Return to Article Details Approximation of convex functions by convex splines and convexity preserving continuous linear operators

APPROXIMATION OF CONVEX FUNCTIONS BY CONVEX SPLINES AND CONVEXITY PRESERVING CONTINUOUS LINEAR OPERATORS

byR. BOJANIC 1 1 ^(1){ }^{1}1 and J. ROULIER 2 2 ^(2){ }^{2}2Ohio North Carolina

1. Introduction and results

Let f f fff be a real-valued function defined on [ a , b ] [ a , b ] [a,b][a, b][a,b]. By [ f ( x 0 ) , , f ( x i ) ] f x 0 , , f x i [f(x_(0)),dots,f(x_(i))]\left[f\left(x_{0}\right), \ldots, f\left(x_{i}\right)\right][f(x0),,f(xi)] we mean the l l lll-th divided difference of f f fff :
(1.1) [ f ( x 0 ) , , f ( x l ) ] = = 0 l f ( x k ) / ω l ( x k ) (1.1) f x 0 , , f x l = = 0 l f x k / ω l x k {:(1.1)[f(x_(0)),dots,f(x_(l))]=sum_(=0)^(l)f(x_(k))//omega_(l)^(')(x_(k)):}\begin{equation*} \left[f\left(x_{0}\right), \ldots, f\left(x_{l}\right)\right]=\sum_{=0}^{l} f\left(x_{k}\right) / \omega_{l}^{\prime}\left(x_{k}\right) \tag{1.1} \end{equation*}(1.1)[f(x0),,f(xl)]==0lf(xk)/ωl(xk)
where a x 0 < < x l b a x 0 < < x l b a <= x_(0) < dots < x_(l) <= ba \leq x_{0}<\ldots<x_{l} \leq bax0<<xlb and ω l ( x ) = ( x x 0 ) ( x x l ) , l == 0 , 1 , 2 , ω l ( x ) = x x 0 x x l , l == 0 , 1 , 2 , omega_(l)(x)=(x-x_(0))dots(x-x_(l)),l==0,1,2,dots\omega_{l}(x)=\left(x-x_{0}\right) \ldots\left(x-x_{l}\right), l= =0,1,2, \ldotsωl(x)=(xx0)(xxl),l==0,1,2,.
The function f f fff is a convex function of order l l lll if [ f ( x 0 ) , , f ( x l ) ] 0 f x 0 , , f x l 0 [f(x_(0)),dots,f(x_(l))] >= 0\left[f\left(x_{0}\right), \ldots, f\left(x_{l}\right)\right] \geqslant 0[f(x0),,f(xl)]0 for every choice of a x 0 < < x l b a x 0 < < x l b a <= x_(0) < dots < x_(l) <= ba \leq x_{0}<\ldots<x_{l} \leq bax0<<xlb. The set of all continuous convex functions of order l l lll on [ a , b ] [ a , b ] [a,b][a, b][a,b] will be denoted by K l [ a , b ] K l [ a , b ] K_(l)[a,b]K_{l}[a, b]Kl[a,b]. When convexity problems are discussed, it is customary to assume that l 2 l 2 l >= 2l \geqslant 2l2. However, it will be convenient here to allow also the values l = 1 l = 1 l=1l=1l=1 and l = 0 l = 0 l=0l=0l=0. Consequently, K 1 [ a , b ] K 1 [ a , b ] K_(1)[a,b]K_{1}[a, b]K1[a,b] will be the set of all continuous, non-decreasing functions on [ a , b ] [ a , b ] [a,b][a, b][a,b] and K 0 [ a , b ] K 0 [ a , b ] K_(0)[a,b]K_{0}[a, b]K0[a,b] will be the set of all continuous, nonnegative functions on [ a , b ] [ a , b ] [a,b][a, b][a,b].
Our main result is a generalization of the following geometrically obvious result:
A continuous, non-decreasing function f f fff on [ a , b ] [ a , b ] [a,b][a, b][a,b] can be approximated uniformly on [ a , b ] [ a , b ] [a,b][a, b][a,b] by functions of the form
ψ n ( x ) = f ( a ) + f ( b ) f ( a ) n k = 1 n 1 ( x c k ) 0 + ψ n ( x ) = f ( a ) + f ( b ) f ( a ) n k = 1 n 1 x c k 0 + psi_(n)(x)=f(a)+(f(b)-f(a))/(n)sum_(k=1)^(n-1)(x-c_(k))_(0)^(+)\psi_{n}(x)=f(a)+\frac{f(b)-f(a)}{n} \sum_{k=1}^{n-1}\left(x-c_{k}\right)_{0}^{+}ψn(x)=f(a)+f(b)f(a)nk=1n1(xck)0+
where n 2 n 2 n >= 2n \geqslant 2n2 and c k ( a , b ) , k = 1 , , n 1 c k ( a , b ) , k = 1 , , n 1 c_(k)in(a,b),k=1,dots,n-1c_{k} \in(a, b), k=1, \ldots, n-1ck(a,b),k=1,,n1, and
( x c ) + 0 = { 0 if x < c 1 if x c ( x c ) + 0 = 0       if  x < c 1       if  x c (x-c)_(+)^(0)={[0," if "x < c],[1," if "x >= c]:}(x-c)_{+}^{0}= \begin{cases}0 & \text { if } x<c \\ 1 & \text { if } x \geqslant c\end{cases}(xc)+0={0 if x<c1 if xc
More precisely, the points c k , k = 1 , , n 1 c k , k = 1 , , n 1 c_(k),k=1,dots,n-1c_{k}, k=1, \ldots, n-1ck,k=1,,n1, can be chosen so that ψ n ( x ) f ( x ) ψ n ( x ) + ( f ( b ) f ( a ) ) / n ψ n ( x ) f ( x ) ψ n ( x ) + ( f ( b ) f ( a ) ) / n psi_(n)(x) <= f(x) <= psi_(n)(x)+(f(b)-f(a))//n\psi_{n}(x) \leq f(x) \leq \psi_{n}(x)+(f(b)-f(a)) / nψn(x)f(x)ψn(x)+(f(b)f(a))/n for every x [ a , b ] x [ a , b ] x in[a,b]x \in[a, b]x[a,b].
theorem 1. Every f K l [ a , b ] , l 2 f K l [ a , b ] , l 2 f inK_(l)[a,b],l >= 2f \in K_{l}[a, b], l \geqslant 2fKl[a,b],l2, can be approximated uniformly on [ a , b ] [ a , b ] [a,b][a, b][a,b] by spline functions of the form
(1.2) ψ m , n ( f , x ) = k = 0 l 1 ( l k ) Δ b a m k f ( a ) ( x a ) k / ( b a ) k + + C ( f , m ) n k = 1 n 1 ( x c k ) + l 1 / ( b a ) l 1 (1.2) ψ m , n ( f , x ) = k = 0 l 1 ( l k ) Δ b a m k f ( a ) ( x a ) k / ( b a ) k + + C ( f , m ) n k = 1 n 1 x c k + l 1 / ( b a ) l 1 {:[(1.2)psi_(m,n)(f","x)=sum_(k=0)^(l-1)((l)/(k))Delta_((b-a)/(m))^(k)f(a)(x-a)^(k)//(b-a)^(k)+],[+(C(f,m))/(n)sum_(k=1)^(n-1)(x-c_(k))_(+)^(l-1)//(b-a)^(l-1)]:}\begin{gather*} \psi_{m, n}(f, x)=\sum_{k=0}^{l-1}\binom{l}{k} \Delta_{\frac{b-a}{m}}^{k} f(a)(x-a)^{k} /(b-a)^{k}+ \tag{1.2}\\ +\frac{C(f, m)}{n} \sum_{k=1}^{n-1}\left(x-c_{k}\right)_{+}^{l-1} /(b-a)^{l-1} \end{gather*}(1.2)ψm,n(f,x)=k=0l1(lk)Δbamkf(a)(xa)k/(ba)k++C(f,m)nk=1n1(xck)+l1/(ba)l1
where C ( f , m ) 0 , m l , n 2 , c k ( a , b ) , k = 1 , , n 1 C ( f , m ) 0 , m l , n 2 , c k ( a , b ) , k = 1 , , n 1 C(f,m) >= 0,m >= l,n >= 2,c_(k)in(a,b),k=1,dots,n-1C(f, m) \geqslant 0, m \geqslant l, n \geqslant 2, c_{k} \in(a, b), k=1, \ldots, n-1C(f,m)0,ml,n2,ck(a,b),k=1,,n1 and
( x c ) + l 1 = { 0 if x < c ( x c ) l 1 if x c ( x c ) + l 1 = 0  if  x < c ( x c ) l 1  if  x c (x-c)_(+)^(l-1)={[0" if "x < c],[(x-c)^(l-1)" if "x >= c]:}(x-c)_{+}^{l-1}=\left\{\begin{array}{l} 0 \text { if } x<c \\ (x-c)^{l-1} \text { if } x \geqslant c \end{array}\right.(xc)+l1={0 if x<c(xc)l1 if xc
In view of the preceding remark, Theorem 1 is true also if l = 1 l = 1 l=1l=1l=1. The coefficient C ( f , m ) C ( f , m ) C(f,m)C(f, m)C(f,m) is defined by
C ( f , m ) = ( m l 1 ) k = 0 m l Δ b a m l f ( a + k b a m ) C ( f , m ) = ( m l 1 ) k = 0 m l Δ b a m l f a + k b a m C(f,m)=((m)/(l-1))sum_(k=0)^(m-l)Delta_((b-a)/(m))^(l)f(a+k(b-a)/(m))C(f, m)=\binom{m}{l-1} \sum_{k=0}^{m-l} \Delta_{\frac{b-a}{m}}^{l} f\left(a+k \frac{b-a}{m}\right)C(f,m)=(ml1)k=0mlΔbamlf(a+kbam)
and
Δ h k f ( x ) = r = 0 k ( 1 ) k r ( k r ) f ( x + r h ) Δ h k f ( x ) = r = 0 k ( 1 ) k r ( k r ) f ( x + r h ) Delta_(h)^(k)f(x)=sum_(r=0)^(k)(-1)^(k-r)((k)/(r))f(x+rh)\Delta_{h}^{k} f(x)=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} f(x+r h)Δhkf(x)=r=0k(1)kr(kr)f(x+rh)
As an application of this theorem we shall mention two results which characterize convexity preserving continuous linear operators defined on the space C [ a , b ] C [ a , b ] C[a,b]C[a, b]C[a,b] of continuous functions on [ a , b ] [ a , b ] [a,b][a, b][a,b], with values in F [ a , b ] F [ a , b ] F[a,b]F[a, b]F[a,b], the space of bounded real-valued functions on [ a , b ] [ a , b ] [a,b][a, b][a,b] endowed with the supremum norm.
The first of these results gives necessary and sufficient conditions for a continuous linear operator to transform every continuous convex function of order l 2 l 2 l >= 2l \geqslant 2l2 into a convex function of order r 0 r 0 r >= 0r \geqslant 0r0.
theorem 2. Let Ψ : C [ a , b ] F [ a , b ] Ψ : C [ a , b ] F [ a , b ] Psi:C[a,b]rarr F[a,b]\Psi: C[a, b] \rightarrow F[a, b]Ψ:C[a,b]F[a,b] be a continuous linear operator. In order that for every f K l [ a , b ] , l 2 f K l [ a , b ] , l 2 f inK_(l)[a,b],l >= 2f \in K_{l}[a, b], l \geqslant 2fKl[a,b],l2, we have Ψ ( f , ) K r [ a , b ] Ψ ( f , ) K r [ a , b ] Psi(f,*)inK_(r)[a,b]\Psi(f, \cdot) \in K_{r}[a, b]Ψ(f,)Kr[a,b], r 0 r 0 r >= 0r \geqslant 0r0, it is necessary and sufficient that
(i) [ Ψ ( P , x 0 ) , , Ψ ( P , x r ) ] = 0 Ψ P , x 0 , , Ψ P , x r = 0 [Psi(P,x_(0)),dots,Psi(P,x_(r))]=0\left[\Psi\left(P, x_{0}\right), \ldots, \Psi\left(P, x_{r}\right)\right]=0[Ψ(P,x0),,Ψ(P,xr)]=0 for every polynomial P P PPP of degree l 1 l 1 <= l-1\leq l-1l1 and every set of r + 1 r + 1 r+1r+1r+1 points x 0 < < x p x 0 < < x p x_(0) < dots < x_(p)x_{0}<\ldots<x_{p}x0<<xp in [ a , b ] [ a , b ] [a,b][a, b][a,b].
(ii) Ψ ( ( t c ) + l 1 , ) K r [ a , b ] Ψ ( t c ) + l 1 , K r [ a , b ] Psi((t-c)_(+)^(l-1),*)inK_(r)[a,b]\Psi\left((t-c)_{+}^{l-1}, \cdot\right) \in K_{r}[a, b]Ψ((tc)+l1,)Kr[a,b] for every c ( a , b ) c ( a , b ) c in(a,b)c \in(a, b)c(a,b).
Clearly, condition (i) means that for every polynomial P P PPP of degree l 1 , Ψ ( P , ) l 1 , Ψ ( P , ) <= l-1,Psi(P,*)\leq l-1, \Psi(P, \cdot)l1,Ψ(P,) should be identically zero if y = 0 y = 0 y=0y=0y=0, or a polynomial of degree r 1 r 1 <= r-1\leq r-1r1 if r 1 r 1 r >= 1r \geqslant 1r1.
The second result gives necessary and sufficient conditions for a continuous linear operator to transform a convex function which is in every class K i [ a , b ] , i = 0 , 1 , , l ( l 2 ) K i [ a , b ] , i = 0 , 1 , , l ( l 2 ) K_(i)[a,b],i=0,1,dots,l(l >= 2)K_{i}[a, b], i=0,1, \ldots, l(l \geqslant 2)Ki[a,b],i=0,1,,l(l2) into an element of an arbitrary closed, convex cone M [ a , b ] C [ a , b ] M [ a , b ] C [ a , b ] M[a,b]sube C[a,b]M[a, b] \subseteq C[a, b]M[a,b]C[a,b].
THEOREM 3. Let Ψ : C [ a , b ] F [ a , b ] Ψ : C [ a , b ] F [ a , b ] Psi:C[a,b]rarr F[a,b]\Psi: C[a, b] \rightarrow F[a, b]Ψ:C[a,b]F[a,b] be a continuous linear operator and let M [ a , b ] M [ a , b ] M[a,b]M[a, b]M[a,b] be a cloeed convex cone in C [ a , b ] C [ a , b ] C[a,b]C[a, b]C[a,b]. In order that for every f i = 0 l K i [ a , b ] , l 2 f i = 0 l K i [ a , b ] , l 2 f innnn_(i=0)^(l)K_(i)[a,b],l >= 2f \in \bigcap_{i=0}^{l} K_{i}[a, b], l \geqslant 2fi=0lKi[a,b],l2, we have Ψ ( f , ) M [ a , b ] Ψ ( f , ) M [ a , b ] Psi(f,*)in M[a,b]\Psi(f, \cdot) \in M[a, b]Ψ(f,)M[a,b], it is necessary and sufficient that
(i) Ψ ( ( t a ) r , ) M [ a , b ] Ψ ( t a ) r , M [ a , b ] Psi((t-a)^(r),*)in M[a,b]\Psi\left((t-a)^{r}, \cdot\right) \in M[a, b]Ψ((ta)r,)M[a,b] for every 0 r l 1 0 r l 1 0 <= r <= l-10 \leq r \leq l-10rl1
(ii) Ψ ( ( t c ) + t 1 , ) M [ a , b ] Ψ ( t c ) + t 1 , M [ a , b ] Psi*((t-c)_(+)^(t-1),*)in M[a,b]\Psi \cdot\left((t-c)_{+}^{t-1}, \cdot\right) \in M[a, b]Ψ((tc)+t1,)M[a,b] for every c ( a , b ) c ( a , b ) c in(a,b)c \in(a, b)c(a,b).
Theorems 2 and 3 are true also if l = 1 l = 1 l=1l=1l=1 if one assumes that Ψ ( ( t c ) + 0 , ) Ψ ( t c ) + 0 , Psi((t-c)_(+)^(0),*)\Psi\left((t-c)_{+}^{0}, \cdot\right)Ψ((tc)+0,) has a meaning since ( t c ) + 0 = χ [ c , ) ( t ) ( t c ) + 0 = χ [ c , ) ( t ) (t-c)_(+)^(0)=chi_([c,oo))(t)(t-c)_{+}^{0}=\chi_{[c, \infty)}(t)(tc)+0=χ[c,)(t) is not continuous on [ a , b ] [ a , b ] [a,b][a, b][a,b] if c ( a , b ) c ( a , b ) c in(a,b)c \in(a, b)c(a,b).
Problems such as these have been studied by several authors. First results of this type were obtained by T. popoviciu [1]. He has studied monotonicity preserving operators of the form
Φ ( x , f ) = i = 1 n f ( ξ i ) φ i ( x ) Φ ( x , f ) = i = 1 n f ξ i φ i ( x ) Phi(x,f)=sum_(i=1)^(n)f(xi_(i))varphi_(i)(x)\Phi(x, f)=\sum_{i=1}^{n} f\left(\xi_{i}\right) \varphi_{i}(x)Φ(x,f)=i=1nf(ξi)φi(x)
where a ξ 1 < < ξ n b a ξ 1 < < ξ n b a <= xi_(1) < dots < xi_(n) <= ba \leq \xi_{1}<\ldots<\xi_{n} \leq baξ1<<ξnb and φ i , i = 1 , , n φ i , i = 1 , , n varphi_(i),i=1,dots,n\varphi_{i}, i=1, \ldots, nφi,i=1,,n are differentiable functions satisfying the condition
i = 1 n φ i ( x ) = 1 , x [ a , b ] i = 1 n φ i ( x ) = 1 , x [ a , b ] sum_(i=1)^(n)varphi_(i)^(')(x)=1,x in[a,b]\sum_{i=1}^{n} \varphi_{i}^{\prime}(x)=1, x \in[a, b]i=1nφi(x)=1,x[a,b]
Under these hypotheses, in view of Theorem 2, a necessary and sufficient condition for Φ Φ Phi\PhiΦ to transform a non-decreasing function into a non-decreasing function is that for every c ( a , b ) c ( a , b ) c in(a,b)c \in(a, b)c(a,b) the function
Φ ( ( t c ) + 0 , x ) = i = 1 n ( ξ i c ) + 0 φ i ( x ) Φ ( t c ) + 0 , x = i = 1 n ξ i c + 0 φ i ( x ) Phi((t-c)_(+)^(0),x)=sum_(i=1)^(n)(xi_(i)-c)_(+)^(0)varphi_(i)(x)\Phi\left((t-c)_{+}^{0}, x\right)=\sum_{i=1}^{n}\left(\xi_{i}-c\right)_{+}^{0} \varphi_{i}(x)Φ((tc)+0,x)=i=1n(ξic)+0φi(x)
be a non-decreasing function on [ a , b ] [ a , b ] [a,b][a, b][a,b]. Since the functions φ i , i = 1 , , n φ i , i = 1 , , n varphi_(i),i=1,dots,n\varphi_{i}, i=1, \ldots, nφi,i=1,,n are differentiable functions, this will be true if
( Φ ( ( t c ) + 0 , x ) = i = 1 n ( ξ i c ) + 0 φ i ( x ) 0 Φ ( t c ) + 0 , x = i = 1 n ξ i c + 0 φ i ( x ) 0 (Phi((t-c)_(+)^(0),x)^(')=sum_(i=1)^(n)(xi_(i)-c)_(+)^(0)varphi_(i)^(')(x) >= 0:}\left(\Phi\left((t-c)_{+}^{0}, x\right)^{\prime}=\sum_{i=1}^{n}\left(\xi_{i}-c\right)_{+}^{0} \varphi_{i}^{\prime}(x) \geqslant 0\right.(Φ((tc)+0,x)=i=1n(ξic)+0φi(x)0
which is equivalent to Popoviciu's condition
i = 1 j φ i ( x ) 1 for j = 1 , , n i = 1 j φ i ( x ) 1  for  j = 1 , , n sum_(i=1)^(j)varphi_(i)^(')(x) <= 1" for "j=1,dots,n\sum_{i=1}^{j} \varphi_{i}^{\prime}(x) \leq 1 \text { for } j=1, \ldots, ni=1jφi(x)1 for j=1,,n
Similar results were obtained by J. A. ROULIER [2] for operators of the form
Φ ( f , x ) = a b f ( t ) K ( x , t ) d t Φ ( f , x ) = a b f ( t ) K ( x , t ) d t Phi(f,x)=int_(a)^(b)f(t)K(x,t)dt\Phi(f, x)=\int_{a}^{b} f(t) K(x, t) d tΦ(f,x)=abf(t)K(x,t)dt
where K K KKK is a continuous function on [ a , b ] × [ a , b ] [ a , b ] × [ a , b ] [a,b]xx[a,b][a, b] \times[a, b][a,b]×[a,b]. He has proved that Φ ( f , ) Φ ( f , ) Phi(f,*)\Phi(f, \cdot)Φ(f,) is a non-negative increasing function on [ a , b ] [ a , b ] [a,b][a, b][a,b] for every continuous, non-negative and increasing function f f fff if and only if
Φ ( ( t c ) + 0 , x ) = c b K ( x , t ) d t Φ ( t c ) + 0 , x = c b K ( x , t ) d t Phi((t-c)_(+)^(0),x)=int_(c)^(b)K(x,t)dt\Phi\left((t-c)_{+}^{0}, x\right)=\int_{c}^{b} K(x, t) d tΦ((tc)+0,x)=cbK(x,t)dt
is non-negative and increasing for every c [ a , b ] c [ a , b ] c in[a,b]c \in[a, b]c[a,b]. This result is clearly a simple consequence of Theorem 3.
Using a more general definition of convexity and an essentially different approach, Z. ZIEGLER [3] and S. KARLIN and W. J. STUDDEN [4, Ch. 11] have developed a theory of generalized convex functions which contains results similar to Theorems 1-3. Our proof of Theorem 1 is based on the fact, observed first by т. popoviciu [5], that Bernstein polynomial B m ( f , ) B m ( f , ) B_(m)(f,*)B_{m}(f, \cdot)Bm(f,) of a convex function f f fff of order l l lll is also a convex function of order l l lll, and on the well-known fact that B m f , x ) f ( x ) B m f , x f ( x ) {:B_(m)f,x)rarr f(x)\left.B_{m} f, x\right) \rightarrow f(x)Bmf,x)f(x) uniformly as m m m rarr oom \rightarrow \inftym. These two facts. for which, apparently, there is no obvious analogy in the theory of generalized convex functions, make our proof of Theorem 1 very simple. Theorems 2 and 3 follow then easily from the Theorem 1.

2. Proofs.

We shall, for simplicity, prove Theorem 1 only for the special interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1]; the general case then follows by simple substitutions. The proof of Theorem 1 is based on the following lemma.
Lemma 1 . Let g g ggg be l-times differentiable on [ 0 , 1 ] , l 2 [ 0 , 1 ] , l 2 [0,1],l >= 2[0,1], l \geqslant 2[0,1],l2, and let g ( l ) ( x ) 0 g ( l ) ( x ) 0 g^((l))(x) >= 0g^{(l)}(x) \geqslant 0g(l)(x)0 for x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1]. Let
T l 1 ( g , x ) = k = 0 l 1 x k k ! g ( k ) ( 0 ) T l 1 ( g , x ) = k = 0 l 1 x k k ! g ( k ) ( 0 ) T_(l-1)(g,x)=sum_(k=0)^(l-1)(x^(k))/(k!)g^((k))(0)T_{l-1}(g, x)=\sum_{k=0}^{l-1} \frac{x^{k}}{k!} g^{(k)}(0)Tl1(g,x)=k=0l1xkk!g(k)(0)
be the Taylor polynomial of g g ggg of degree l 1 l 1 <= l-1\leq l-1l1. Then for every n 2 n 2 n >= 2n \geq 2n2 there exist points c 1 < < c n 1 c 1 < < c n 1 c_(1) < dots < c_(n-1)c_{1}<\ldots<c_{n-1}c1<<cn1 in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1) such that
g ( x ) = T l 1 ( g , x ) + g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n ( l 1 ) ! k = 1 n 1 ( x c k ) + l 1 + R n ( g , x ) g ( x ) = T l 1 ( g , x ) + g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n ( l 1 ) ! k = 1 n 1 x c k + l 1 + R n ( g , x ) g(x)=T_(l-1)(g,x)+(g^((l-1))(1)-g^((l-1))(0))/(n(l-1)!)sum_(k=1)^(n-1)(x-c_(k))_(+)^(l-1)+R_(n)(g,x)g(x)=T_{l-1}(g, x)+\frac{g^{(l-1)}(1)-g^{(l-1)}(0)}{n(l-1)!} \sum_{k=1}^{n-1}\left(x-c_{k}\right)_{+}^{l-1}+R_{n}(g, x)g(x)=Tl1(g,x)+g(l1)(1)g(l1)(0)n(l1)!k=1n1(xck)+l1+Rn(g,x)
where
| R ( g , x ) | 1 n ( l 1 ) ! 0 1 g ( l ) ( t ) d t | R ( g , x ) | 1 n ( l 1 ) ! 0 1 g ( l ) ( t ) d t |R(g,x)| <= (1)/(n(l-1)!)int_(0)^(1)g^((l))(t)dt|R(g, x)| \leq \frac{1}{n(l-1)!} \int_{0}^{1} g^{(l)}(t) d t|R(g,x)|1n(l1)!01g(l)(t)dt
Proof of Lemma 1. We have first
(2.1) g ( x ) = T l 1 ( g , x ) + 1 ( l 2 ) 0 1 ( x t ) + l 2 ( g ( l 1 ) ( t ) g ( l 1 ) ( 0 ) ) d t (2.1) g ( x ) = T l 1 ( g , x ) + 1 ( l 2 ) 0 1 ( x t ) + l 2 g ( l 1 ) ( t ) g ( l 1 ) ( 0 ) d t {:(2.1)g(x)=T_(l-1)(g","x)+(1)/((l-2))-int_(0)^(1)(x-t)_(+)^(l-2)(g^((l-1))(t)-g^((l-1))(0))dt:}\begin{equation*} g(x)=T_{l-1}(g, x)+\frac{1}{(l-2)}-\int_{0}^{1}(x-t)_{+}^{l-2}\left(g^{(l-1)}(t)-g^{(l-1)}(0)\right) d t \tag{2.1} \end{equation*}(2.1)g(x)=Tl1(g,x)+1(l2)01(xt)+l2(g(l1)(t)g(l1)(0))dt
Since g ( l ) ( x ) 0 g ( l ) ( x ) 0 g^((l))(x) >= 0g^{(l)}(x) \geqslant 0g(l)(x)0 on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1], the function g ( l 1 ) ( x ) g ( l 1 ) ( 0 ) g ( l 1 ) ( x ) g ( l 1 ) ( 0 ) g^((l-1))(x)-g^((l-1))(0)g^{(l-1)}(x)-g^{(l-1)}(0)g(l1)(x)g(l1)(0) is non-negative, non-decreasing and continuous on [ 0,1 ]. Hence we can find c 1 < < c n 1 c 1 < < c n 1 c_(1) < dots < c_(n-1)c_{1}<\ldots<c_{n-1}c1<<cn1 in ( 0,1 ) such that
| g ( l 1 ) ( t ) g ( l 1 ) ( 0 ) g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n k = 1 n 1 ( t c k ) + 0 | g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n g ( l 1 ) ( t ) g ( l 1 ) ( 0 ) g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n k = 1 n 1 t c k + 0 g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n |g^((l-1))(t)-g^((l-1))(0)-(g^((l-1))(1)-g^((l-1))(0))/(n)sum_(k=1)^(n-1)(t-c_(k))_(+)^(0)| <= (g^((l-1)(1))-g^((l-1)(0)))/(n)\left|g^{(l-1)}(t)-g^{(l-1)}(0)-\frac{g^{(l-1)}(1)-g^{(l-1)}(0)}{n} \sum_{k=1}^{n-1}\left(t-c_{k}\right)_{+}^{0}\right| \leqslant \frac{g^{(l-1)(1)}-g^{(l-1)(0)}}{n}|g(l1)(t)g(l1)(0)g(l1)(1)g(l1)(0)nk=1n1(tck)+0|g(l1)(1)g(l1)(0)n
and it follows that, for every t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in[0,1]t[0,1],
(2.2) g ( l 1 ) ( t ) g ( l 1 ) ( 0 ) g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n k = 1 n 1 ( t c k ) + 0 + ε n ( g , t ) (2.2) g ( l 1 ) ( t ) g ( l 1 ) ( 0 ) g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n k = 1 n 1 t c k + 0 + ε n ( g , t ) {:(2.2)g^((l-1))(t)-g^((l-1))(0)-(g^((l-1)(1))-g^((l-1)(0)))/(n)sum_(k=1)^(n-1)(t-c_(k))_(+)^(0)+epsi_(n)(g","t):}\begin{equation*} g^{(l-1)}(t)-g^{(l-1)}(0)-\frac{g^{(l-1)(1)}-g^{(l-1)(0)}}{n} \sum_{k=1}^{n-1}\left(t-c_{k}\right)_{+}^{0}+\varepsilon_{n}(g, t) \tag{2.2} \end{equation*}(2.2)g(l1)(t)g(l1)(0)g(l1)(1)g(l1)(0)nk=1n1(tck)+0+εn(g,t)
where
(2,3) | ε n ( g , t ) | g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n = 1 n 0 1 g ( l ) ( u ) d u (2,3) ε n ( g , t ) g ( l 1 ) ( 1 ) g ( l 1 ) ( 0 ) n = 1 n 0 1 g ( l ) ( u ) d u {:(2,3)|epsi_(n)(g,t)| <= (g^((l-1))(1)-g^((l-1))(0))/(n)=(1)/(n)int_(0)^(1)g^((l))(u)du:}\begin{equation*} \left|\varepsilon_{n}(g, t)\right| \leq \frac{g^{(l-1)}(1)-g^{(l-1)}(0)}{n}=\frac{1}{n} \int_{0}^{1} g^{(l)}(u) d u \tag{2,3} \end{equation*}(2,3)|εn(g,t)|g(l1)(1)g(l1)(0)n=1n01g(l)(u)du
The proof of Lemma 1 is finally completed by substituting (2.2) into (2.1) and using inequality (2.3).
Proof of Theorem 1. Let B m ( f , ) B m ( f , ) B_(m)(f,*)B_{m}(f, \cdot)Bm(f,) be the Bernstein polynomial of f f fff of degree m l m l m >= lm \geqslant lml :
B m ( f , x ) = k = 0 m f ( k m ! ( m k ) x k ( 1 x ) m k B m ( f , x ) = k = 0 m f k m ! ( m k ) x k ( 1 x ) m k B_(m)(f,x)=sum_(k=0)^(m)f((k)/(m)!((m)/(k))x^(k)(1-x)^(m-k):}B_{m}(f, x)=\sum_{k=0}^{m} f\left(\frac{k}{m}!\binom{m}{k} x^{k}(1-x)^{m-k}\right.Bm(f,x)=k=0mf(km!(mk)xk(1x)mk
Since
(2.4) B m ( l ) ( f , x ) = m ( m 1 ) ( m l + 1 ) k = 0 m l Δ 1 / m l f ( k m ) ( m l k ) x k ( 1 x ) m l k (2.4) B m ( l ) ( f , x ) = m ( m 1 ) ( m l + 1 ) k = 0 m l Δ 1 / m l f k m ( m l k ) x k ( 1 x ) m l k {:(2.4)B_(m)^((l))(f","x)=m(m-1)dots(m-l+1)sum_(k=0)^(m-l)Delta_(1//m)^(l)f((k)/(m))((m-l)/(k))x^(k)(1-x)^(m-l-k):}\begin{equation*} B_{m}^{(l)}(f, x)=m(m-1) \ldots(m-l+1) \sum_{k=0}^{m-l} \Delta_{1 / m}^{l} f\left(\frac{k}{m}\right)\binom{m-l}{k} x^{k}(1-x)^{m-l-k} \tag{2.4} \end{equation*}(2.4)Bm(l)(f,x)=m(m1)(ml+1)k=0mlΔ1/mlf(km)(mlk)xk(1x)mlk
and since f K l [ 0 , 1 ] f K l [ 0 , 1 ] f inK_(l)[0,1]f \in K_{l}[0,1]fKl[0,1], we see that B m ( l ) ( f , x ) 0 B m ( l ) ( f , x ) 0 B_(m)^((l))(f,x) >= 0B_{m}^{(l)}(f, x) \geqslant 0Bm(l)(f,x)0 for x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1]. By Lemma 1 we can find points c 1 < < c n 1 c 1 < < c n 1 c_(1) < dots < c_(n-1)c_{1}<\ldots<c_{n-1}c1<<cn1 in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1) such that, for every x [ 0.1 ] x [ 0.1 ] x in[0.1]x \in[0.1]x[0.1],
(2.5) B m ( f , x ) = T l 1 ( B m ( f ) , x ) + C ( f , m ) n k = 1 n 1 ( x c k ) + l 1 + R n ( B m ( f ) , x ) (2.5) B m ( f , x ) = T l 1 B m ( f ) , x + C ( f , m ) n k = 1 n 1 x c k + l 1 + R n B m ( f ) , x {:(2.5)B_(m)(f","x)=T_(l-1)(B_(m)(f),x)+(C(f,m))/(n)sum_(k=1)^(n-1)(x-c_(k))_(+)^(l-1)+R_(n)(B_(m)(f),x):}\begin{equation*} B_{m}(f, x)=T_{l-1}\left(B_{m}(f), x\right)+\frac{C(f, m)}{n} \sum_{k=1}^{n-1}\left(x-c_{k}\right)_{+}^{l-1}+R_{n}\left(B_{m}(f), x\right) \tag{2.5} \end{equation*}(2.5)Bm(f,x)=Tl1(Bm(f),x)+C(f,m)nk=1n1(xck)+l1+Rn(Bm(f),x)
where
(2.6) C ( f , m ) = B m ( l 1 ) ( f , 1 ) B m ( l 1 ) ( f , 0 ) ( l 1 ) ! = 1 ( l 1 ) 0 1 B m ( l ) ( f , t ) d t 0 (2.6) C ( f , m ) = B m ( l 1 ) ( f , 1 ) B m ( l 1 ) ( f , 0 ) ( l 1 ) ! = 1 ( l 1 ) 0 1 B m ( l ) ( f , t ) d t 0 {:(2.6)C(f","m)=(B_(m)^((l-1))(f,1)-B_(m)^((l-1))(f,0))/((l-1)!)=-(1)/((l-1))int_(0)^(1)B_(m)^((l))(f","t)dt >= 0:}\begin{equation*} C(f, m)=\frac{B_{m}^{(l-1)}(f, 1)-B_{m}^{(l-1)}(f, 0)}{(l-1)!}=-\frac{1}{(l-1)} \int_{0}^{1} B_{m}^{(l)}(f, t) d t \geqslant 0 \tag{2.6} \end{equation*}(2.6)C(f,m)=Bm(l1)(f,1)Bm(l1)(f,0)(l1)!=1(l1)01Bm(l)(f,t)dt0
and, by Lemma 1,
(2.7) | R n ( B m ( f ) , x ) | 1 n ( l 1 ) ! 0 1 B m ( l ) ( f , t ) d t = C ( f , m ) n (2.7) R n B m ( f ) , x 1 n ( l 1 ) ! 0 1 B m ( l ) ( f , t ) d t = C ( f , m ) n {:(2.7)|R_(n)(B_(m)(f),x)| <= (1)/(n(l-1)!)int_(0)^(1)B_(m)^((l))(f","t)dt=(C(f,m))/(n):}\begin{equation*} \left|R_{n}\left(B_{m}(f), x\right)\right| \leq \frac{1}{n(l-1)!} \int_{0}^{1} B_{m}^{(l)}(f, t) d t=\frac{C(f, m)}{n} \tag{2.7} \end{equation*}(2.7)|Rn(Bm(f),x)|1n(l1)!01Bm(l)(f,t)dt=C(f,m)n
Let
(2.8) ψ m , n ( f , x ) = T l 1 ( B n ( f ) , x ) + C ( f , m ) n k = 1 n 1 ( x c k ) + l 1 . (2.8) ψ m , n ( f , x ) = T l 1 B n ( f ) , x + C ( f , m ) n k = 1 n 1 x c k + l 1 . {:(2.8)psi_(m,n)(f","x)=T_(l-1)(B_(n)(f),x)+(C(f,m))/(n)sum_(k=1)^(n-1)(x-c_(k))_(+)^(l-1).:}\begin{equation*} \psi_{m, n}(f, x)=T_{l-1}\left(B_{n}(f), x\right)+\frac{C(f, m)}{n} \sum_{k=1}^{n-1}\left(x-c_{k}\right)_{+}^{l-1} . \tag{2.8} \end{equation*}(2.8)ψm,n(f,x)=Tl1(Bn(f),x)+C(f,m)nk=1n1(xck)+l1.
In view of (2.5) and (2.7) we have
| B m ( f , x ) ψ m , n ( f , x ) | C ( f , m ) n B m ( f , x ) ψ m , n ( f , x ) C ( f , m ) n |B_(m)(f,x)-psi_(m,n)(f,x)| <= (C(f,m))/(n)\left|B_{m}(f, x)-\psi_{m, n}(f, x)\right| \leq \frac{C(f, m)}{n}|Bm(f,x)ψm,n(f,x)|C(f,m)n
and it follows that, for every x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1],
| f ( x ) ψ m , n ( f , x ) | | f ( x ) B m ( f , x ) | + | B m ( f , x ) ψ m , n ( f , x ) | 2 ω f ( 1 m ) + C ( f , m ) n f ( x ) ψ m , n ( f , x ) f ( x ) B m ( f , x ) + B m ( f , x ) ψ m , n ( f , x ) 2 ω f 1 m + C ( f , m ) n {:[|f(x)-psi_(m,n)(f,x)| <= |f(x)-B_(m)(f,x)|+|B_(m)(f,x)-psi_(m,n)(f,x)|],[ <= 2omega_(f)((1)/(sqrtm))+(C(f,m))/(n)]:}\begin{aligned} \left|f(x)-\psi_{m, n}(f, x)\right| \leq & \left|f(x)-B_{m}(f, x)\right|+\left|B_{m}(f, x)-\psi_{m, n}(f, x)\right| \\ & \leq 2 \omega_{f}\left(\frac{1}{\sqrt{m}}\right)+\frac{C(f, m)}{n} \end{aligned}|f(x)ψm,n(f,x)||f(x)Bm(f,x)|+|Bm(f,x)ψm,n(f,x)|2ωf(1m)+C(f,m)n
Hence, by choosing first m m mmm large enough so that ω f ( 1 / m ) ω f ( 1 / m ) omega_(f)(1//sqrtm)\omega_{f}(1 / \sqrt{m})ωf(1/m) is small, and then choosing n n nnn so large that C ( f , m ) / n C ( f , m ) / n C(f,m)//nC(f, m) / nC(f,m)/n is small, we see that any f K l [ 0 , 1 ] , l 2 f K l [ 0 , 1 ] , l 2 f inK_(l)[0,1],l >= 2f \in K_{l}[0,1], l \geqslant 2fKl[0,1],l2, can be approximated uniformly on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] by spline functions ψ m , n ( f , ) ψ m , n ( f , ) psi_(m,n)(f,*)\psi_{m, n}(f, \cdot)ψm,n(f,). In order to complete the proof of Theorem 1 we have only to observe that
T l 1 ( B m ( f ) , x ) = k = 0 l 1 ( l k ) ( Δ 1 / m k f ( 0 ) ) x k T l 1 B m ( f ) , x = k = 0 l 1 ( l k ) Δ 1 / m k f ( 0 ) x k T_(l-1)(B_(m)(f),x)=sum_(k=0)^(l-1)((l)/(k))(Delta_(1//m)^(k)f(0))x^(k)T_{l-1}\left(B_{m}(f), x\right)=\sum_{k=0}^{l-1}\binom{l}{k}\left(\Delta_{1 / m}^{k} f(0)\right) x^{k}Tl1(Bm(f),x)=k=0l1(lk)(Δ1/mkf(0))xk
and that, by (2.6) and (2.4),
C ( f , m ) = m ( m 1 ) ( m l + 1 ) ( l 1 ) ! k = 0 m l Δ 1 / m l f ( k / m ) ( m l k ) 0 1 t k ( 1 t ) m l k d l = ( m l 1 ) k = 0 m l Δ 1 / m l f ( k / m ) C ( f , m ) = m ( m 1 ) ( m l + 1 ) ( l 1 ) ! k = 0 m l Δ 1 / m l f ( k / m ) ( m l k ) 0 1 t k ( 1 t ) m l k d l = ( m l 1 ) k = 0 m l Δ 1 / m l f ( k / m ) {:[C(f","m)=(m(m-1)dots(m-l+1))/((l-1)!)sum_(k=0)^(m-l)Delta_(1//m)^(l)f(k//m)((m-l)/(k))int_(0)^(1)t^(k)(1-t)^(m-l-k)dl],[=((m)/(l-1))sum_(k=0)^(m-l)Delta_(1//m)^(l)f(k//m)]:}\begin{gathered} C(f, m)=\frac{m(m-1) \ldots(m-l+1)}{(l-1)!} \sum_{k=0}^{m-l} \Delta_{1 / m}^{l} f(k / m)\binom{m-l}{k} \int_{0}^{1} t^{k}(1-t)^{m-l-k} d l \\ =\binom{m}{l-1} \sum_{k=0}^{m-l} \Delta_{1 / m}^{l} f(k / m) \end{gathered}C(f,m)=m(m1)(ml+1)(l1)!k=0mlΔ1/mlf(k/m)(mlk)01tk(1t)mlkdl=(ml1)k=0mlΔ1/mlf(k/m)
It follows then from (2.8) that
ψ m , n ( f , x ) = k = 0 l 1 ( l k ) ( Δ 1 / n n k f ( 0 ) ) x k + C ( f , m ) n k = 1 n 1 ( x c k ) + l 1 ψ m , n ( f , x ) = k = 0 l 1 ( l k ) Δ 1 / n n k f ( 0 ) x k + C ( f , m ) n k = 1 n 1 x c k + l 1 psi_(m,n)(f,x)=sum_(k=0)^(l-1)((l)/(k))(Delta_(1//nn)^(k)f(0))x^(k)+(C(f,m))/(n)sum_(k=1)^(n-1)(x-c_(k))_(+)^(l-1)\psi_{m, n}(f, x)=\sum_{k=0}^{l-1}\binom{l}{k}\left(\Delta_{1 / n n}^{k} f(0)\right) x^{k}+\frac{C(f, m)}{n} \sum_{k=1}^{n-1}\left(x-c_{k}\right)_{+}^{l-1}ψm,n(f,x)=k=0l1(lk)(Δ1/nnkf(0))xk+C(f,m)nk=1n1(xck)+l1
where C ( f , m ) 0 C ( f , m ) 0 C(f,m) >= 0C(f, m) \geqslant 0C(f,m)0 by (2.6).
Proof of Theorem 2. (Necessity) Suppose that Ψ Ψ Psi\PsiΨ transforms every convex function of order l 2 l 2 l >= 2l \geqslant 2l2 into a convex function of order r 0 r 0 r >= 0r \geqslant 0r0. Let P P PPP be a polynomial of degree l 1 l 1 <= l-1\leq l-1l1. Since P P PPP and P P -P-PP are both convex functions of order l l lll, the functions Ψ ( ± P , ) Ψ ( ± P , ) Psi(+-P,*)\Psi( \pm P, \cdot)Ψ(±P,) are convex functions of order r 0 r 0 r >= 0r \geqslant 0r0. Hence
[ Ψ ( ± P , x 0 ) , , Ψ ( ± P , x r ] 0 Ψ ± P , x 0 , , Ψ ± P , x r 0 [Psi(+-P,x_(0)),dots,Psi(+-P,x_(r)] >= 0:}\left[\Psi\left( \pm P, x_{0}\right), \ldots, \Psi\left( \pm P, x_{r}\right] \geqslant 0\right.[Ψ(±P,x0),,Ψ(±P,xr]0
and (i) follows. The necessity of (ii) is obvious since ( x c ) + l 1 K l [ a , b ] ( x c ) + l 1 K l [ a , b ] (x-c)_(+)^(l-1)inK_(l)[a,b](x-c)_{+}^{l-1} \in K_{l}[a, b](xc)+l1Kl[a,b], l 2 l 2 l >= 2l \geqslant 2l2.
(Sufficiency) Let f K l [ a , b ] f K l [ a , b ] f inK_(l)[a,b]f \in K_{l}[a, b]fKl[a,b] and let Ψ m , n ( f , ) Ψ m , n ( f , ) Psi_(m,n)(f,*)\Psi_{m, n}(f, \cdot)Ψm,n(f,) be a spline function of the form (1.2). The proof of sufficiency of conditions (i) and (ii) of Theorem 2 consists in showing that these conditions and C ( f , m ) 0 C ( f , m ) 0 C(f,m) >= 0C(f, m) \geqslant 0C(f,m)0 imply
[ Ψ m , n ( ψ , x 0 ) , , Ψ m , n ( ψ , x r ) ] 0 . Ψ m , n ψ , x 0 , , Ψ m , n ψ , x r 0 . [Psi_(m,n)(psi,x_(0)),dots,Psi_(m,n)(psi,x_(r))] >= 0.\left[\Psi_{m, n}\left(\psi, x_{0}\right), \ldots, \Psi_{m, n}\left(\psi, x_{r}\right)\right] \geqslant 0 .[Ψm,n(ψ,x0),,Ψm,n(ψ,xr)]0.
Using the fact that Ψ Ψ Psi\PsiΨ is a continuous linear operator and that the functions ψ m , n ( f , ) ψ m , n ( f , ) psi_(m,n)(f,*)\psi_{m, n}(f, \cdot)ψm,n(f,) approximate uniformly f f fff on [ a , b ] [ a , b ] [a,b][a, b][a,b], we obtain
[ Ψ ( f , x 0 ) , , Ψ ( f , x r ) ] 0 Ψ f , x 0 , , Ψ f , x r 0 [Psi(f,x_(0)),dots,Psi(f,x_(r))] >= 0\left[\Psi\left(f, x_{0}\right), \ldots, \Psi\left(f, x_{r}\right)\right] \geqslant 0[Ψ(f,x0),,Ψ(f,xr)]0
and so Ψ ( f , ) K r [ a , b ] Ψ ( f , ) K r [ a , b ] Psi(f,*)inK_(r)[a,b]\Psi(f, \cdot) \in K_{r}[a, b]Ψ(f,)Kr[a,b].
The proof of Theorem 3 is similar. Necessity of conditions (i) and (ii) is obvious. To show that these conditions are sufficient, observe that the hypothesis f i = 0 l K i [ a , b ] f i = 0 l K i [ a , b ] f innnn_(i=0)^(l)K_(i)[a,b]f \in \bigcap_{i=0}^{l} K_{i}[a, b]fi=0lKi[a,b] implies that all the coefficients of the function ψ m , n ( f , ) ψ m , n ( f , ) psi_(m,n)(f,*)\psi_{m, n}(f, \cdot)ψm,n(f,) in (1.2) are non-negative. Conditions (i) and (ii) of Theorem 3 imply then that Ψ ( ψ m , n , ) M [ a , b ] Ψ ψ m , n , M [ a , b ] Psi(psi_(m,n),*)in M[a,b]\Psi\left(\psi_{m, n}, \cdot\right) \in M[a, b]Ψ(ψm,n,)M[a,b] and the rest of the proof is completed as before by observing that Ψ Ψ Psi\PsiΨ is a continuous linear operator and that the functions ψ m , n ( f , ) ψ m , n ( f , ) psi_(m,n)(f,*)\psi_{m, n}(f, \cdot)ψm,n(f,) approximate uniformly f f fff on [ a , b ] [ a , b ] [a,b][a, b][a,b]. Since the cone M [ a , b ] M [ a , b ] M[a,b]M[a, b]M[a,b] is closed, by hypothesis, this implies that Ψ ( f , ) M [ a , b ] Ψ ( f , ) M [ a , b ] Psi(f,*)in M[a,b]\Psi(f, \cdot) \in M[a, b]Ψ(f,)M[a,b] and Theorem 3 is proved.

REFERENCES

[1] Popovicin, T., Remarques sur la conservation du signe et de la monotonie par certains polynômes d'interpolation d'une fonction d'une variable, Annales Univ. Sci. Budapestinensis de Rolando Eötvös nom., Sectio Math., 3-4, 241-246 (1960/61).
[2] Roulier, J., Linear operators invariant on non-negative monotone functions, SIAM J. Numer. Analysis 8, 30-35 (1971).
[3] Ziegler, Z., Genevalized convexity cones, Pacific J. Matl. 17, 561-580 (1966).
[4] Karlin S., Studden W. J., Tchebycheff Systems, with applications in Analysis and Statistics, Interscience, New York, 1966.
[5] Popoviciu, T., Sur l'approximation des fonctions convexes d'ordre superieur, Mathematica (Cluj), 10, 49-54 (1935).

  1. 1 1 ^(1){ }^{1}1 Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
    2 2 ^(2){ }^{2}2 Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607.