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NEWTON-TIKHONOV METHOD FOR ILL-POSED EQUATIONS
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Abstract. We present a new semilocal convergence analysis of Newton-
Tikhonov methods for solving ill-posed operator equations in a Hilbert space
setting. Using more precise majorizing sequences and under the same computa-
tional cost as in earlier studies such as [13]–[20], we provide: weaker sufficient
convergence criteria; tighter error estimates on the distances involved and an at
least as precise information on the location of the solution. Applications include
Hammertein nonlinear integral equations.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
of non-linear ill-posed equation

(1.1) A(x) = y

where A is a nonlinear operator defined on a subset D = D(A) of a Hilbert
space X, and with range R(A) in a Hilbert space Y. Equation (1.1) is ill-
posed in the sense that the solution of (1.1) does not depend continuously
on the data y. Many regularization methods such as Tikhonov regularization
[9, 10, 23, 25, 27, 32], Gauss-Newton method [6] and other methods [21], [22]
have been used to approximate solution of equation (1.1).

Many problems from computational sciences and other disciplines can be
brought in a form similar to equation (1.1) using mathematical modelling
[1], [5], [7], [8], [29], [30]. The solutions of these equations can rarely be
found in closed form. That is why most solution methods for these equations
are iterative. The study about convergence matter of iterative procedures is
usually based on two types: semi-local and local convergence analysis. The
semi-local convergence matter is, based on the information around an initial
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point, to give conditions ensuring the convergence of the iterative procedure,
while the local one is, based on the information around a solution, to find
estimates of the radii of convergence balls.

George and collaborators (see [13]–[20]) solved equation (1.1) for the special
case when A is a Hammerstein-type operator. A Hammerstein-type operator
is of the form A = MF, where F : D(F ) ⊂ X → Z is a nonlinear and
M : Z → Y is a bounded linear operator with X,Y and Z are Hilbert spaces.
Hence, (1.1) becomes

(1.2) MF (x) = y.

In particular George and Kunhanandan [16] assumed that a solution x∗ ∈
D(F ) of (1.2) satisfies

(1.3) ‖F (x̂)− F (x0)‖ = min{‖F (x)− F (x0)‖ : MF (x) = y, x ∈ D(F )},

and yδ ∈ Y are the available noisy data such that

(1.4) ‖y − yδ‖ ≤ δ.

Then, for fixed α > 0, δ > 0, the Newton-Tikhonov (NT) method defined
by

(1.5) xδn+1,α = xδn,α − F ′(xδn,α)−1(F (xδn,α)− zδα), xδ0,α = x0,

where zδα is an approximation of the solution of the equation M(z) = yδ (see
Section 5) was used to generate a sequence {xδn,α} converging quadratically to

a solution xδα of the equation

(1.6) F (x) = zδα

provided that certain Kantrovich-type criteria are satisfied.
In the present paper we expand the applicability of (NT) by using more

precise majorizing sequence for {xδn,α} than the ones given in [17]. This way
we provide a semilocal convergence analysis for (NT) with the following ad-
vantages over the work in [16] under the same computational cost:

(a) Weaker sufficient convergence criteria;
(b) Tighter error estimates on the distances ‖xδn+1,α − xδn,α‖ and

(c) An at least as precise information on the location of the solution.

These advantages are obtained, since we use the more precise center-Lipschitz
condition instead of the Lipschitz condition for the computation of the upper
bounds on the norms ‖F ′(xδn,α)−1‖ (see (C3) and (C4) in Section 3). We also
study the semilocal convergence of the simplified Newton-Tikhonov method
(SNT) defined by

(1.7) xδn+1,α = xδn,α − F ′(xδ0,α)−1(F (xδn,α)− zδα), xδ0,α = x0.

(SNT) method is used as predictor for (NT) method since the former converges
under weaker sufficient convergence criteria than the latter.
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The paper is organized as follows. Section 2 contains results on scalar
sequences that are majorizing for (NT). Sections 3 and 4 contain respectively,
the semilocal convergence of (NT) and (SNT). The applications are given in
the concluding Section 5.

2. MAJORIZING SEQUENCES

We present auxiliary results on scalar sequences which shall be shown to be
majorizing for {xδn,α} in Section 3.

Definition 2.1. Let L0 > 0, L > 0, b > 0 and n > 0. Define scalar se-
quences {rδn,α}, {sδn,α}, {tδn,α} by

rδ0,α = 0, rδ1,α = r, rδ2,α = rδ1,α +
3bL0(rδ1,α − rδ0,α)2

2(1− bL0rδ1,α)
,

(2.8) rδn+2,α = rδn+1,α +
3bL0(rδn+1,α − rδn,α)2

2(1− bL0rδn+1,α)
, ∀n = 1, 2, . . . ,

(2.9)

sδ0,α = 0, sδ1,α = r, sδn+2,α = sδn+1,α +
3bL(sδn+1,α − sδn,α)2

2(1− bL0rδn+1,α)
, ∀n = 0, 1, 2, . . . ,

and
(2.10)

tδ0,α = 0, tδ1,α = r, tδn+2,α = tδn+1,α +
3bL(tδn+1,α − tδn,α)2

2(1− bLtδn+1,α)
, ∀n = 0, 1, 2, . . . .

Then, using a simple inductive argument we obtain the following result
where we compare the three scalar sequences.

Proposition 2.2. [1], [3]–[5] Suppose that L0 ≤ L and

(2.11) tδn+1,α <
1
bL , ∀n = 0, 1, 2, . . . .

Then, the sequences {rδn,α}, {sδn,α} and {tδn,α} are well defined, increasing and
converge to their unique least upper bounds r∗, s∗, t∗ which satisfy for γ =

6L

3L+
√

9L2+24L0L
,

(2.12) r ≤ r∗ ≤ s∗ ≤ t∗ ≤ 1
bL

r∗ ≤ r̄∗ = r + bL0r2

2(1−γ)(1−bL0r)
, s∗ ≤ s̄∗ = r

1−γ and t∗ ≤ t̄∗ ≤ 2r. Moreover, the

following estimates hold for each n = 1, 2, . . .

(2.13) rδn,α ≤ sδn,α ≤ tδn,α,
and

(2.14) rδn+1,α − rδn,α ≤ sδn+1,α − sδn,α ≤ tδn+1,α − tδn,α.
Further more strict inequality holds in (2.13) and (2.14) if L0 < L.
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Remark 2.3. It follows from (2.12)–(2.14) that if L0 < L sequence {tδn,α}
is the least tight. This sequence is a majorizing for {xδn,α} (cf. [17, Theorem
3.3]).

Next we present results respectively for {tδn,α}, {sδn,α}, {rδn,α}.

Lemma 2.4. [1, 4] Suppose that

(2.15) h = 4Lbr ≤ 1.

Then, sequence {tδn,α} is increasing convergent to t∗. The convergence is linear
if h = 1 and quadratic if h < 1.

Lemma 2.5. [3, Lemma 2.1] Suppose that

(2.16) h1 = b
4

(
3L+ 4L0 +

√
9L2 + 24L0L

)
r ≤ 1.

Then, {sδn,α} is increasing convergent to s∗. The convergence is linear if h1 = 1
and quadratic if h1 < 1.

Lemma 2.6. [4] Suppose that

(2.17) h2 = b
4

(
4L0 +

√
3L0L+ 8L2

0 +
√

3L0L
)
r ≤ 1.

Then, {rδn,α} is increasing convergent to r∗. The convergence is linear if h2 = 1
and quadratic if h2 < 1.

We also have the following generalization of Lemma 2.6.

Lemma 2.7. [4] Suppose that there exists a minimum integer N > 1 such
that rδi,α(i = 0, 1, . . . , N − 1) given by (2.14) are well-defined,

(2.18) rδi,α < rδi+1,α <
1
bL0

, i = 0, 1, . . . , N − 2.

Then, the following assertions hold

(2.19) bL0r
δ
N,α < 1,

(2.20) rδN,α ≤ 1
bL0

(1− (1− bL0)rδN−1,αγ)

and

(2.21) γN−1 =
3L(rδN+1,α − rδN,α)

2(1− bL0rδN+1,α)
≤ γ ≤ 1−

bL0(rδN+1,α − rδN,α)

1− bL0rδN,α
.

Remark 2.8. (a) Lemma 2.7 reduces to Lemma 2.6 if N = 2 (see also
Remark 2.5 in [4]).

(b) It follows from (2.15), (2.16), (2.17) that

(2.22) h ≤ 1 =⇒ h1 ≤ 1 =⇒ h2 ≤ 1

but not necessarily vice versa unless if L0 = L. Moreover, we have that

(2.23) h4
h →

1
4 ,

h2
h → 0 and h2

h1
→ 0 as L0

L → 0.
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Estimates (2.23) show by how many times the applicability of the method is
expanded if weaker h1 or h2 are used instead of h.

(c) Numerical examples where L0 < L can be found in [1]–[5].

3. SEMILOCAL CONVERGENCE OF (NT)

We present the semi-local convergence of {xδn,α} in this section. Let U(x, r)

and U(x, r) stand, respectively, for the open and closed ball in X with center x
and radius r > 0. Let L(X,Y ) stand for the space of bounded linear operators
from X into Y. We assume throughout this section that the following (C)
conditions hold:

(C1) F : D(F ) ⊆ X → Y is Frèchet differentiable
(C2) There exists x0 ∈ D(F ) such that F ′(x0)−1 ∈ L(Y,X) and

‖F ′(x0)−1‖ ≤ b

(C3) There exists L0 > 0 such that F ′ satisfies the center-Lipschitz condi-
tions

‖F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖
holds for all x ∈ D(F ).

(C4) There exists L > 0 such that F ′ satisfies the Lipschitz condition

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖

holds for all x and y in D(F ).
(C5) ‖F ′(x0)−1(F (x0)− zδα)‖ ≤ r
(C6) h2 = bL2r ≤ 1, where L2 = 1

4(4L0 +
√

3L0L+ 8L2
0 +
√

3L0L) and

(C7) U(x, r∗) ⊆ D(F ), where r∗ is defined in (2.12).

We present the following semi-local convergence result for {xδn,α}.

Theorem 3.1. Suppose that the conditions (C1)–(C7) hold. Then, the se-

quence {xδn,α} generated by (NT) is well defined, remains in U(x0, r∗) for all

n ≥ 0 and converges to some xδα ∈ U(x0, r∗) such that F (xδα) = zδα. Moreover,
the following estimates hold for each n = 0, 1, 2 . . .

(3.24) ‖xδn+1,α − xδn,α‖ ≤ rδn+1,α − rδn,α
and

(3.25) ‖xδn+1,α − xδα‖ ≤ r∗ − rδn,α
Proof. We use mathematical induction to prove that

(3.26) ‖xδk+1,α − xδk,α‖ ≤ rδk+1,α − rδk,α
and

(3.27) U(xδk+1,α, r
∗ − rδk+1,α) ⊆ U(xδk α, r

∗ − rδk+1,α)
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for each k = 0, 1, 2, . . . . Let v ∈ U(xδ1,α, r
∗ − rδ1,α). Then, we obtain

‖v − xδ0,α‖ ≤ ‖v − xδ1,α‖+ ‖xδ1,α − xδ0,α‖
≤ r∗ − rδ1,α + rδ1,α − rδ0,α
= r∗ − rδ0,α

which implies v ∈ U(xδ0,α, r
∗ − rδ0,α). Note also that

‖xδ1,α − xδ0,α‖ = ‖F ′(xδ0,α)−1(F (xδ0,α)− zδα)‖
≤ r = rδ1,α − rδ0,α.

Hence, estimates (3.26) and (3.27) hold for k = 0. Suppose that these estimates
hold for n ≤ k. Then, we have that

‖xδk+1,α − xδ0,α‖ ≤
k+1∑
i=1

‖xδi,α − xδi−1,α‖

≤
k+1∑
i=1

(rδi,α − rδi−1,α)

≤ rδi+1,α ≤ r∗

and

‖xδk,α + θ(xδk+1,α − xδk,α)− xδ0,α‖ ≤ rδk,α + θ(rδk+1,α − rδk,α)− rδ0,α ≤ r∗

for each θ ∈ [0, 1].
Using (C3), Lemmas 2.5 (see also Lemma 2.1 in [3]) and the induction

hypotheses we get

‖F ′(xδn+1,α)− F ′(xδ0,α)‖ ≤ L0‖xδk+1,α − xδ0,α‖
≤ L0(rδk+1,α − rδ0,α)

≤ L0r
δ
k+1,α <

1
b .(3.28)

It follows from (3.28) and the Banach Lemma on invertible operators [1], [5]
that F ′(xδk+1,α)−1 ∈ L(Y,X) and

||F ′(xδk+1,α)−1‖ ≤ b

1− bL0‖xδk+1,α − xδ0,α‖

≤ b

1− bL0(rδk+1,α − rδ0,α)
.(3.29)

Using (NT) we obtain the approximation

F (xδk+1,α)− zδα = F ′(xδk+1,α)(xδk+1,α − xδk,α) + F (xδk+1,α)− F (xδk,α)

+[F ′(xδk,α)− F ′(xδk+1,α)]??(xδk+1,α − xδk,α).(3.30)
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In view of (C4), (2.8), (3.30), (C3) for k = 0 and the induction hypotheses we
get

‖F (xδk+1,α)− zδα‖ ≤ L
2 ‖x

δ
k+1,α − xδk,α‖2 + L‖xδk+1,α − xδk,α‖2

= 3L
2 ‖x

δ
k+1,α − xδk,α‖2

≤ 3L
2 (rδk+1,α − rδk,α)2.(3.31)

Moreover, by (NT), (2.8), (3.29) and (3.31) we get that

‖xδk+2,α − xδk+1,α‖ ≤ ‖F ′(xδk+1,α)−1‖‖F (xδk+1,α)− zδα‖
≤ b

1−bL0(rδk+1,α−r
δ
0,α)

3L
2 (rδk+1,α − rδk,α)2

= rδk+2,α − rδk,α
which completes the induction for (3.26). Furthermore, let

w ∈ U(xδk+2,α, r
∗ − rδk+2,α). Then, we have that

‖w − xδk+1,α‖ ≤ ‖w − xδk+2,α‖+ ‖xδk+2,α − xδk+1,α‖
≤ r∗ − rδk+2,α + rδk+21,α − rδk+1,α

= r∗ − rδk+1,α.

That is w ∈ U(xδk+1,α, r
∗ − rδk+1,α). Lemma 2.6 implies that {rδk,α} is a com-

plete sequence. It then follows from (3.26) and (3.27) that {xδk,α} is also
complete sequence in the Hilbert space X and as such it converges to some
xδα ∈ U(x0, r∗) (since U(x0, r∗) is a closed set). By letting k → ∞ in (3.31)
we obtain F (xδα) = zδα. Estimate (3.25) is obtained from (3.24) by using stan-
dard majorization techniques [1], [5], [15]. The proof of the Theorem is com-
plete. �

Remark 3.2. (a) If L0 = L, rδn,α = tδn,α then Theorem 3.1 reduces to The-
orem 3.3 in [17] (with corresponding changes). Otherwise, i.e., if L0 < L, ac-
cording to Section 2 it constitutes an improvement with advantages as stated
in the introduction of this study.

(b) Upper bounds on r∗ and s∗ in terms of L0, L, b and n have been given
in [1], [3]–[5] (see also (2.12)). these bounds are given in closed form and can
certainly replace r∗ in (C7).

(c) Note that L0 ≤ L holds in general and L
L0

can be arbitrarily large [1],

[3]–[5].

The rest of the results in [16] can be improved along the same lines by
simply using, respectively, r̄∗, L0 instead of t̄∗, L. In order for us to make the
paper is self contained as possible we present the proof of one of them and for
the proof of the rest we refer the reader to [16].
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Proposition 3.3. Suppose that (2.17), (C3) and (C4) hold. Moreover,
suppose that

(3.32) ‖x0 − x∗‖ ≤ r̄∗ < r < 1
bL0

= λ0

and

(3.33) U(x0, λ0) ⊆ D(F ).

Then, the following assertion holds:

(3.34) ‖x∗ − xδα‖ ≤ b
1−bL0r

‖F (x∗)− zδα‖.

Proof. Using (C3) (instead of (C4)) used in [16], we get that

‖x∗ − xδα‖ = ‖x∗ − xδα + F ′(x0)−1[F (xδα)− F (x∗) + F (x∗)− zδα]‖
≤ ‖F ′(x0)−1[F ′(x0)(x∗ − xδα)− (F (x∗)− F (xδα))]‖

+‖F ′(x0)−1[F (x∗)− zδα]‖
≤ bL0r‖x∗ − xδα‖+ b‖F (x∗)− zδα‖.

which shows (3.34). The proof of the proposition is complete. �

The following is a consequence of Theorem 3.1 and Proposition 3.3.

Corollary 3.4. Suppose that hypotheses of Theorem 3.1, r̄∗ < r and
bL0r < 1 hold. Then, the following assertion holds

‖x∗ − xδn,α‖ ≤ b
1−bL0r

‖F (x∗)− zδα‖+ r∗ − rδn,α
for each n = 0, 1, 2, . . . .

Remark 3.5. if L0 = L Proposition 3.3 and Corollory 3.4 reduce to the
corresponding ones in [16]. Otherwise, i.e., L0 < L our results constitute an
improvement.

4. SEMILOCAL CONVERGENCE OF (SNT)

We present the semilocal convergence of (SNT).

Theorem 4.1. Suppose that (C1)–(C3), (C5) hold. If, in addition,

(C8) h0 = τbL0r < 1
and

(C9) U(x0, ρ) ⊆ D(F ), where ρ = 1−
√

1−h0
bL0

,

then, sequence {xδn,α} generated by (SNT) is well defined, remain in U(x0, ρ)

for all n ≥ 0 and converges to some xδα ∈ U(x0, ρ) such that F (xδα) = zδα.
Moreover the following estimate hold for each n = 0, 1, 2, . . .

‖xδn+2,α − xδn+1,α‖ ≤ q‖xδn+1,α − xδn,α‖
and

‖xδn,α − xδα‖ ≤
qnr
1−q ,

where q = 1−
√

1− h0.
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Proof. Let us define operator T on U(x0, ρ) by

T (x) = x− F ′(x0)−1(F (x)− zδα).

Then, we shall show T is a contraction on U(x0, ρ) and maps U(x0, ρ) into

itself. Indeed, we have that for x, y ∈ U(x0, ρ)

T (x)− T (y) = x− y − F ′(x0)−1(F (x)− zδα) + F ′(x0)−1(F (y)− zδα)

= −F ′(x0)−1(F (x)− F (y)− F ′(x0)(x− y))

and

‖T (x)− T (y)‖ = ‖F ′(x0)−1(F (x)− F (y)− F ′(x0)(x− y))‖
≤ bL0ρ‖x− y‖.

But, we have bL0ρ < 1. Hence, T is a contraction operator. Let x ∈ U(x0, ρ).
Then, we have that

T (x)− x0 = T (x)− T (x0) + T (x0)− x0

and

‖T (x)− x0‖ ≤ ‖T (x)− T (x0)‖+ ‖T (x0)− x0‖

=
bL0ρ

2

2 + r
= ρ

by the choice of ρ. The proof of Theorem is complete. �

Remark 4.2. (a) More subtle arguments show that h0 < 1 can be replaced
by h0 ≤ 1 (see [1], [5]).

(b) We have that h0 = 2bLr ≤ 1⇒ h0 ≤ 1 but not vice versa even if L0 = L.

Moreover, we have that h0
h0
→ 0 as L0

L → 0. Note that the h0 condition was
given in [17]. Therefore method (SNT) can be used as a predictor until a
certain finite iterate N such that h ≤ 1 holds for xδN,α, being the initial point

of method (NT). Such an approach has been used by us in [2] for modified
Newton and Newton’s method.

5. APPLICATIONS

Let us consider the nonlinear Hammerstein operator equation (c.f. [28])

(MFx)(t) =

∫ 1

0
m(s, t)p(s, x(s))x(s)ds

where m is continuous and p is differentiable with respect to the second vari-
able. Define F : D(F ) = H1(]0, 1[)→ L2(]0, 1[) by

F (x)(s) = p(s, x(s)), s ∈ [0, 1]

and M : L2(]0, 1[)→ L2(]0, 1[) by

Mu(t) =

∫ 1

0
m(s, t)u(s)ds, t ∈ [0, 1].
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Then, F is Frèchet differentiable and we have that

[F ′(x)]u(t) = ∂2p(t, x(t))u(t), t ∈ [0, 1].

If in additionM1 : H1(]0, 1[) 7→ H1(]0, 1[) is defined by (M1x)(t) := ∂2p(t, x(t))
is locally Lipschitz continuous, one can compute the required constants L0

and L. If we further assume the existence of a constant κ1 > 0 such that
∂2p(t, x(t)) ≥ κ1 for all t ∈ [0, 1] and x(t) ∈ U(x0, r

∗), then F ′(x)−1 exists and
is bounded operator.

Equation (1.2) is equivalent to

(5.35) M [F (x)− F (x0)] = y −MF (x0)

where x0, is an initial guess. Therefore the solution x of (1.2) is obtained by
first solving

(5.36) Mz = y −KF (x0)

for z and then solving

(5.37) F (x) = z + F (x0)

for x ∈ D(F ). Let α > 0, δ > 0 be fixed. Then, we consider the regularized
solution of (5.36) with yδ in place of y as

(5.38) zδα = (M + αI)−1(yδ −MF (x0)) + F (x0)

if case M in (5.36) is positive self adjoint and Z = Y. Otherwise, we set

(5.39) zδα = (M∗M + αI)−1M∗(yδ −MF (x0)) + F (x0).

Note that (5.38) is the simplified or Lavrentiev regularization of equation
(5.36) and (5.39) is the Tikhonov regularization of (5.36).

With these choices of operators the rest of the results in [16] involving (SNT)
type methods (i.e., using L0 instead of L) can be improved.

Proposition 5.1. Suppose zδα is given by (5.39) and

‖F (x0)− F (x∗)‖+ δ√
α
< r

2b <
1

2b2L0
.

Then, the following assertion holds

‖x0 − x∗‖ ≤ r̄∗ < r < 1
bL0

.

Remark 5.2. (a) If L0 = L Proposition 5.1 reduces to Remark 3.4 in [16].
Otherwise, Proposition 5.1 improves Remark 3.4 in [16].

(b) The rest of the results in the literature (see, e.g. [13]–[20]) can be
extended by simply using (C3) instead of (C4). Note also that there are
examples where (C3) holds but not (C4).

Remark 5.3. Hereafter we consider zδα as the Tikhonov regularization of
(5.36) given in (5.39). All results in the forthcoming sections are valid for the
simplified regularization of (5.36).
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In view of the estimate in the Corollory 3.4, the next task is to find an
estimate ‖F (x∗)− zδα‖. For this, let us introduce the notation;

zα := F (x0) + (M∗M + αI)−1M∗(y −MF (x0)).

We may observe that

‖F (x∗)− zδα‖ ≤ ‖F (x∗)− zα‖+ ‖zα − zδα‖
≤ ‖F (x∗)− zα‖+ δ√

α
,(5.40)

and

F (x∗)− zα = F (x∗)− F (x0)− (M∗M + αI)−1M∗M [F (x∗)− F (x0)]

= [I − (M∗M + αI)−1M∗M ][F (x∗)− F (x0)]

= α(M∗M + αI)−1[F (x∗)− F (x0)].(5.41)

Note that for u ∈ R(M∗M) with u = M∗Mz for some z ∈ Z,

‖α(M∗M + αI)−1u‖ = ‖α(M∗M + αI)−1M∗Mz‖ ≤ α‖z‖ → 0

as α → 0. Now since ‖α(M∗M + αI)−1‖ ≤ 1 for all α > 0, it follows that for

every u ∈ R(M∗M), ‖α(M∗M + αI)−1u‖ → 0 as α → 0. Thus we have the
following theorem.

Theorem 5.4. If F (x∗) − F (x0) ∈ R(M∗M), then ‖F (x∗) − zα‖ → 0 as
α→ 0.

5.1. Error bounds under source conditions. In view of the above theorem,
we assume that

(5.42) ‖F (x∗)− zα‖ ≤ ϕ(α)

for some positive monotonic increasing function ϕ defined on (0, ‖M‖2] such
that

lim
λ→0

ϕ(λ) = 0.

Suppose ϕ is a source function in the sense that x∗ satisfies a source condi-
tion of the form

F (x∗)− F (x0) = ϕ(M∗M)w, ‖w‖ ≤ 1,

such that

(5.43) sup
0<λ<‖M‖2

αϕ(λ)
λ+α ≤ ϕ(α),

then the assumption (5.42) is satisfied. Note that if F (x∗)−F (x0)∈R((M∗M)ν),
for some ν with, 0 < ν ≤ 1, then by (5.41)

‖F (x∗)− zα‖ ≤ ‖α(M∗M + αI)−1(M∗M)νω‖

≤ sup
0<λ≤‖M‖2

αλν

λ+ α
‖ω‖ ≤ αν‖ω‖.
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Thus in this case ϕ(λ) = λν

‖ω‖ satisfies the assumption (5.42). Therefore by

(5.40) and by the assumption (5.42), we have

(5.44) ‖F (x∗)− zδα‖ ≤ ϕ(α) + δ√
α
.

So, we have the following theorem.

Theorem 5.5. Under the assumptions of Corollary 3.4 and (5.44),

‖x∗ − xδn,α‖ ≤ b
1−bκ0r (ϕ(α) + δ√

α
) + r∗ − rδn,α.

5.2. A priori choice of the parameter. Note that the estimate ϕ(α)+ δ√
α

in

(5.43) attains minimum for the choice α := αδ which satisfies ϕ(αδ) = δ√
αδ
. Let

ψ(λ) := λ
√
ϕ−1(λ), 0 < λ ≤ ‖M‖2. Then we have δ =

√
αδϕ(αδ) = ψ(ϕ(αδ)),

and

(5.45) αδ = ϕ−1(ψ−1(δ)).

So the relation (5.44) leads to

‖F (x∗)− zδα‖ ≤ 2ψ−1(δ).

Theorem 5.5 and the above observation leads to the following.

Theorem 5.6. Let ψ(λ) := λ
√
ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assumptions

of Corollary 3.4 and (5.42) are satisfied. For δ > 0, let αδ = ϕ−1(ψ−1(δ)). If

nδ := min
{
n : (r∗ − rδn,α) < δ√

αδ

}
,

then

‖x∗ − xδαδ,nδ‖ = O(ψ−1(δ)), as δ → 0.

5.3. An adaptive choice of the parameter. The error estimate in the above
Theorem has optimal order with respect to δ. Unfortunately, an a priori param-
eter choice (5.45) cannot be used in practice since the smoothness properties
of the unknown solution x̂ reflected in the function ϕ are generally unknown.
There exist many parameter choice strategies in the literature, for example
see [6], [11], [12], [18], [19], [31] and [33].

In [26], Pereverzev and Schock considered an adaptive selection of the pa-
rameter which does not involve even the regularization method in an explicit
manner. In this method the regularization parameter αi are selected from some
finite set {αi : 0 < α0 < α1 < . . . < αN} and the corresponding regularized
solution, say uδαi are studied on-line. Later George and Nair [20] considered
the adaptive selection of the parameter for choosing the regularization parame-
ter in Newton-Lavrentiev regularization method for solving Hammerstein-type
operator equation. In this paper also, we consider the adaptive method for
selecting the parameter α in xδα,n. The rest of this section is essentially a
reformulation of the adaptive method considered in [26] in a special context.
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Let i ∈ {0, 1, 2, . . . , N} and αi = µ2iα0 where µ > 1 and α0 = δ2. Let

l := max
{
i : ϕ(αi) ≤ δ√

αi

}
and(5.46)

k := max
{
i : ‖zδαi − z

δ
αj‖ ≤

4δ√
αj
, j = 0, 1, 2, . . . , i

}
.(5.47)

The proof of the next theorem is analogous to the proof of Theorem 1.2 in
[26], but for the sake of completeness, we supply its proof as well.

Theorem 5.7. Let l be as in (5.46), k be as in (5.47) and zδαk be as in (5.39)
with α = αk. Then l ≤ k and

‖F (x∗)− zδαk‖ ≤ (2 + 4µ
µ−1)µψ−1(δ).

Proof. Note that, to prove l ≤ k, it is enough to prove that, for i = 1, . . . , N

ϕ(αi) ≤ δ√
αi

=⇒ ‖zδαi − z
δ
αj‖ ≤

4δ√
αj
, ∀j = 0, 1, 2, . . . , i.

For j ≤ i,
‖zδαi − z

δ
αj‖ ≤ ‖zδαi − F (x̂)‖+ ‖F (x̂)− zδαj‖

≤ ϕ(αi) + δ√
αi

+ ϕ(αj) + δ√
αj

≤ 2δ√
αi

+ 2δ√
αj
≤ 4δ√

αj
.

This proves the relation l ≤ k. Now since
√
αl+m = µm

√
αl, by using triangle

inequality successively, we obtain

‖F (x̂)− zδαk‖ ≤ ‖F (x∗)− zδαl‖+

k∑
j=l+1

4δ√
αj−1

≤ ‖F (x̂)− zδαl‖+

k−l−1∑
m=0

4δ√
αlµm

≤ ‖F (x̂)− zδαl‖+ ( µ
µ−1) 4δ√

αl
.

Therefore by (5.43) and (5.46) we have

‖F (x∗)− zδαk‖ ≤ ϕ(αl) + δ√
αl

+ ( µ
µ−1) 4δ√

αl
≤ (2 + 4µ

µ−1)µψ−1(δ).

The last step follows from the inequality
√
αδ ≤

√
αl+1 ≤ µ

√
αl and δ√

αδ
=

ψ−1(δ). This completes the proof. �

5.4. Stopping Rule. Note that

e0 = ‖xδ1,α − x0‖ = ‖F ′(x0)−1(M∗M + αI)−1M∗(yδ −MF (x0))‖
= ‖F ′(x0)−1(M∗M + αI)−1M∗(yδ − y + y −MF (x0))‖
≤ b(‖(M∗M + αI)−1M∗(yδ − y)‖

+‖(M∗M + αI)−1M∗M(F (x̂)− F (x0))‖)



154 Ioannis K. Argyros and Santhosh George 14

≤ b(ω + δ√
α

),

so if

(5.48) b(ω + δ√
α

) < 1
bL2

,

and r∗ < r. Then hypotheses of Theorem 3.1 hold. Again since αj = µ2jδ2,
δ√
αk

= µ−k; the condition (5.48) with α = αk takes the form

(5.49) b(ω + 1
µk

) < 1
bL2

.

and r∗ < r. Then, we have arrived at the algorithm which guarantees

‖x∗ − xδnk,αk‖ = O(ψ−1(δ)), as δ → 0

with nk = min{n : r∗ − rδn,α ≤ µ−j , j = 1, 2, . . . , i − 1} and improves the
corresponding one in [16].

5.5. Algorithm: Note that for i, j ∈ {0, 1, 2, . . . , n}

‖zδαi − z
δ
αj‖ = (αj − αi)(M∗M + αjI)−1(M∗M + αiI)−1M∗(yδ −MF (x0)).

Therefore the adaptive algorithm associated with the choice of the parameter
specified in the above theorem is as follows.

begin

i=0

repeat

i=i+1

Solve for wi : (M∗M + αiI)wi = M∗(yδ −MF (x0))
j=-1

repeat

j=j+1

Solve for zi,j : (M∗M + αjI)zi,j = (αj − αi)wi
until (‖zi,j‖ ≤ 4µ−jAND j < i)

until (‖zi,j‖ ≤ 4µ−j)
k=i-1.

m=0

repeat

m=m+1

until ((r∗ − rδm,α) > 1
µk
)

nk = m
for l=1 to nk

Solve for ul−1 : F ′(xδl−1,αk
)ul−1 = F (xδl−1,αk

)− zδαk
xδl,αk := xδl−1,αk

− ul−1

end
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6. NUMERICAL EXAMPLE

In this section we consider a example for illustrating the algorithm men-
tioned in the above section.

Example 6.1. In this example we consider the operator KF : L2(0, 1) −→
L2(0, 1) where K : L2(0, 1) −→ L2(0, 1) defined by

K(x)(t) =

∫ 1

0
k(t, s)x(s)ds

and F : D(F ) ⊆ H1(0, 1) −→ L2(0, 1) defined by

F (u) :=

∫ 1

0
k(t, s)u3(s)ds,

where

k(t, s) =

{
(1− t)s, 0 ≤ s ≤ t ≤ 1
(1− s)t, 0 ≤ t ≤ s ≤ 1

.

The Fréchet derivative of F is given by

F ′(u)w = 3

∫ 1

0
k(t, s)(u(s))2w(s)ds.

In our computation, we take f(t) = 1
110( t

13

156 −
t3

6 + 25t
156) and f δ = f + δ with

δ = 0.01. Then the exact solution

x̂(t) = t3.

We use
x0(t) = t3 + 3

56(t− t8)

as our initial guess. The results of the computation are presented in Table 1.

n k αk en
en

ψ−1(δ))

64 4 0.0011 0.5257 5.2541

128 4 0.0011 0.5234 5.2331

256 4 0.0011 0.5222 5.2216

512 4 0.0011 0.5216 5.2156

1024 4 0.0011 0.5211 5.2126

2048 4 0.0011 0.5211 5.2110

4096 4 0.0011 0.5210 5.2102

Table 1. Iterations and corresponding Error Estimates of Example 6.1

Remark 6.2. We have considered an iterative regularization method, which
is a combination of Newton iterative method with a Tikhonov regularization
method, for obtaining approximate solution for a nonlinear Hammerstein-type
operator equation MF (x) = y, with the available data yδ in place of the exact
data y. If the operator M is a positive self-adjoint bounded linear operator
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on a Hilbert space, then one may consider Newton Lavrentiev regularization
method for obtaining an approximate solution for MF (x) = y. It is assumed
that the Frèchet derivative F ′(x) of the non-linear operator F has a continuous
inverse, in a neighborhood of some initial guess x0 of the actual solution x∗.
The procedure involves solving the equation

(M∗M + αI)uδα = M∗(yδ −MF (x0))

and finding the fixed point of the function

G(x) = x− F ′(x)−1(F (x)− F (x0)− uδα)

in an iterative manner. For choosing the regularization parameter α and the
stopping index for the iteration, we made use of the adaptive method suggested
in [26]. �
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