Return to Article Details A Stancu type extension of the Campiti-Metafune operator

A Stancu type extension
of the Campiti-Metafune operator

Teodora Cătinaş
(Date: November 01, 2025; accepted: November 21, 2025; published online: December 22, 2025.)
Abstract.

We consider an extension of the Campiti-Metafune operator using a Stancu type technique. We study some properties of the new obtained operator.

Key words and phrases:
Campiti-Metafune operator, Stancu operator, Bernstein operator, moments of the operator.
2005 Mathematics Subject Classification:
41A10, 41A35, 41A36, 47A58.
Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania, e-mail: teodora.catinas@ubbcluj.ro.

1. Introduction

In 1982, D.D. Stancu [6], introduced a new Bernstein type operator given by

(1) Ln,r(f;x)=k=0nrbnr,k(x)[(1x)f(kn)+xf(k+rn)],

where bn,k denote the basis Bernstein polynomials of degree n,

bn,k=(nk)xk(1x)nkk=0,1,,n,

for fC[0,1], n,r such that n>2r.

In 1996, M. Campiti and G. Metafune [3], introduced and studied a new Bernstein type operator that now bears their names. For introducing the operator, we need two sequences λ=(λn)n1 and ρ=(ρn)n1, and the numbers αn,k defined by

(2) αn,0=λn,αn,n=ρn,αn+1,k=αn,k+αn,k1,for k=1,n¯,n.

The Campiti-Metafune operator An:C([0,1])C([0,1]), is given by [3]

(3) (Anf)(x)=k=0nαn,kxk(1x)nkf(kn).
Remark 1.

If λ and ρ are constant sequences of term 1, then αn,k=(nk), for k=0,n¯ and An becomes Bernstein operator Bn, given by

(Bnf)(x)=k=0n(nk)xk(1x)nkf(kn).

For the sequences (λ,ρ) we consider the following choices, as in [1]:

(i) Case λ=δm, m, ρ=0, where δm=(δn,m)n1, δn,m={1,n=m0,nm. We denote An(δm,0) by Lm,n and it is called the elementary left operator of order m associated to An.

The coefficients of the operators Lm,n are denoted by lm,n,k and they are defined by

lm,n,k={0,(n<m) or(n=m,k1)(n>m,k=0)(n>m,knm+1)1,n=m,k=0(nm1k1),n>m,1knm..

(ii) Case λ=0, ρ=δm, m. We denote An(0,δm) by Rm,n and it is called elementary right operator of order m associated to An.

The coefficients of the operators Rm,n are denoted by rm,n,k and they are defined by

rm,n,k={0,(n<m) or(n=m,kn1)(n>m,km1)(n>m,k=n)1,n=m,k=n(nm1km),n>m,mkn1..

Consequently, for any (m,n)× we get

(4) (Lm,nf)(x)=k=1nmam,n,k(x)f(kn),

with

(5) am,n,k(x)=(nm1k1)xk(1x)nk,

for m<n and

(Ln,nf)(x)=(1x)nf(0).

We have

(6) (Rm,nf)(x)=k=mn1bm,n,k(x)f(kn),

with

(7) bm,n,k(x)=(nm1km)xk(1x)nk,

for m<n and

(Rn,nf)(x)=xnf(1).

Using these elementary operators, the operator An is decomposed as

(8) An=m=1nλmLm,n+m=1nρmRm,n.
Remark 2.

For the particular case of λ=ρ=1, we get

Bn=m=1n(Lm,n+Rm,n).

2. A Stancu type extension of the Campiti-Metafune operator

Now we introduce the Stancu type extension of the Campiti-Metafune operator, based on an idea from [2], also used, for example, in [4], [5]. Using the Stancu type operator (1) and the operator (8), we get

(9) (AnSf)(x):=m=1nλm(Lm,n,rSf)(x)+m=1nρm(Rm,n,rSf)(x)

with

(Lm,n,rSf)(x)=k=1nmram,nr,k(x)[(1x)f(kn)+xf(k+rn)]

and

(Rm,n,rSf)(x)=k=mnr1bm,nr,k(x)[(1x)f(kn)+xf(k+rn)],

where am,nr,k(x) and bm,nr,k(x) are given by (5) and (7), for fC[0,1] and n,r such that n>2r.

Remark 3.

For r=0, it is obtained AnS as the Campiti-Metafune operator An.

We are going to calculate the moments of the new operators and to study some approximation properties.

3. Properties of the Campiti-Metafune operator

We give first some results regarding the Campiti-Metafune operator that will be used in the sequel in order to prove some properties of the new constructed operator.

Lemma 4 ([1]).

The operators defined by (4) and (6) verify the following relations:

1

(Lm,ne0)(x)={x(1x)m,n>m;(1x)n,n=m;

(Rm,ne0)(x)={(1x)xm,n>m;xn,n=m;

2
(Lm,ne1)(x)={x(1x)m(1+(nm1)x)n,n>m;0,n=m;
(Rm,ne1)(x)={(1x)xm(m+(nm1)x)n,n>m;xn,n=m;

3
(Lm,ne2)(x)={x(1x)m1+3(nm1)x+(nm1)(nm2)x2n2,n>m;0,n=m;
(Rm,ne2)(x)={(1x)xmm2+(1+2m)(nm1)x+(nm1)(nm2)x2n2,n>m;xn,n=m.

Now we study some properties for the new operator, AnS introduced in (9).

Theorem 5.

For every x[0,1], n,r such that n>2r, we have the following results:

i)

(AnSe0)(x) =m=1nλm(Lm,n,rSe0)(x)+m=1nρm(Rm,n,rSe0)(x)
=m=1nr1(λmx(1x)m+ρmxm(1x))+λnr(1x)nr+ρnrxnr

ii)

(AnSe1)(x):=m=1nλm(Lm,n,rSe1)(x)+m=1nρm(Rm,n,rSe1)(x)

iii)

(AnSe2)(x):=m=1nλm(Lm,n,rSe2)(x)+m=1nρm(Rm,n,rSe2)(x)

with

(Lm,n,rSe0)(x)={x(1x)m,n>m+r;(1x)nr,n=m+r;
(Rm,n,rSe0)(x)={(1x)xm,n>m+r;xnr,n=m+r;,

and

(Lm,n,rSe1)(x)={x(1x)m(1+(nrm1)x)nr+rnx2(1x)m,n>m+r;rnx(1x)nr,n=m+r;
(Rm,n,rSe1)(x)={(1x)xm(m+(nrm1)x)nr+rnx(1x)xm,n>m+r;xnr+rnxnr+1,n=m+r;

and

(Lm,n,rSe2)(x)(x)=
={x(1x)m{1+3(nrm1)x+(nrm1)(nrm2)x2}(nr)2+2rnx2(1x)m(1+(nrm1)x)nr+r2n2x3(1x)m,n>m+r;r2n2x(1x)nr,n=m+r;
(Rm,n,rS e2)(x)(x)=
={(1x)xmm2+(1+2m)(nrm1)x+(nrm1)(nrm2)x2(nr)2+2rnx(1x)xm(m+(nrm1)x)nr+r2x2n2(1x)xm,n>m+r;xnr+2rnxnr+1+r2x2n2xnr,n=m+r;
Proof.
(10) (AnSe0)(x):=m=1nλm(Lm,n,rSe0)(x)+m=1nρm(Rm,n,rSe0)(x)

with

(Lm,n,rSe0)(x) =k=1nmramr,n,k(x)=(Lm,nre0)(x)
={x(1x)m,n>m+r;(1x)nr,n=m+r;

and

(Rm,n,rSe0)(x) =k=mnr1bmr,n,k(x)=(Rm,nre0)(x)
={(1x)xm,n>m+r;xnr,n=m+r;.

So, we have

(AnSe0)(x):=m=1nλm(Lm,nre0)(x)+m=1nρm(Rm,nre0)(x)=(Anre0)(x)

By (10) we get

(AnSe0)(x)=m=1nr1(λmx(1x)m+ρmxm(1x))+λnr(1x)nr+ρnrxnr

ii) We have

(AnSe1)(x):=m=1nλm(Lm,n,rSe1)(x)+m=1nρm(Rm,n,rSe1)(x)

with

(Lm,n,rSe1)(x) =k=1nmram,nr,k(x)[(1x)kn+xk+rn]
=(Lm,nre1)(x)+rnx(Lm.nre0)(x)

and

(Rm,n,rSe1)(x) =k=mnr1bm,nr,k(x)[(1x)kn+xk+rn]
=(Rm,nre1)(x)+rnx(Rm.nre0)(x)

and by Lemma 4, we get

(Lm,n,rSe1)(x)(x) =(Lm,nre1)+rnx(Lm.nre0)(x)
={x(1x)m(1+(nrm1)x)nr+rnx2(1x)m,n>m+r;rnx(1x)nr,n=m+r;

and

(Rm,n,rSe1)(x) =(Rm,nre1)(x)+rnx(Rm.nre0)(x)
={(1x)xm(m+(nrm1)x)nr+rnx(1x)xm,n>m+r;xnr+rnxnr+1,n=m+r;

iii) We have

(AnSe2)(x):=m=1nλm(Lm,n,rSe2)(x)+m=1nρm(Rm,n,rSe2)(x)

with

(Lm,n,rSe2)(x)(x) =k=1nmram,nr,k(x)[(1x)k2n2+x(k+r)2n2]
=(Lm,nre2)(x)+2rnx(Lm.nre1)(x)+r2x2n2(Lm.nre0)(x)

and

(Rm,n,rSe2)(x)(x) =k=1nmram,nr,k(x)[(1x)k2n2+x(k+r)2n2]
=(Rm,nre2)(x)+2rnx(Rm.nre1)(x)+r2x2n2(Rm.nre0)(x).

By Lemma 4, we get

(Lm,n,rSe2)(x)(x)=
=(Lm,nre2)(x)+2rnx(Lm.nre1)(x)+r2x2n2(Lm.nre0)(x)
={x(1x)m1+3(nrm1)x+(nrm1)(nrm2)x2(nr)2+2rnxx(1x)m(1+(nrm1)x)nr+r2n2x3(1x)m,n>m+r;r2n2x2(1x)nr,n=m+r;

and

(Rm,n,rSe2)(x)(x)=
=(Rm,nre2)(x)+2rnx(Rm.nre1)(x)+r2x2n2(Rm.nre0)(x)
={(1x)xmm2+(1+2m)(nrm1)x+(nrm1)(nrm2)x2(nr)2+2rnx(1x)xm(m+(nrm1)x)nr+r2x2n2(1x)xm,n>m+r;xnr+2rnxnr+1+r2x2n2xnr,n=m+r;

Theorem 6.

For every fC[0,1], we have

Lm,n,rSf and Rm,n,rSf.
Proof.

Considering the expression of Lm,n,rSf and Rm,n,rSf, and Lemma 4, we get

|(Lm,n,rSf)(x)| =|k=1nmram,nr,k(x)[(1x)f(kn)+xf(k+rn)]|
k=1nmram,nr,k(x)|[(1x)f(kn)+xf(k+rn)]|
k=1nmram,nr,k(x)[(1x)|f(kn)|+x|f(k+rn)|]
fk=1nmram,nr,k(x)
f(Lm,n,rSe0)(x)
f
|(Rm,n,rSf)(x)| =|k=mnr1bm,nr,k(x)[(1x)f(kn)+xf(k+rn)]|
k=1nmrbm,nr,k(x)|[(1x)f(kn)+xf(k+rn)]|
k=1nmrbm,nr,k(x)[(1x)|f(kn)|+x|f(k+rn)|]
f(Rm,n,rSe0)(x)
f

References