3.17), then our estimates on ‖ xn+1 − x? ‖ (n ≥ 0) are finer (more precise)
than the corresponding ones in [1], [11], [13] (see e.g. (2.10)).

These results are also obtained under the same computational cost since in
practice the evaluation of L (or γ) requires that L0 (or γ0).

Remark 3.3. As noted in [1], [5], [6], [7], [10], [12] the local results obtained
here can be used for projection method such us Arnold’s, the generalized min-
imum residual method (GMRES), the generalized conjugate residual method
(GCR), for combined Newton/finite projection methods, and in connection
with the mesh independence principle to develop the cheapest and most effi-
cient mesh refinement strategies.

Remark 3.4. The local results obtained can also be used to solve equation
of the form F (x) = 0, where F ′ satisfies the autonomous differential equation
[4], [8]:

(3.27) F ′(x) = T (F (x)),

where T : Y −→ X is a known continuous operator.
Since F ′(x?) = T (F (x?)) = T (0), we can apply our results without actually

knowing the solution of x? of equation F (x) = 0.
As an example, let X = Y = (−∞,+∞), D = U(0, 1), and define function

F on D by

(3.28) F (x) = ex − 1.

Then, for x? = 0, we can set T (x) = x+ 1 in (3.27).
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