Applications of the theory of generalized Fourier transforms to Tikhonov problems

Authors

DOI:

https://doi.org/10.33993/jnaat541-1539

Keywords:

SL-multiplier operators, Paley-Wiener type space, approximate inversion formulas
Abstract views: 121

Abstract

We define and study multiplier operators associated with the Sturm-Liouville operator involving a nonnegative function satisfying certain conditions. We introduce and study the extremal function, and we deduce approximate inversion formulas for the multipliers operators in a Paley-Wiener type space.

Downloads

Download data is not yet available.

References

[1] Bloom WR, Xu Z. Fourier multipliers for Lp on Chebli-Trimeche hypergroups. Proc London Math Soc. 2000;80(03):643-664. DOI: https://doi.org/10.1112/S0024611500012326

[2] Bouattour L, Trimeche K. Beurling-Hormander's theorem for the Chebli-Trimeche transform. Glob J Pure Appl Math. 2005;1(3):342-357.

[3] Chebli H. Theoreme de Paley-Wiener associe a un operateur differentiel singulier sur (0;1). J Math Pures Appl. 1979;58(1):1-19. DOI: https://doi.org/10.5802/jedp.178

[4] Daher R, Kawazoe T. Generalized of Hardy's theorem for Jacobi transform. HiroshimaJ Math. 2006;36(3):331-337. DOI: https://doi.org/10.32917/hmj/1171377076

[5] Daher R, Kawazoe T. An uncertainty principle on Sturm-Liouville hypergroups. Proc Japan Acad. 2007;83 Ser. A:167-169. DOI: https://doi.org/10.3792/pjaa.83.167

[6] Daher R, Kawazoe T, Mejjaoli H. A generalization of Miyachi's theorem. J Math Soc Japan. 2009;61(2):551-558. DOI: https://doi.org/10.2969/jmsj/06120551

[7] El Hamma M, Daher R. Generalization of Titchmarsh's theorem for the Bessel transform in the space Lp;(R+). Ann Math Sil. 2012;26:55-59.

[8] Ma R. Heisenberg inequalities for Jacobi transforms. J Math Anal Appl. 2007;332(1):155-163. DOI: https://doi.org/10.1016/j.jmaa.2006.09.044

[9] Ma R. Heisenberg uncertainty principle on Chebli-Trimeche hypergroups. Paci c J Math. 2008;235(2):289-296. DOI: https://doi.org/10.2140/pjm.2008.235.289

[10] Omri S. Local uncertainty principle for the Hankel transform. Integral Transform Spec Funct. 2010;21(9):703-712. DOI: https://doi.org/10.1080/10652461003675760

[11] Saitoh S. Best approximation, Tikhonov regularization and reproducing kernels. Kodai Math J. 2005;28(2):359-367. DOI: https://doi.org/10.2996/kmj/1123767016

[12] Saitoh S. Theory of reproducing kernels: applications to approximate solutions of bounded linear operator equations on Hilbert spaces. In book: selected papers on analysis and differential equations. Amer Math Soc Transl. 2010;230 Series 2. DOI: https://doi.org/10.1090/trans2/230/06

[13] Saitoh S, Sawano Y. Theory of reproducing kernels and applications. Developements in mathematics. 2016;44. DOI: https://doi.org/10.1007/978-981-10-0530-5

[14] Soltani F. Lp local uncertainty inequality for the Sturm-Liouville transform. CUBO A Math J. 2014;16(1):95-104. DOI: https://doi.org/10.4067/S0719-06462014000100009

[15] Soltani F. Extremal functions on Sturm-Liouville hypergroups. Complex Anal Oper Theory. 2014;8(1):311-325. DOI: https://doi.org/10.1007/s11785-013-0303-9

[16] Soltani F, Nemri A. Analytical and numerical approximation formulas for the Fourier multiplier operators. Complex Anal Oper Theory. 2015;9(1):121-138. DOI: https://doi.org/10.1007/s11785-014-0386-y

[17] Soltani F, Nemri A. Analytical and numerical applications for the Fourier multiplier operators on Rn. Appl Anal. 2015;94(8):1545-1560. DOI: https://doi.org/10.1080/00036811.2014.937432

[18] Sousa R, Guerra M, Yakubovich S. On the product formula and convolution associated with the index Whittaker transform. J Math Anal Appl. 2019;475(1):939-965. DOI: https://doi.org/10.1016/j.jmaa.2019.03.009

[19] Sousa R, Guerra M, Yakubovich S. Levy processes with respect to the Whittaker convolution. Trans Amer Math Soc. 2021;374(4):2383-2419. DOI: https://doi.org/10.1090/tran/8294

[20] Trimeche K. Transformation integrale de Weyl et theoreme de Paley-Wiener associes a un operateur differentiel singulier sur (0;1). J Math Pures Appl. 1981;60(1):(1981) 51-98.

[21] Xu Z. Harmonic analysis on Chebli-Trimeche hypergroups. Ph.D. thesis, Murdoch University, Perth, Western Australia; 1994.

[22] Zeuner H. The central limit theorem for Chebli-Trimeche hypergroups. J Theoret Probab. 1989;2(1):51-63 DOI: https://doi.org/10.1007/BF01048268

Downloads

Published

2025-06-30

Issue

Section

Articles

How to Cite

Soltani, F., & Nemri, A. (2025). Applications of the theory of generalized Fourier transforms to Tikhonov problems. J. Numer. Anal. Approx. Theory, 54(1), 170-190. https://doi.org/10.33993/jnaat541-1539