Return to Article Details Approximation and numerical results for phase field system by a fractional step scheme

APPROXIMATION AND NUMERICAL RESULTS FOR PHASE FIELD SYSTEM BY A FRACTIONAL STEP SCHEME

COSTICÃ MOROŞANU
(Iaşi)

1. INTRODUCTION

We consider the phase field system
(1.1) τ φ t = ξ 2 Δ φ + 1 2 a ( φ φ 3 ) + 2 u , in Q T = ( 0 , T ) × Ω (1.2) ( u + l 2 φ ) t = k Δ u , in Q T (1.1) τ φ t = ξ 2 Δ φ + 1 2 a φ φ 3 + 2 u ,  in  Q T = ( 0 , T ) × Ω (1.2) u + l 2 φ t = k Δ u ,  in  Q T {:[(1.1)tauvarphi_(t)=xi^(2)Delta varphi+(1)/(2a)(varphi-varphi^(3))+2u","" in "Q_(T)=(0","T)xx Omega],[(1.2)(u+(l)/(2)varphi)_(t)=k Delta u","" in "Q_(T)]:}\begin{gather*} \tau \varphi_{t}=\xi^{2} \Delta \varphi+\frac{1}{2 a}\left(\varphi-\varphi^{3}\right)+2 u, \text { in } Q_{T}=(0, T) \times \Omega \tag{1.1}\\ \left(u+\frac{l}{2} \varphi\right)_{t}=k \Delta u, \text { in } Q_{T} \tag{1.2} \end{gather*}(1.1)τφt=ξ2Δφ+12a(φφ3)+2u, in QT=(0,T)×Ω(1.2)(u+l2φ)t=kΔu, in QT
subject to the Dirichlet boundary conditions and initial conditions
(1.3) φ | Σ = u | Σ = 0 , in Σ = ( 0 , T ) × Ω (1.4) φ ( 0 , x ) = φ 0 ( x ) , u ( 0 , x ) = u 0 ( x ) , on Ω , (1.3) φ Σ = u Σ = 0 ,  in  Σ = ( 0 , T ) × Ω (1.4) φ ( 0 , x ) = φ 0 ( x ) , u ( 0 , x ) = u 0 ( x ) ,  on  Ω , {:[(1.3) varphi|_(Sigma)=u|_(Sigma)=0","" in "Sigma=(0","T)xx del Omega],[(1.4)varphi(0","x)=varphi_(0)(x)","quad u(0","x)=u_(0)(x)","" on "del Omega","]:}\begin{gather*} \left.\varphi\right|_{\Sigma}=\left.u\right|_{\Sigma}=0, \text { in } \Sigma=(0, T) \times \partial \Omega \tag{1.3}\\ \varphi(0, x)=\varphi_{0}(x), \quad u(0, x)=u_{0}(x), \text { on } \partial \Omega, \tag{1.4} \end{gather*}(1.3)φ|Σ=u|Σ=0, in Σ=(0,T)×Ω(1.4)φ(0,x)=φ0(x),u(0,x)=u0(x), on Ω,
where Ω Ω Omega\OmegaΩ is a bounded domain in R n R n R^(n)\mathbf{R}^{n}Rn with smooth boundary Ω Ω del Omega\partial \OmegaΩ, and φ , u , τ , ξ , l φ , u , τ , ξ , l varphi,u,tau,xi,l\varphi, u, \tau, \xi, lφ,u,τ,ξ,l and k k kkk are as in [9], [11].
Setting
(1.5) y = u + l 2 φ , (1.5) y = u + l 2 φ , {:(1.5)y=u+(l)/(2)varphi",":}\begin{equation*} y=u+\frac{l}{2} \varphi, \tag{1.5} \end{equation*}(1.5)y=u+l2φ,
system (1.1)-(1.4) takes the form
(1.6) y t k Δ y + k l 2 Δ φ = 0 , (1.7) φ t ξ 2 τ Δ φ + 1 τ ( l 1 2 a ) φ + 1 2 a τ φ 3 2 τ y = 0 , y | Σ = φ | Σ = 0 , (1.6) y t k Δ y + k l 2 Δ φ = 0 , (1.7) φ t ξ 2 τ Δ φ + 1 τ l 1 2 a φ + 1 2 a τ φ 3 2 τ y = 0 , y Σ = φ Σ = 0 , {:[(1.6)y_(t)-k Delta y+(kl)/(2)Delta varphi=0","],[(1.7)varphi_(t)-(xi^(2))/(tau)Delta varphi+(1)/(tau)(l-(1)/(2a))varphi+(1)/(2a tau)varphi^(3)-(2)/(tau)y=0","],[y|_(Sigma)= varphi|_(Sigma)=0","]:}\begin{gather*} y_{t}-k \Delta y+\frac{k l}{2} \Delta \varphi=0, \tag{1.6}\\ \varphi_{t}-\frac{\xi^{2}}{\tau} \Delta \varphi+\frac{1}{\tau}\left(l-\frac{1}{2 a}\right) \varphi+\frac{1}{2 a \tau} \varphi^{3}-\frac{2}{\tau} y=0, \tag{1.7}\\ \left.y\right|_{\Sigma}=\left.\varphi\right|_{\Sigma}=0, \end{gather*}(1.6)ytkΔy+kl2Δφ=0,(1.7)φtξ2τΔφ+1τ(l12a)φ+12aτφ32τy=0,y|Σ=φ|Σ=0,
(1.9) y ( 0 , x ) = y 0 ( x ) = u 0 ( x ) + l 2 φ 0 ( x ) , φ ( 0 , x ) = φ 0 ( x ) (1.9) y ( 0 , x ) = y 0 ( x ) = u 0 ( x ) + l 2 φ 0 ( x ) , φ ( 0 , x ) = φ 0 ( x ) {:(1.9)y(0","x)=y_(0)(x)=u_(0)(x)+(l)/(2)varphi_(0)(x)","varphi(0","x)=varphi_(0)(x):}\begin{equation*} y(0, x)=y_{0}(x)=u_{0}(x)+\frac{l}{2} \varphi_{0}(x), \varphi(0, x)=\varphi_{0}(x) \tag{1.9} \end{equation*}(1.9)y(0,x)=y0(x)=u0(x)+l2φ0(x),φ(0,x)=φ0(x)
Let X = L 2 ( Ω ) × L 2 ( Ω ) X = L 2 ( Ω ) × L 2 ( Ω ) X=L^(2)(Omega)xxL^(2)(Omega)X=L^{2}(\Omega) \times L^{2}(\Omega)X=L2(Ω)×L2(Ω). Then X X XXX is a real Banach space with respect to the norm ||*||\|\cdot\| defined by
( y φ ) = y L 2 ( Ω ) + φ L 2 ( Ω ) ( y φ ) = y L 2 ( Ω ) + φ L 2 ( Ω ) ||((y)/( varphi))||=||y||_(L^(2)(Omega))+||varphi||_(L^(2)(Omega))\left\|\binom{y}{\varphi}\right\|=\|y\|_{L^{2}(\Omega)}+\|\varphi\|_{L^{2}(\Omega)}(yφ)=yL2(Ω)+φL2(Ω)
Define the operator A : D ( A ) X X A : D ( A ) X X A:D(A)sub X rarr XA: D(A) \subset X \rightarrow XA:D(A)XX by
A ( y φ ) = ( k Δ y + k l 2 Δ φ ξ 2 τ Δ φ + 1 τ ( l 1 2 a ) φ ) , (i) D ( A ) = ( H 0 1 ( Ω ) H 2 ( Ω ) H 0 1 ( Ω ) H 2 ( Ω ) ) , A ( y φ ) = ( k Δ y + k l 2 Δ φ ξ 2 τ Δ φ + 1 τ l 1 2 a φ ) , (i) D ( A ) = ( H 0 1 ( Ω ) H 2 ( Ω ) H 0 1 ( Ω ) H 2 ( Ω ) ) , {:[A((y)/( varphi))=((-k Delta y+k(l)/(2)Delta varphi)/(-(xi^(2))/(tau)Delta varphi+(1)/(tau)(l-(1)/(2a))varphi))","],[(i)D(A)=((H_(0)^(1)(Omega)nnH^(2)(Omega))/(H_(0)^(1)(Omega)nnH^(2)(Omega)))","]:}\begin{gather*} A\binom{y}{\varphi}=\binom{-k \Delta y+k \frac{l}{2} \Delta \varphi}{-\frac{\xi^{2}}{\tau} \Delta \varphi+\frac{1}{\tau}\left(l-\frac{1}{2 a}\right) \varphi}, \\ D(A)=\binom{H_{0}^{1}(\Omega) \cap H^{2}(\Omega)}{H_{0}^{1}(\Omega) \cap H^{2}(\Omega)}, \tag{i} \end{gather*}A(yφ)=(kΔy+kl2Δφξ2τΔφ+1τ(l12a)φ),(i)D(A)=(H01(Ω)H2(Ω)H01(Ω)H2(Ω)),
and the operator B : D ( B ) X X : B : D ( B ) X X : B:D(B)sub X rarr X:B: D(B) \subset X \rightarrow X:B:D(B)XX:
B ( y φ ) = ( 0 ( 2 a τ ) 1 φ 3 2 τ y ) D ( B ) = { ( y φ ) X ; ( 2 a τ ) 1 φ 3 2 τ y L 6 ( Ω ) } B ( y φ ) = 0 ( 2 a τ ) 1 φ 3 2 τ y D ( B ) = ( y φ ) X ; ( 2 a τ ) 1 φ 3 2 τ y L 6 ( Ω ) {:[B((y)/( varphi))=([0],[{:(2a tau)^(-1)varphi^(3)-(2)/(tau)y)]:}],[D(B)={((y)/( varphi))in X;(2a tau)^(-1)varphi^(3)-(2)/(tau)y inL^(6)(Omega)}]:}\begin{gathered} B\binom{y}{\varphi}=\left(\begin{array}{c} 0 \\ \left.(2 a \tau)^{-1} \varphi^{3}-\frac{2}{\tau} y\right) \end{array}\right. \\ D(B)=\left\{\binom{y}{\varphi} \in X ;(2 a \tau)^{-1} \varphi^{3}-\frac{2}{\tau} y \in L^{6}(\Omega)\right\} \end{gathered}B(yφ)=(0(2aτ)1φ32τy)D(B)={(yφ)X;(2aτ)1φ32τyL6(Ω)}
Thus, system (1.6)-(1.7) can be rewritten in the form
(S) t ( y φ ) + A ( y φ ) + B ( y φ ) = 0 . (S) t ( y φ ) + A ( y φ ) + B ( y φ ) = 0 . {:(S)(del)/(del t)((y)/( varphi))+A((y)/( varphi))+B((y)/( varphi))=0.:}\begin{equation*} \frac{\partial}{\partial t}\binom{y}{\varphi}+A\binom{y}{\varphi}+B\binom{y}{\varphi}=0 . \tag{S} \end{equation*}(S)t(yφ)+A(yφ)+B(yφ)=0.
For others settings into the abstract framework of the phase-field equations (1.1)-(1.4) see, e.g., [6], [14].
The idea behind the Lie-Trotter scheme (known as the method of fractional step in numerical approximation of PDE's) is to decompose the original problem into several simpler problems.
Here we associate to system ( S S SSS ) the following approximating scheme
(1.10) ( y ε ( t ) φ ε ( t ) ) + A ( y ε ( t ) φ ε ( t ) ) = 0 , in [ i ε , ( i + 1 ) ε ] (1.10) ( y ε ( t ) φ ε ( t ) ) + A ( y ε ( t ) φ ε ( t ) ) = 0 ,  in  [ i ε , ( i + 1 ) ε ] {:(1.10)((y_(epsi)(t))/(varphi_(epsi)(t)))^(')+A((y_(epsi)(t))/(varphi_(epsi)(t)))=0","" in "[i epsi","(i+1)epsi]:}\begin{equation*} \binom{y_{\varepsilon}(t)}{\varphi_{\varepsilon}(t)}^{\prime}+A\binom{y_{\varepsilon}(t)}{\varphi_{\varepsilon}(t)}=0, \text { in }[i \varepsilon,(i+1) \varepsilon] \tag{1.10} \end{equation*}(1.10)(yε(t)φε(t))+A(yε(t)φε(t))=0, in [iε,(i+1)ε]
(1.11) φ ε ( i ε ) = z ε ( ( i + 1 ) ε ) , i = 0 , 1 , , M 1 , (1.11) φ ε ( i ε ) = z ε ( ( i + 1 ) ε ) , i = 0 , 1 , , M 1 , {:(1.11)varphi_(epsi)(i epsi)=z_(epsi)((i+1)epsi)","i=0","1","dots","M-1",":}\begin{equation*} \varphi_{\varepsilon}(i \varepsilon)=z_{\varepsilon}((i+1) \varepsilon), i=0,1, \ldots, M-1, \tag{1.11} \end{equation*}(1.11)φε(iε)=zε((i+1)ε),i=0,1,,M1,
(1.12) z ε ( t ) + B ( y ε ( t ) z ε ( t ) ) = 0 , in [ i ε , ( i + 1 ) ε ] , (1.13) z ε ( i ε ) = φ ε + ( i ε ) , i = 0 , 1 , , M 1 , (1.12) z ε ( t ) + B ( y ε ( t ) z ε ( t ) ) = 0 ,  in  [ i ε , ( i + 1 ) ε ] , (1.13) z ε ( i ε ) = φ ε + ( i ε ) , i = 0 , 1 , , M 1 , {:[(1.12)z_(epsi)^(')(t)+B((y_(epsi)(t))/(z_(epsi)(t)))=0","quad" in "[i epsi","(i+1)epsi]","],[(1.13)z_(epsi)(i epsi)=varphi_(epsi)^(+)(i epsi)","quad i=0","1","dots","M-1","]:}\begin{gather*} z_{\varepsilon}^{\prime}(t)+B\binom{y_{\varepsilon}(t)}{z_{\varepsilon}(t)}=0, \quad \text { in }[i \varepsilon,(i+1) \varepsilon], \tag{1.12}\\ z_{\varepsilon}(i \varepsilon)=\varphi_{\varepsilon}^{+}(i \varepsilon), \quad i=0,1, \ldots, M-1, \tag{1.13} \end{gather*}(1.12)zε(t)+B(yε(t)zε(t))=0, in [iε,(i+1)ε],(1.13)zε(iε)=φε+(iε),i=0,1,,M1,
where 0 < ε < < M ε = T 0 < ε < < M ε = T 0 < epsi < dots < M epsi=T0<\varepsilon<\ldots<M \varepsilon=T0<ε<<Mε=T is a partition of the time-interval [ 0 , T ] , φ ε + ( i ε ) [ 0 , T ] , φ ε + ( i ε ) [0,T],varphi_(epsi)^(+)(i epsi)[0, T], \varphi_{\varepsilon}^{+}(i \varepsilon)[0,T],φε+(iε) is the right limit of φ ε φ ε varphi_(epsi)\varphi_{\varepsilon}φε at is. We assume the following convention: φ ε + ( 0 ) = φ 0 , y ε ( 0 ) = y 0 φ ε + ( 0 ) = φ 0 , y ε ( 0 ) = y 0 varphi_(epsi)^(+)(0)=varphi_(0),y_(epsi)(0)=y_(0)\varphi_{\varepsilon}^{+}(0)=\varphi_{0}, y_{\varepsilon}(0)=y_{0}φε+(0)=φ0,yε(0)=y0.
Recall that J : X X J : X X J:X rarrX^(**)J: X \rightarrow X^{*}J:XX is the duality mapping of the space X X XXX (see, for instance, [2]) and that A X × X A X × X A sub X xx XA \subset X \times XAX×X is:
accretive, if for every pair [ x 1 , y 1 ] , [ x 2 , y 2 ] A x 1 , y 1 , x 2 , y 2 A [x_(1),y_(1)],[x_(2),y_(2)]in A\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right] \in A[x1,y1],[x2,y2]A, there exist w J ( x 1 x 2 ) w J x 1 x 2 w in J(x_(1)-x_(2))w \in J\left(x_{1}-x_{2}\right)wJ(x1x2) such that
< y 1 y 2 , w >≥ 0 , < y 1 y 2 , w >≥ 0 , < y_(1)-y_(2),w>≥0,<y_{1}-y_{2}, w>\geq 0,<y1y2,w>≥0,
or, equivalently,
(ii) x 1 x 2 x 1 x 2 + λ ( y 1 y 2 ) , ( ) λ > 0 , [ x i , y i ] A , i = 1 , 2 (ii) x 1 x 2 x 1 x 2 + λ y 1 y 2 , ( ) λ > 0 , x i , y i A , i = 1 , 2 {:(ii)||x_(1)-x_(2)|| <= ||x_(1)-x_(2)+lambda(y_(1)-y_(2))||","quad(AA)lambda > 0","[x_(i),y_(i)]in A","quad i=1","2:}\begin{equation*} \left\|x_{1}-x_{2}\right\| \leq\left\|x_{1}-x_{2}+\lambda\left(y_{1}-y_{2}\right)\right\|, \quad(\forall) \lambda>0,\left[x_{i}, y_{i}\right] \in A, \quad i=1,2 \tag{ii} \end{equation*}(ii)x1x2x1x2+λ(y1y2),()λ>0,[xi,yi]A,i=1,2
m m mmm-accretive, if it is accretive and R ( I + A ) = X R ( I + A ) = X R(I+A)=XR(I+A)=XR(I+A)=X,
ω ω omega\omegaω-accretive, if A + ω I A + ω I A+omega IA+\omega IA+ωI is accretive, where ω R ω R omega inR\omega \in \mathbb{R}ωR,
ω m ω m omega-m\omega-mωm-accretive, if A + ω I A + ω I A+omega IA+\omega IA+ωI is m m mmm-accretive,
where < , > < , > < , ><,><,> is the pairing between X X XXX and X X X^(**)X^{*}X (the dual space of X X XXX ), I I III is the identity operator in X , R ( A ) X , R ( A ) X,R(A)X, R(A)X,R(A) is the range of A A AAA.
Another convenient way to define the accretiveness is obtained using [ ] S [ ] S [✓*]_(S)-[\checkmark \cdot]_{S}-[]S the directional derivative of the norm
[ x , y ] S = lim λ 0 x + λ y x λ , x , y X , [ x , y ] S = lim λ 0 x + λ y x λ , x , y X , [x,y]_(S)=lim_(lambda darr0)(||x+lambda y||-||x||)/(lambda),quad x,y in X,[x, y]_{S}=\lim _{\lambda \downarrow 0} \frac{\|x+\lambda y\|-\|x\|}{\lambda}, \quad x, y \in X,[x,y]S=limλ0x+λyxλ,x,yX,
i.e, (ii) can be equivalently written as
(ii')
[ x 1 x 2 , y 1 y 2 ] S 0 , ( ) [ x i , y i ] A , i = 1 , 2 . x 1 x 2 , y 1 y 2 S 0 , ( ) x i , y i A , i = 1 , 2 . [x_(1)-x_(2),y_(1)-y_(2)]_(S) >= 0,quad(AA)[x_(i),y_(i)]in A,quad i=1,2.\left[x_{1}-x_{2}, y_{1}-y_{2}\right]_{S} \geq 0, \quad(\forall)\left[x_{i}, y_{i}\right] \in A, \quad i=1,2 .[x1x2,y1y2]S0,()[xi,yi]A,i=1,2.
(see also [2], [15], [16]). Recall that if X X XXX is a real Hilbert space then [ x , y ] S = x , y x , y X [ x , y ] S = x , y x , y X [x,y]_(S)=(:x,y:)AA x,y in X[x, y]_{S}=\langle x, y\rangle \forall x, y \in X[x,y]S=x,yx,yX (see [16], Remark 1.4.1).
It is well known that, under certain hypotheses on A A AAA, the Cauchy problem
{ v ( t ) + A v ( t ) 0 , t 0 v ( 0 ) = v 0 v ( t ) + A v ( t ) 0 , t 0 v ( 0 ) = v 0 {[v^(')(t)+Av(t)∋0","t >= 0],[v(0)=v_(0)]:}\left\{\begin{array}{l} v^{\prime}(t)+A v(t) \ni 0, t \geq 0 \\ v(0)=v_{0} \end{array}\right.{v(t)+Av(t)0,t0v(0)=v0
has a generalized solution v C ( [ 0 . ) , X ) v C ( [ 0 . ) , X ) v in C([0.oo),X)v \in C([0 . \infty), X)vC([0.),X) given by the exponential formula
v ( t ) = lim t ( I + t n A ) n , ( ) t 0 , v ( t ) = lim t I + t n A n , ( ) t 0 , v(t)=lim_(t rarr oo)(I+(t)/(n)A)^(-n),(AA)t >= 0,v(t)=\lim _{t \rightarrow \infty}\left(I+\frac{t}{n} A\right)^{-n},(\forall) t \geq 0,v(t)=limt(I+tnA)n,()t0,
for every v 0 D ( A ) v 0 D ( A ) ¯ v_(0)in bar(D(A))v_{0} \in \overline{D(A)}v0D(A) (a classical result of Crandall-Ligget, sec, e.g., [2]).
This is the sense in which we will treat the problems (1.6)-(1.9) and (1.10)-(1.13).

2. CONVERGENCE OF THE APPROXIMATE SCHEME

Let us recall the following result due to Barbu and Iannelli ([5]).
THEOREM 2.1. Let Y Y YYY be a real Banach space, let C C CCC be a closed subset of Y Y YYY and K = C D ( A ) K = C D ( A ) K=C nn D(A)K=C \cap D(A)K=CD(A) be a convex subset of Y Y YYY such that
(H1) A A AAA is ω ω omega\omegaω-accretive and R ( I + λ A ) D ( A ) , ( ) λ ( 0 , λ 0 ) R ( I + λ A ) D ( A ) ¯ , ( ) λ 0 , λ 0 R(I+lambda A)sup bar(D(A)),(AA)lambda in(0,lambda_(0))R(I+\lambda A) \supset \overline{D(A)},(\forall) \lambda \in\left(0, \lambda_{0}\right)R(I+λA)D(A),()λ(0,λ0);
(H2) B B BBB is a continuous ω ω omega\omegaω-accretive operator on C C CCC such that
R ( I + λ B ) C , ( ) λ ( 0 , λ 0 ) ; R ( I + λ B ) C , ( ) λ 0 , λ 0 ; R(I+lambda B)sup C,(AA)lambda in(0,lambda_(0));R(I+\lambda B) \supset C,(\forall) \lambda \in\left(0, \lambda_{0}\right) ;R(I+λB)C,()λ(0,λ0);
(H3) R ( I + λ ( A + B ) ) K , ( I + λ A ) 1 K K , ( I + λ B ) 1 K K R ( I + λ ( A + B ) ) K , ( I + λ A ) 1 K K , ( I + λ B ) 1 K K R(I+lambda(A+B))sup K,(I+lambda A)^(-1)K sub K,(I+lambda B)^(-1)K sub KR(I+\lambda(A+B)) \supset K,(I+\lambda A)^{-1} K \subset K,(I+\lambda B)^{-1} K \subset KR(I+λ(A+B))K,(I+λA)1KK,(I+λB)1KK;
(H4) For every [ x , y ] A [ x , y ] A [x,y]in A[x, y] \in A[x,y]A, there exists { x h } Y x h Y {x_(h)}sub Y\left\{x_{h}\right\} \subset Y{xh}Y such that
lim h 0 x h = x , lim h 0 1 h ( x h e A h x h ) y = 0 lim h 0 x h = x , lim h 0 1 h x h e A h x h y = 0 lim_(h rarr0)x_(h)=x,quadlim_(h rarr0)||(1)/(h)(x_(h)-e^(-Ah)x_(h))-y||=0\lim _{h \rightarrow 0} x_{h}=x, \quad \lim _{h \rightarrow 0}\left\|\frac{1}{h}\left(x_{h}-\mathrm{e}^{-A h} x_{h}\right)-y\right\|=0limh0xh=x,limh01h(xheAhxh)y=0
Then, for every y 0 K y 0 K y_(0)in Ky_{0} \in Ky0K, we have
lim ε 0 y ε ( t ) = y ( t ) , ( ) t 0 , lim ε 0 y ε ( t ) = y ( t ) , ( ) t 0 , lim_(epsi rarr0)y_(epsi)(t)=y(t),quad(AA)t >= 0,\lim _{\varepsilon \rightarrow 0} y_{\varepsilon}(t)=y(t), \quad(\forall) t \geq 0,limε0yε(t)=y(t),()t0,
and the limit is uniform on bounded t t ttt intervals.
Here, by y ( t ) y ( t ) y(t)y(t)y(t), we have denoted the generalized solution to the Cauchy problem:
{ y ( t ) + A y ( t ) + B y ( t ) 0 , t ( 0 , T ) y ( 0 ) = y 0 y ( t ) + A y ( t ) + B y ( t ) 0 , t ( 0 , T ) y ( 0 ) = y 0 {[y^(')(t)+Ay(t)+By(t)∋0","quad t in(0","T)],[y(0)=y_(0)]:}\left\{\begin{array}{l} y^{\prime}(t)+A y(t)+B y(t) \ni 0, \quad t \in(0, T) \\ y(0)=y_{0} \end{array}\right.{y(t)+Ay(t)+By(t)0,t(0,T)y(0)=y0
and by y ε ( t ) y ε ( t ) y_(epsi)(t)y_{\varepsilon}(t)yε(t) the solution of the corresponding approximative scheme.
This result is not applicable to the problem (1.10)-(1.13) because we cannot find a subset C C CCC as in (H2) and such that the operator B B BBB be continuous on C C CCC.
Therefore, we will replace the operator B B BBB with another one having all the properties required by Theorem 2.1 and we will show that the approximate solution ( y ε φ ε ) ( y ε φ ε ) ((y_(epsi))/(varphi_(epsi)))\binom{y_{\varepsilon}}{\varphi_{\varepsilon}}(yεφε) corresponding to this new operator is in fact an approximate solution corresponding to B B BBB (see Remark 3.1, below). Namely, we consider the operator B r B r B_(r)B_{r}Br. defined by (see also Figure 1)
Fig. 1
B r : L 2 ( Ω ) × L 2 ( Ω ) L 2 ( Ω ) × L ( Ω ) L 2 ( Ω ) × L 2 ( Ω ) , B r ( y ε φ ε ) = ( 0 ( 2 a τ ) 1 g r ( φ ε ( x ) ) 2 τ y ε ( x ) ) , B r : L 2 ( Ω ) × L 2 ( Ω ) L 2 ( Ω ) × L ( Ω ) L 2 ( Ω ) × L 2 ( Ω ) , B r ( y ε φ ε ) = ( 0 ( 2 a τ ) 1 g r φ ε ( x ) 2 τ y ε ( x ) ) , {:[B_(r):L^(2)(Omega)xxL^(2)(Omega)rarrL^(2)(Omega)xxL^(oo)(Omega)subL^(2)(Omega)xxL^(2)(Omega)","],[B_(r)((y_(epsi))/(varphi_(epsi)))=((0)/((2a tau)^(-1)g_(r)(varphi_(epsi)(x))-(2)/(tau)y_(epsi)(x)))","]:}\begin{gathered} B_{r}: L^{2}(\Omega) \times L^{2}(\Omega) \rightarrow L^{2}(\Omega) \times L^{\infty}(\Omega) \subset L^{2}(\Omega) \times L^{2}(\Omega), \\ B_{r}\binom{y_{\varepsilon}}{\varphi_{\varepsilon}}=\binom{0}{(2 a \tau)^{-1} g_{r}\left(\varphi_{\varepsilon}(x)\right)-\frac{2}{\tau} y_{\varepsilon}(x)}, \end{gathered}Br:L2(Ω)×L2(Ω)L2(Ω)×L(Ω)L2(Ω)×L2(Ω),Br(yεφε)=(0(2aτ)1gr(φε(x))2τyε(x)),
where
g r ( φ ε ) = { φ ε 3 ( x ) , | φ ε ( x ) | < r , + r 3 , φ ε > + r , r 3 , φ ε < r , g r φ ε = φ ε 3 ( x ) ,      φ ε ( x ) < r , + r 3 ,      φ ε > + r , r 3 ,      φ ε < r , g_(r)(varphi_(epsi))={[varphi_(epsi)^(3)(x)",",|varphi_(epsi)(x)| < r","],[+r^(3)",",varphi_(epsi) > +r","],[-r^(3)",",varphi_(epsi) < -r","]:}g_{r}\left(\varphi_{\varepsilon}\right)= \begin{cases}\varphi_{\varepsilon}^{3}(x), & \left|\varphi_{\varepsilon}(x)\right|<r, \\ +r^{3}, & \varphi_{\varepsilon}>+r, \\ -r^{3}, & \varphi_{\varepsilon}<-r,\end{cases}gr(φε)={φε3(x),|φε(x)|<r,+r3,φε>+r,r3,φε<r,
Substituting in ( S ) ( S ) (S)(S)(S) and in (2.12) B ( y ε ( t ) φ ε ( t ) ) B ( y ε ( t ) φ ε ( t ) ) B((y_(epsi)(t))/(varphi_(epsi)(t)))B\binom{y_{\varepsilon}(t)}{\varphi_{\varepsilon}(t)}B(yε(t)φε(t)) by B r ( y ε ( t ) φ ε ( t ) ) B r ( y ε ( t ) φ ε ( t ) ) B_(r)((y_(epsi)(t))/(varphi_(epsi)(t)))B_{r}\binom{y_{\varepsilon}(t)}{\varphi_{\varepsilon}(t)}Br(yε(t)φε(t)) we obtain:
( ) t ( y φ ) + A ( y φ ) + B r ( y φ ) = 0 , (2.1) z ε ( t ) + B r ( y ε ( t ) φ ε ( t ) ) = 0 , in [ i ε , ( i + 1 ) ε ] . ( ) t ( y φ ) + A ( y φ ) + B r ( y φ ) = 0 , (2.1) z ε ( t ) + B r ( y ε ( t ) φ ε ( t ) ) = 0 ,  in  [ i ε , ( i + 1 ) ε ] . {:[('")"(del)/(del t)((y)/( varphi))+A((y)/( varphi))+B_(r)((y)/( varphi))=0","],[(2.1)z_(epsi)^(')(t)+B_(r)((y_(epsi)(t))/(varphi_(epsi)(t)))=0","" in "[i epsi","(i+1)epsi].]:}\begin{gather*} \frac{\partial}{\partial t}\binom{y}{\varphi}+A\binom{y}{\varphi}+B_{r}\binom{y}{\varphi}=0, \tag{$\prime$}\\ z_{\varepsilon}^{\prime}(t)+B_{r}\binom{y_{\varepsilon}(t)}{\varphi_{\varepsilon}(t)}=0, \text { in }[i \varepsilon,(i+1) \varepsilon] . \tag{2.1} \end{gather*}()t(yφ)+A(yφ)+Br(yφ)=0,(2.1)zε(t)+Br(yε(t)φε(t))=0, in [iε,(i+1)ε].
We associate to system ( S S S^(')S^{\prime}S ) the approximating scheme (1.10), (1.11), (2.1) and (1.13).
Now we prove
Proposition 2.1. If k l 2 < 16 ξ 2 / τ k l 2 < 16 ξ 2 / τ kl^(2) < 16xi^(2)//tauk l^{2}<16 \xi^{2} / \taukl2<16ξ2/τ and l > 1 / 2 a l > 1 / 2 a l > 1//2al>1 / 2 al>1/2a then, the operators A , B r A , B r A,B_(r)A, B_{r}A,Br. and Y = C = K = L 2 ( Ω ) × L 2 ( Ω ) Y = C = K = L 2 ( Ω ) × L 2 ( Ω ) Y=C=K=L^(2)(Omega)xxL^(2)(Omega)Y=C=K=L^{2}(\Omega) \times L^{2}(\Omega)Y=C=K=L2(Ω)×L2(Ω) satisfy all the hypotheses of Theorem 2.1.
We shall prove first the following lemma.
Lemma 2.1. If k l 2 < 16 ξ 2 / τ k l 2 < 16 ξ 2 / τ kl^(2) < 16xi^(2)//tauk l^{2}<16 \xi^{2} / \taukl2<16ξ2/τ and l > 1 / 2 a l > 1 / 2 a l > 1//2al>1 / 2 al>1/2a then A A AAA is 0 -accretive and satisfies the range condition
(2.2) R ( I + λ A ) D ( A ) , ( ) λ ( 0 , λ 0 ) . (2.2) R ( I + λ A ) D ( A ) ¯ , ( ) λ 0 , λ 0 . {:(2.2)R(I+lambda A)sup bar(D(A))","quad(AA)lambda in(0,lambda_(0)).:}\begin{equation*} R(I+\lambda A) \supset \overline{D(A)}, \quad(\forall) \lambda \in\left(0, \lambda_{0}\right) . \tag{2.2} \end{equation*}(2.2)R(I+λA)D(A),()λ(0,λ0).
Proof. Using the definition (ii') we must show that, for every ( y φ ) X , ( A ( y φ ) X , ( A ((y)/( varphi))in X,(A\binom{y}{\varphi} \in X,(A(yφ)X,(A is linear and J J JJJ is univalued, i.e., J ( y φ ) = ( y φ ) = w ) J ( y φ ) = ( y φ ) = w {:J((y)/( varphi))=((y)/( varphi))=w)\left.J\binom{y}{\varphi}=\binom{y}{\varphi}=w\right)J(yφ)=(yφ)=w)
[ A ( y φ ) , ( y φ ) ] S 0 . A ( y φ ) , ( y φ ) S 0 . [A((y)/( varphi)),((y)/( varphi))]_(S) >= 0.\left[A\binom{y}{\varphi},\binom{y}{\varphi}\right]_{S} \geq 0 .[A(yφ),(yφ)]S0.
Using Green formula and Cauchy-Schwarz's inequality, we get ( X X XXX is real Hilbert space)
( ( k Δ y + k l 2 Δ φ ξ 2 τ Δ φ + 1 τ ( l 1 2 a ) φ ) , ( y φ ) ) = = k y L 2 ( Ω ) 2 k l 2 y , φ L 2 ( Ω ) + ξ 2 τ φ L 2 ( Ω ) 2 + 1 τ ( l 1 2 a ) φ L 2 ( Ω ) 2 k y L 2 ( Ω ) 2 k l 2 y L 2 ( Ω ) φ L 2 ( Ω ) 2 + ξ 2 τ φ L 2 ( Ω ) 2 + 1 τ ( l 1 2 a ) φ L 2 ( Ω ) 2 . ( k Δ y + k l 2 Δ φ ξ 2 τ Δ φ + 1 τ l 1 2 a φ ) , ( y φ ) = = k y L 2 ( Ω ) 2 k l 2 y , φ L 2 ( Ω ) + ξ 2 τ φ L 2 ( Ω ) 2 + 1 τ l 1 2 a φ L 2 ( Ω ) 2 k y L 2 ( Ω ) 2 k l 2 y L 2 ( Ω ) φ L 2 ( Ω ) 2 + ξ 2 τ φ L 2 ( Ω ) 2 + 1 τ l 1 2 a φ L 2 ( Ω ) 2 . {:[(((-k Delta y+(kl)/(2)Delta varphi)/(-(xi^(2))/(tau)Delta varphi+(1)/(tau)(l-(1)/(2a))varphi)),((y)/( varphi)))=],[=k||grad y||_(L^(2)(Omega))^(2)-(kl)/(2)(:grad y","grad varphi:)_(L^(2)(Omega))+(xi^(2))/(tau)||grad varphi||_(L^(2)(Omega))^(2)+(1)/(tau)(l-(1)/(2a))||varphi||_(L^(2)(Omega))^(2) >= ],[ >= k||grad y||_(L^(2)(Omega))^(2)-(kl)/(2)||grad y||_(L^(2)(Omega))*||grad varphi||_(L^(2)(Omega))^(2)+(xi^(2))/(tau)||grad varphi||_(L^(2)(Omega))^(2)+(1)/(tau)(l-(1)/(2a))||varphi||_(L^(2)(Omega))^(2).]:}\begin{gathered} \left(\binom{-k \Delta y+\frac{k l}{2} \Delta \varphi}{-\frac{\xi^{2}}{\tau} \Delta \varphi+\frac{1}{\tau}\left(l-\frac{1}{2 a}\right) \varphi},\binom{y}{\varphi}\right)= \\ =k\|\nabla y\|_{L^{2}(\Omega)}^{2}-\frac{k l}{2}\langle\nabla y, \nabla \varphi\rangle_{L^{2}(\Omega)}+\frac{\xi^{2}}{\tau}\|\nabla \varphi\|_{L^{2}(\Omega)}^{2}+\frac{1}{\tau}\left(l-\frac{1}{2 a}\right)\|\varphi\|_{L^{2}(\Omega)}^{2} \geq \\ \geq k\|\nabla y\|_{L^{2}(\Omega)}^{2}-\frac{k l}{2}\|\nabla y\|_{L^{2}(\Omega)} \cdot\|\nabla \varphi\|_{L^{2}(\Omega)}^{2}+\frac{\xi^{2}}{\tau}\|\nabla \varphi\|_{L^{2}(\Omega)}^{2}+\frac{1}{\tau}\left(l-\frac{1}{2 a}\right)\|\varphi\|_{L^{2}(\Omega)}^{2} . \end{gathered}((kΔy+kl2Δφξ2τΔφ+1τ(l12a)φ),(yφ))==kyL2(Ω)2kl2y,φL2(Ω)+ξ2τφL2(Ω)2+1τ(l12a)φL2(Ω)2kyL2(Ω)2kl2yL2(Ω)φL2(Ω)2+ξ2τφL2(Ω)2+1τ(l12a)φL2(Ω)2.
Since k l 2 < 16 ξ 2 / τ k l 2 < 16 ξ 2 / τ kl^(2) < 16xi^(2)//tauk l^{2}<16 \xi^{2} / \taukl2<16ξ2/τ then k 2 l 2 / 4 4 k ξ 2 / τ 0 k 2 l 2 / 4 4 k ξ 2 / τ 0 k^(2)l^(2)//4-4kxi^(2)//tau <= 0k^{2} l^{2} / 4-4 k \xi^{2} / \tau \leq 0k2l2/44kξ2/τ0 and then
k y L 2 ( Ω ) 2 k l 2 y L 2 ( Ω ) φ L 2 ( Ω ) 2 + ξ 2 τ φ L 2 ( Ω ) 2 0 . k y L 2 ( Ω ) 2 k l 2 y L 2 ( Ω ) φ L 2 ( Ω ) 2 + ξ 2 τ φ L 2 ( Ω ) 2 0 . k||grad y||_(L^(2)(Omega))^(2)-(kl)/(2)||grad y||_(L^(2)(Omega))*||grad varphi||_(L^(2)(Omega))^(2)+(xi^(2))/(tau)||grad varphi||_(L^(2)(Omega))^(2) >= 0.k\|\nabla y\|_{L^{2}(\Omega)}^{2}-\frac{k l}{2}\|\nabla y\|_{L^{2}(\Omega)} \cdot\|\nabla \varphi\|_{L^{2}(\Omega)}^{2}+\frac{\xi^{2}}{\tau}\|\nabla \varphi\|_{L^{2}(\Omega)}^{2} \geq 0 .kyL2(Ω)2kl2yL2(Ω)φL2(Ω)2+ξ2τφL2(Ω)20.
Thus, because l > 1 / 2 a l > 1 / 2 a l > 1//2al>1 / 2 al>1/2a,
A ( y φ ) , w 1 τ ( l 1 2 a ) φ L 2 ( Ω ) 2 1 τ ( l 1 2 a ) ( y L 2 ( Ω ) + φ L 2 ( Ω ) ) 2 , A ( y φ ) , w 1 τ l 1 2 a φ L 2 ( Ω ) 2 1 τ l 1 2 a y L 2 ( Ω ) + φ L 2 ( Ω ) 2 , (:A((y)/( varphi)),w:) >= (1)/(tau)(l-(1)/(2a))||varphi||_(L^(2)(Omega))^(2) >= -(1)/(tau)(l-(1)/(2a))(||y||_(L^(2)(Omega))+||varphi||_(L^(2)(Omega)))^(2),\left\langle A\binom{y}{\varphi}, w\right\rangle \geq \frac{1}{\tau}\left(l-\frac{1}{2 a}\right)\|\varphi\|_{L^{2}(\Omega)}^{2} \geq-\frac{1}{\tau}\left(l-\frac{1}{2 a}\right)\left(\|y\|_{L^{2}(\Omega)}+\|\varphi\|_{L^{2}(\Omega)}\right)^{2},A(yφ),w1τ(l12a)φL2(Ω)21τ(l12a)(yL2(Ω)+φL2(Ω))2,
i.e.
A ( y φ ) + 1 τ ( l 1 2 a ) ( y φ ) , w 0 A ( y φ ) + 1 τ l 1 2 a ( y φ ) , w 0 (:A((y)/( varphi))+(1)/(tau)(l-(1)/(2a))((y)/( varphi)),w:) >= 0\left\langle A\binom{y}{\varphi}+\frac{1}{\tau}\left(l-\frac{1}{2 a}\right)\binom{y}{\varphi}, w\right\rangle \geq 0A(yφ)+1τ(l12a)(yφ),w0
Hence A A AAA is ω ω omega\omegaω-accretive, with ω = 1 τ ( l 1 2 a ) ω = 1 τ l 1 2 a omega=(1)/(tau)(l-(1)/(2a))\omega=\frac{1}{\tau}\left(l-\frac{1}{2 a}\right)ω=1τ(l12a).
Other results with respect to the operator A A AAA, put into other abstract framework , can be found in [14].
It is clear that for every ( f g ) L 2 ( Ω ) × L 2 ( Ω ) = D ( A ) ( f g ) L 2 ( Ω ) × L 2 ( Ω ) = D ( A ) ¯ ((f)/(g))inL^(2)(Omega)xxL^(2)(Omega)= bar(D(A))\binom{f}{g} \in L^{2}(\Omega) \times L^{2}(\Omega)=\overline{D(A)}(fg)L2(Ω)×L2(Ω)=D(A) the system
{ y λ k Δ y = j λ k l 2 Δ φ L 2 ( Ω ) ( 1 + λ τ ( l 1 2 a ) ) φ λ ξ 2 τ Δ φ = g L 2 ( Ω ) y λ k Δ y = j λ k l 2 Δ φ L 2 ( Ω ) 1 + λ τ l 1 2 a φ λ ξ 2 τ Δ φ = g L 2 ( Ω ) {[y-lambda k Delta y=j-(lambda kl)/(2)Delta varphi inL^(2)(Omega)],[(1+(lambda )/(tau)(l-(1)/(2a)))varphi-(lambdaxi^(2))/(tau)Delta varphi=g inL^(2)(Omega)]:}\left\{\begin{array}{l} y-\lambda k \Delta y=j-\frac{\lambda k l}{2} \Delta \varphi \in L^{2}(\Omega) \\ \left(1+\frac{\lambda}{\tau}\left(l-\frac{1}{2 a}\right)\right) \varphi-\frac{\lambda \xi^{2}}{\tau} \Delta \varphi=g \in L^{2}(\Omega) \end{array}\right.{yλkΔy=jλkl2ΔφL2(Ω)(1+λτ(l12a))φλξ2τΔφ=gL2(Ω)
has a unique solution ( y φ ) D ( A ) ( y φ ) D ( A ) ((y)/( varphi))in D(A)\binom{y}{\varphi} \in D(A)(yφ)D(A) for λ λ lambda\lambdaλ small (see [1], [4], [7]; Ω Ω Omega\OmegaΩ is supposed to be, as in Theorem 4.1, pp. 131, [4]). Thus (2.2) is true.
The proof of Proposition 2.1. By Proposition 3.9 pp. 110 ([2]), we have that A + B r A + B r A+B_(r)A+B_{r}A+Br is m m mmm-accretive and surjective. Taking into account Lemma 2.1 and because A A AAA is single valued and the semigroup e A t e A t e^(-At)\mathrm{e}^{-A t}eAt is differentiable on D ( A ) D ( A ) D(A)D(A)D(A) (see [3]), we remark that all the hypotheses of Theorem 2.1 are fulfilled and therefore the proof of Proposition 2.1 is complete.
Remark 2.1. If we can choose r r rrr such that φ ε ( x ) L ( Ω ) r φ ε ( x ) L ( Ω ) r ||varphi_(epsi)(x)||_(L^(@)(Omega)) <= r\left\|\varphi_{\varepsilon}(x)\right\|_{L^{\circ}(\Omega)} \leq rφε(x)L(Ω)r, a.e. x Ω x Ω x in Omegax \in \OmegaxΩ then
B ( y ε ( t ) φ ε ( t ) ) = B r ( y ε ( t ) φ ε ( t ) ) B ( y ε ( t ) φ ε ( t ) ) = B r ( y ε ( t ) φ ε ( t ) ) B((y_(epsi)(t))/(varphi_(epsi)(t)))=B_(r)((y_(epsi)(t))/(varphi_(epsi)(t)))B\binom{y_{\varepsilon}(t)}{\varphi_{\varepsilon}(t)}=B_{r}\binom{y_{\varepsilon}(t)}{\varphi_{\varepsilon}(t)}B(yε(t)φε(t))=Br(yε(t)φε(t))
and the solution of the approximate problem ( S ) + ( 2.1 ) S + ( 2.1 ) {:S^('))+(2.1)\left.\mathrm{S}^{\prime}\right)+(2.1)S)+(2.1) is in fact the solution of the approximate problem ( S ) + ( 1.12 ) ( S ) + ( 1.12 ) (S)^(')+(1.12)(S)^{\prime}+(1.12)(S)+(1.12).

3. NUMERICAL RESULTS

We consider n = 1 n = 1 n=1n=1n=1 and Ω = [ 0 , c ] R + Ω = [ 0 , c ] R + Omega=[0,c]subR_(+)\Omega=[0, \mathrm{c}] \subset \mathbf{R}_{+}Ω=[0,c]R+. For the space interval we use the grid with equidistant nodes
0 < x 0 < x 1 < < x N 1 < x N = c . 0 < x 0 < x 1 < < x N 1 < x N = c . 0 < x_(0) < x_(1) < dots < x_(N-1) < x_(N)=c.0<x_{0}<x_{1}<\ldots<x_{N-1}<x_{N}=c .0<x0<x1<<xN1<xN=c.
Denote by ( y i , j f i , j ) ( y i , j f i , j ) ((y_(i,j))/(f_(i,j)))\binom{y_{i, j}}{f_{i, j}}(yi,jfi,j) the approximated matrix for ( y φ ) ( y φ ) ((y)/( varphi))\binom{y}{\varphi}(yφ), where
y i , j = y ( t i , x j ) , i = 1 , M , j = 1 , N f i , j = φ ( t i , x j ) , i = 1 , M , j = 1 , N y i , j = y t i , x j , i = 1 , M ¯ , j = 1 , N ¯ f i , j = φ t i , x j , i = 1 , M ¯ , j = 1 , N ¯ {:[y_(i,j)=y(t_(i),x_(j))","quad i= bar(1,M)","quad j= bar(1,N)],[f_(i,j)=varphi(t_(i),x_(j))","quad i= bar(1,M)","quad j= bar(1,N)]:}\begin{aligned} & y_{i, j}=y\left(t_{i}, x_{j}\right), \quad i=\overline{1, M}, \quad j=\overline{1, N} \\ & f_{i, j}=\varphi\left(t_{i}, x_{j}\right), \quad i=\overline{1, M}, \quad j=\overline{1, N} \end{aligned}yi,j=y(ti,xj),i=1,M,j=1,Nfi,j=φ(ti,xj),i=1,M,j=1,N
As well, we denote by ( y ε i , j f i ε i , j ) ( y ε i , j f i ε i , j ) ((yepsi_(i,j))/(fiepsi_(i,j)))\binom{y \varepsilon_{i, j}}{f i \varepsilon_{i, j}}(yεi,jfiεi,j) the approximative matrix for ( y ε φ ε ) ( y ε φ ε ) ((y_(epsi))/(varphi_(epsi)))\binom{y_{\varepsilon}}{\varphi_{\varepsilon}}(yεφε) where
y ε i , j = y ε ( t i , x j ) , i = 1 , M , j = 1 , N , φ ε i , j = φ ε ( t i , x j ) , i = 1 , M , j = 1 , N . y ε i , j = y ε t i , x j ,      i = 1 , M ¯ , j = 1 , N ¯ , φ ε i , j = φ ε t i , x j ,      i = 1 , M ¯ , j = 1 , N ¯ . {:[yepsi_(i,j)=y_(epsi)(t_(i),x_(j))",",i= bar(1,M)","quad j= bar(1,N)","],[varphiepsi_(i,j)=varphi_(epsi)(t_(i),x_(j))",",i= bar(1,M)","quad j= bar(1,N).]:}\begin{array}{ll} y \varepsilon_{i, j}=y_{\varepsilon}\left(t_{i}, x_{j}\right), & i=\overline{1, M}, \quad j=\overline{1, N}, \\ \varphi \varepsilon_{i, j}=\varphi_{\varepsilon}\left(t_{i}, x_{j}\right), & i=\overline{1, M}, \quad j=\overline{1, N} . \end{array}yεi,j=yε(ti,xj),i=1,M,j=1,N,φεi,j=φε(ti,xj),i=1,M,j=1,N.
Using a standard implicit scheme, (1.6)-(1.7) are discretized as
(3.1) φ i + 1 , j φ i , j ε ξ 2 τ φ i + 1 , j + 1 2 φ i + 1 , j + φ i + 1 , j 1 h 2 + 2 + 1 τ ( l 1 2 a τ ) φ i + 1 , j + 1 2 a φ i + 1 , j 3 2 τ y i + 1 , j = 0 , i = 0 , M 1 , j = 1 , N 1 , (3.1) φ i + 1 , j φ i , j ε ξ 2 τ φ i + 1 , j + 1 2 φ i + 1 , j + φ i + 1 , j 1 h 2 + 2 + 1 τ l 1 2 a τ φ i + 1 , j + 1 2 a φ i + 1 , j 3 2 τ y i + 1 , j = 0 , i = 0 , M 1 ¯ , j = 1 , N 1 ¯ , {:[(3.1)(varphi_(i+1,j)-varphi_(i,j))/(epsi)-(xi^(2))/(tau)(varphi_(i+1,j+1)-2varphi_(i+1,j)+varphi_(i+1,j-1))/(h^(2))+^(2)],[+(1)/(tau)(l-(1)/(2a tau))varphi_(i+1,j)+(1)/(2a)varphi_(i+1,j)^(3)-(2)/(tau)y_(i+1,j)=0","quad i= bar(0,M-1)","quad j= bar(1,N-1)","]:}\begin{gather*} \frac{\varphi_{i+1, j}-\varphi_{i, j}}{\varepsilon}-\frac{\xi^{2}}{\tau} \frac{\varphi_{i+1, j+1}-2 \varphi_{i+1, j}+\varphi_{i+1, j-1}}{h^{2}}+{ }^{2} \tag{3.1}\\ +\frac{1}{\tau}\left(l-\frac{1}{2 a \tau}\right) \varphi_{i+1, j}+\frac{1}{2 a} \varphi_{i+1, j}^{3}-\frac{2}{\tau} y_{i+1, j}=0, \quad i=\overline{0, M-1}, \quad j=\overline{1, N-1}, \end{gather*}(3.1)φi+1,jφi,jεξ2τφi+1,j+12φi+1,j+φi+1,j1h2+2+1τ(l12aτ)φi+1,j+12aφi+1,j32τyi+1,j=0,i=0,M1,j=1,N1,
(3.2) y i + 1 , j y i , j ε k y i + 1 , j + 1 2 y i + 1 , j + y i + 1 , j 1 h 2 + + k l 2 φ i + 1 , j + 1 2 φ i + 1 , j + φ i + 1 , j 1 h 2 = 0 , i = 0 , M 1 , j = 1 , N 1 (3.2) y i + 1 , j y i , j ε k y i + 1 , j + 1 2 y i + 1 , j + y i + 1 , j 1 h 2 + + k l 2 φ i + 1 , j + 1 2 φ i + 1 , j + φ i + 1 , j 1 h 2 = 0 , i = 0 , M 1 ¯ , j = 1 , N 1 ¯ {:[(3.2)(y_(i+1,j)-y_(i,j))/(epsi)-k*(y_(i+1,j+1)-2y_(i+1,j)+y_(i+1,j-1))/(h^(2))+],[+(kl)/(2)(varphi_(i+1,j+1)-2varphi_(i+1,j)+varphi_(i+1,j-1))/(h^(2))=0","quad i= bar(0,M-1)","quad j= bar(1,N-1)]:}\begin{gather*} \frac{y_{i+1, j}-y_{i, j}}{\varepsilon}-k \cdot \frac{y_{i+1, j+1}-2 y_{i+1, j}+y_{i+1, j-1}}{h^{2}}+ \tag{3.2}\\ +\frac{k l}{2} \frac{\varphi_{i+1, j+1}-2 \varphi_{i+1, j}+\varphi_{i+1, j-1}}{h^{2}}=0, \quad i=\overline{0, M-1}, \quad j=\overline{1, N-1} \end{gather*}(3.2)yi+1,jyi,jεkyi+1,j+12yi+1,j+yi+1,j1h2++kl2φi+1,j+12φi+1,j+φi+1,j1h2=0,i=0,M1,j=1,N1
and
φ i , 0 = φ i , N = 0 , y i , 0 = y i , N = 0 , i = 1 , M φ 0 , j = φ 0 ( x j ) , y 0 , j = y 0 ( x j ) = 0 , j = 1 , N φ i , 0 = φ i , N = 0 , y i , 0 = y i , N = 0 , i = 1 , M ¯ φ 0 , j = φ 0 x j , y 0 , j = y 0 x j = 0 , j = 1 , N ¯ {:[varphi_(i,0)=varphi_(i,N)=0","quady_(i,0)=y_(i,N)=0","quad i= bar(1,M)],[varphi_(0,j)=varphi_(0)(x_(j))","quady_(0,j)=y_(0)(x_(j))=0","quad j= bar(1,N)]:}\begin{gathered} \varphi_{i, 0}=\varphi_{i, N}=0, \quad y_{i, 0}=y_{i, N}=0, \quad i=\overline{1, M} \\ \varphi_{0, j}=\varphi_{0}\left(x_{j}\right), \quad y_{0, j}=y_{0}\left(x_{j}\right)=0, \quad j=\overline{1, N} \end{gathered}φi,0=φi,N=0,yi,0=yi,N=0,i=1,Mφ0,j=φ0(xj),y0,j=y0(xj)=0,j=1,N
where h = x i + 1 x i h = x i + 1 x i h=x_(i+1)-x_(i)h=x_{i+1}-x_{i}h=xi+1xi
Setting
c 1 = ξ 2 / τ h 2 , c 2 = ε / 2 a τ l ε / 2 2 ε c 1 1 , c 3 = ε c 1 , c 4 = 2 ε / τ , c 5 = k ε / h 2 , c 6 = 2 c 5 1 , c 7 = k l ε / 2 h 2 , c 8 = c 7 / 2 , c 9 = c 4 / 4 a , c 1 = ξ 2 / τ h 2 , c 2 = ε / 2 a τ l ε / 2 2 ε c 1 1 , c 3 = ε c 1 , c 4 = 2 ε / τ , c 5 = k ε / h 2 , c 6 = 2 c 5 1 , c 7 = k l ε / 2 h 2 , c 8 = c 7 / 2 , c 9 = c 4 / 4 a , {:[c_(1)=xi^(2)//tauh^(2)","c_(2)=epsi//2a tau-l epsi//2-2epsi*c_(1)-1","c_(3)=epsi*c_(1)","],[c_(4)=2epsi//tau","c_(5)=k epsi//h^(2)","c_(6)=-2*c_(5)-1","],[c_(7)=-kl epsi//2h^(2)","c_(8)=-c_(7)//2","c_(9)=-c_(4)//4a","]:}\begin{gathered} c_{1}=\xi^{2} / \tau h^{2}, c_{2}=\varepsilon / 2 a \tau-l \varepsilon / 2-2 \varepsilon \cdot c_{1}-1, c_{3}=\varepsilon \cdot c_{1}, \\ c_{4}=2 \varepsilon / \tau, c_{5}=k \varepsilon / h^{2}, c_{6}=-2 \cdot c_{5}-1, \\ c_{7}=-k l \varepsilon / 2 h^{2}, c_{8}=-c_{7} / 2, c_{9}=-c_{4} / 4 a, \end{gathered}c1=ξ2/τh2,c2=ε/2aτlε/22εc11,c3=εc1,c4=2ε/τ,c5=kε/h2,c6=2c51,c7=klε/2h2,c8=c7/2,c9=c4/4a,
(3.1) and (3.2) can be rewritten for the level of time i , i = 1 , M 1 i , i = 1 , M 1 ¯ i,i= bar(1,M-1)i, i=\overline{1, M-1}i,i=1,M1, in matrix form
(3.3) ( A ¯ 11 A ¯ 12 A ¯ 21 A ¯ 22 ) ( φ i , j y i , j ) + ( diag ( c 9 φ i , j 3 ) 0 φ 15 0 0 ) ( φ i , j y i , j ) = d (3.3) A ¯ 11 A ¯ 12 A ¯ 21 A ¯ 22 ( φ i , j y i , j ) + diag c 9 φ i , j 3 0 φ 15 0 0 ( φ i , j y i , j ) = d {:(3.3)([ bar(A)_(11), bar(A)_(12)],[ bar(A)_(21), bar(A)_(22)])((varphi_(i,j))/(y_(i,j)))+([diag,(c_(9)*varphi_(i,j)^(3)),0],[varphi_(15),0,0])((varphi_(i,j))/(y_(i,j)))=d:}\left(\begin{array}{ll} \bar{A}_{11} & \bar{A}_{12} \tag{3.3}\\ \bar{A}_{21} & \bar{A}_{22} \end{array}\right)\binom{\varphi_{i, j}}{y_{i, j}}+\left(\begin{array}{ccc} \operatorname{diag} & \left(\mathbf{c}_{9} \cdot \varphi_{i, j}^{3}\right) & 0 \\ \varphi_{15} & 0 & 0 \end{array}\right)\binom{\varphi_{i, j}}{y_{i, j}}=d(3.3)(A¯11A¯12A¯21A¯22)(φi,jyi,j)+(diag(c9φi,j3)0φ1500)(φi,jyi,j)=d
with A ¯ 11 , A ¯ 12 , A ¯ 21 , A ¯ 22 A ¯ 11 , A ¯ 12 , A ¯ 21 , A ¯ 22 bar(A)_(11), bar(A)_(12), bar(A)_(21), bar(A)_(22)\bar{A}_{11}, \bar{A}_{12}, \bar{A}_{21}, \bar{A}_{22}A¯11,A¯12,A¯21,A¯22, of ( N 1 ) × ( N 1 ) ( N 1 ) × ( N 1 ) (N-1)xx(N-1)(N-1) \times(N-1)(N1)×(N1) dimension, given by
A ¯ 11 = ( c 2 c 1 0 c 3 c 2 c 1 0 c 1 0 c 3 c 2 ) A ¯ 12 = ( c 4 0 0 0 c 4 0 0 0 c 4 ) A ¯ 21 = ( c 8 c 7 0 c 7 c 7 0 c 7 c 8 ) A ¯ 22 = ( c 6 c 5 0 c 5 c 5 0 c 5 c 6 ) , A ¯ 11 = c 2 c 1 0 c 3 c 2 c 1 0 c 1 0 c 3 c 2 A ¯ 12 = c 4 0 0 0 c 4 0 0 0 c 4 A ¯ 21 = c 8 c 7 0 c 7 c 7 0 c 7 c 8 A ¯ 22 = c 6 c 5 0 c 5 c 5 0 c 5 c 6 , {:[ bar(A)_(11)=([c_(2),c_(1),*,*,0],[c_(3),c_(2),c_(1),*,0],[,*,*,*,c_(1)],[0,*,*,c_(3),c_(2)])quad bar(A)_(12)=([c_(4),0,*,0],[0,c_(4),*,0],[0,0,*,c_(4)])],[ bar(A)_(21)=([c_(8),c_(7),*,0],[c_(7),*,*,*],[*,*,*,c_(7)],[0,*,c_(7),c_(8)]) bar(A)_(22)=([c_(6),c_(5),*,0],[c_(5),*,*,*],[*,*,*,c_(5)],[0,,c_(5),c_(6)])","]:}\begin{gathered} \bar{A}_{11}=\left(\begin{array}{ccccc} c_{2} & c_{1} & \cdot & \cdot & 0 \\ c_{3} & c_{2} & c_{1} & \cdot & 0 \\ & \cdot & \cdot & \cdot & c_{1} \\ 0 & \cdot & \cdot & c_{3} & c_{2} \end{array}\right) \quad \bar{A}_{12}=\left(\begin{array}{cccc} c_{4} & 0 & \cdot & 0 \\ 0 & c_{4} & \cdot & 0 \\ 0 & 0 & \cdot & c_{4} \end{array}\right) \\ \bar{A}_{21}=\left(\begin{array}{cccc} c_{8} & c_{7} & \cdot & 0 \\ c_{7} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & c_{7} \\ 0 & \cdot & c_{7} & c_{8} \end{array}\right) \bar{A}_{22}=\left(\begin{array}{cccc} c_{6} & c_{5} & \cdot & 0 \\ c_{5} & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & c_{5} \\ 0 & & c_{5} & c_{6} \end{array}\right), \end{gathered}A¯11=(c2c10c3c2c10c10c3c2)A¯12=(c4000c4000c4)A¯21=(c8c70c7c70c7c8)A¯22=(c6c50c5c50c5c6),
and d = ( d 1 ; d 2 ) = ( φ i , 1 , φ i , 2 , , φ i , N 1 ; y i , 1 , y i , 2 , , y i , N 1 ) d = d 1 ; d 2 = φ i , 1 , φ i , 2 , , φ i , N 1 ; y i , 1 , y i , 2 , , y i , N 1 d=(d_(1);d_(2))=(-varphi_(i,1),-varphi_(i,2),dots,-varphi_(i,N-1);-y_(i,1),-y_(i,2),dots,-y_(i,N-1))d=\left(d_{1} ; d_{2}\right)=\left(-\varphi_{i, 1},-\varphi_{i, 2}, \ldots,-\varphi_{i, N-1} ;-y_{i, 1},-y_{i, 2}, \ldots,-y_{i, N-1}\right)d=(d1;d2)=(φi,1,φi,2,,φi,N1;yi,1,yi,2,,yi,N1).
Let w = ( f i , y ) w = f i , y w=(f_(i),y)w=\left(f_{i}, y\right)w=(fi,y) denote the vector-solution for level of time i i iii, i.e.
w = ( φ i , 1 , φ i , 2 , , φ i , N 1 ; y i , 1 , y i , 2 , , y i , N 1 ) w = φ i , 1 , φ i , 2 , , φ i , N 1 ; y i , 1 , y i , 2 , , y i , N 1 w=(varphi_(i,1),varphi_(i,2),dots,varphi_(i,N-1);y_(i,1),y_(i,2),dots,y_(i,N-1))w=\left(\varphi_{i, 1}, \varphi_{i, 2}, \ldots, \varphi_{i, N-1} ; y_{i, 1}, y_{i, 2}, \ldots, y_{i, N-1}\right)w=(φi,1,φi,2,,φi,N1;yi,1,yi,2,,yi,N1)
System (3.3) takes the form
(3.4) { A ¯ 11 φ + A ¯ 12 y + g ( φ ) = d 1 A ¯ 21 φ + A ¯ 22 y = d 2 (3.4) A ¯ 11 φ + A ¯ 12 y + g ( φ ) = d 1 A ¯ 21 φ + A ¯ 22 y = d 2 {:(3.4){[ bar(A)_(11)varphi+ bar(A)_(12)y+g(varphi)=d_(1)],[ bar(A)_(21)varphi+ bar(A)_(22)y=d_(2)]:}:}\left\{\begin{array}{l} \bar{A}_{11} \varphi+\bar{A}_{12} y+g(\varphi)=d_{1} \tag{3.4}\\ \bar{A}_{21} \varphi+\bar{A}_{22} y=d_{2} \end{array}\right.(3.4){A¯11φ+A¯12y+g(φ)=d1A¯21φ+A¯22y=d2
where g ( φ ) = diag ( c 9 φ i , j 3 ) i = 1 , N 1 g ( φ ) = diag c 9 φ i , j 3 i = 1 , N 1 g(varphi)=diag(c_(9)*varphi_(i,j)^(3))_(i=1,N-1)g(\varphi)=\operatorname{diag}\left(c_{9} \cdot \varphi_{i, j}^{3}\right)_{i=1, N-1}g(φ)=diag(c9φi,j3)i=1,N1.
Thus we have to solve the nonlinear system
F ( w ) = 0 F ( w ) = 0 F(w)=0F(w)=0F(w)=0
Using the Newton iterative method to solve it, we have
(3.5) w ( j + 1 ) = w ( j ) F ( w ( j ) ) / F ( w ( j ) ) , (3.5) w ( j + 1 ) = w ( j ) F w ( j ) / F w ( j ) , {:(3.5)w^((j+1))=w^((j))-F(w^((j)))//F^(')(w^((j)))",":}\begin{equation*} w^{(j+1)}=w^{(j)}-F\left(w^{(j)}\right) / F^{\prime}\left(w^{(j)}\right), \tag{3.5} \end{equation*}(3.5)w(j+1)=w(j)F(w(j))/F(w(j)),
where
F ( w ) = ( A ¯ 11 φ + A ¯ 12 y + g ( φ i ) d 1 A ¯ 21 φ + A ¯ 22 y d 2 ) , F ( w ) = ( A ¯ 11 + diag ( 3 c 9 φ i , j 2 ) i = 1 , N 1 A ¯ 12 A ¯ 21 A ¯ 22 ) . F ( w ) = ( A ¯ 11 φ + A ¯ 12 y + g ( φ i ) d 1 A ¯ 21 φ + A ¯ 22 y d 2 ) , F ( w ) = A ¯ 11 + diag 3 c 9 φ i , j 2 i = 1 , N 1 A ¯ 12 A ¯ 21 A ¯ 22 . {:[F(w)=(( bar(A)_(11)varphi+ bar(A)_(12)y+g(varphi i)-d_(1))/( bar(A)_(21)varphi+ bar(A)_(22)y-d_(2)))","],[F^(')(w)=([ bar(A)_(11)+diag(3*c_(9)*varphi_(i,j)^(2))_(i=1,N-1), bar(A)_(12)],[ bar(A)_(21), bar(A)_(22)]).]:}\begin{gathered} F(w)=\binom{\bar{A}_{11} \varphi+\bar{A}_{12} y+g(\varphi i)-d_{1}}{\bar{A}_{21} \varphi+\bar{A}_{22} y-d_{2}}, \\ F^{\prime}(w)=\left(\begin{array}{cc} \bar{A}_{11}+\operatorname{diag}\left(3 \cdot c_{9} \cdot \varphi_{i, j}^{2}\right)_{i=1, N-1} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{array}\right) . \end{gathered}F(w)=(A¯11φ+A¯12y+g(φi)d1A¯21φ+A¯22yd2),F(w)=(A¯11+diag(3c9φi,j2)i=1,N1A¯12A¯21A¯22).
Using an implicit scheme and the Newton iterative method, we obtain from (2.1)
(3.6) { z ε ( j + 1 ) ( ( i + 1 ) ε ) = z ε ( j ) ( ( i + 1 ) ε ) G ( z ε ( j ) ( ( i + 1 ) ε ) ) / G ( z ε ( j ) ( ( i + 1 ) ε ) ) , z ˙ ε 0 ( ( i + 1 ) ε ) = φ ε + ( i ε ) , (3.6) z ε ( j + 1 ) ( ( i + 1 ) ε ) = z ε ( j ) ( ( i + 1 ) ε ) G z ε ( j ) ( ( i + 1 ) ε ) / G z ε ( j ) ( ( i + 1 ) ε ) , z ˙ ε 0 ( ( i + 1 ) ε ) = φ ε + ( i ε ) , {:(3.6){[z_(epsi)^((j+1))((i+1)epsi)=z_(epsi)^((j))((i+1)epsi)-G(z_(epsi)^((j))((i+1)epsi))//G^(')(z_(epsi)^((j))((i+1)epsi))","],[z^(˙)_(epsi)^(0)((i+1)epsi)=varphi_(epsi)^(+)(i epsi)","]:}:}\left\{\begin{array}{l} z_{\varepsilon}^{(j+1)}((i+1) \varepsilon)=z_{\varepsilon}^{(j)}((i+1) \varepsilon)-G\left(z_{\varepsilon}^{(j)}((i+1) \varepsilon)\right) / G^{\prime}\left(z_{\varepsilon}^{(j)}((i+1) \varepsilon)\right), \tag{3.6}\\ \dot{z}_{\varepsilon}^{0}((i+1) \varepsilon)=\varphi_{\varepsilon}^{+}(i \varepsilon), \end{array}\right.(3.6){zε(j+1)((i+1)ε)=zε(j)((i+1)ε)G(zε(j)((i+1)ε))/G(zε(j)((i+1)ε)),z˙ε0((i+1)ε)=φε+(iε),
where
G ( z ) = ε 2 a τ g r ( z ) + z φ ε + ( i ε ) 2 τ y ε ( i ε ) G ( z ) = ε 2 a τ g r ( z ) + z φ ε + ( i ε ) 2 τ y ε ( i ε ) G(z)=(epsi)/(2a tau)g_(r)(z)+z-varphi_(epsi)^(+)(i epsi)-(2)/(tau)y_(epsi)(i epsi)G(z)=\frac{\varepsilon}{2 a \tau} g_{r}(z)+z-\varphi_{\varepsilon}^{+}(i \varepsilon)-\frac{2}{\tau} y_{\varepsilon}(i \varepsilon)G(z)=ε2aτgr(z)+zφε+(iε)2τyε(iε)
Using the very same way of discretization and implicit scheme, the approximative version of (1.10) is given by
(3.7) ( A ¯ 11 0 A ¯ 21 A ¯ 22 ) ( φ ε i , j y ε i , j ) = d ε (3.7) A ¯ 11 0 A ¯ 21 A ¯ 22 ( φ ε i , j y ε i , j ) = d ε {:(3.7)([ bar(A)_(11),0],[ bar(A)_(21), bar(A)_(22)])((varphiepsi_(i,j))/(yepsi_(i,j)))=d epsi:}\left(\begin{array}{cc} \bar{A}_{11} & 0 \tag{3.7}\\ \bar{A}_{21} & \bar{A}_{22} \end{array}\right)\binom{\varphi \varepsilon_{i, j}}{y \varepsilon_{i, j}}=d \varepsilon(3.7)(A¯110A¯21A¯22)(φεi,jyεi,j)=dε
and
φ ε i , 0 = φ ε i , N = 0 , y ε i , 0 = y ε i , N = 0 , i = 1 , M , φ ε 0 , j = z ε ( 0 ) = φ ε + ( 0 ) = φ 0 ( x j ) , y ε 0 , j = u 0 ( x j ) + l 2 φ ε 0 , j , j = 0 , N , φ ε i , 0 = φ ε i , N = 0 , y ε i , 0 = y ε i , N = 0 , i = 1 , M ¯ , φ ε 0 , j = z ε ( 0 ) = φ ε + ( 0 ) = φ 0 x j , y ε 0 , j = u 0 x j + l 2 φ ε 0 , j , j = 0 , N ¯ , {:[varphiepsi_(i,0)=varphiepsi_(i,N)=0","yepsi_(i,0)=yepsi_(i,N)=0","i= bar(1,M)","],[varphiepsi_(0,j)=z_(epsi)(0)=varphi_(epsi)^(+)(0)=varphi_(0)(x_(j))","yepsi_(0,j)=u_(0)(x_(j))+(l)/(2)varphiepsi_(0,j)","j= bar(0,N)","]:}\begin{gathered} \varphi \varepsilon_{i, 0}=\varphi \varepsilon_{i, N}=0, y \varepsilon_{i, 0}=y \varepsilon_{i, N}=0, i=\overline{1, M}, \\ \varphi \varepsilon_{0, j}=z_{\varepsilon}(0)=\varphi_{\varepsilon}^{+}(0)=\varphi_{0}\left(x_{j}\right), y \varepsilon_{0, j}=u_{0}\left(x_{j}\right)+\frac{l}{2} \varphi \varepsilon_{0, j}, j=\overline{0, N}, \end{gathered}φεi,0=φεi,N=0,yεi,0=yεi,N=0,i=1,M,φε0,j=zε(0)=φε+(0)=φ0(xj),yε0,j=u0(xj)+l2φε0,j,j=0,N,
with d ε = ( φ ε i , 1 , φ ε i , 2 , , φ ε i , N 1 , y ε i , 1 , y ε i , 2 , , y ε i , N 1 ) d ε = φ ε i , 1 , φ ε i , 2 , , φ ε i , N 1 , y ε i , 1 , y ε i , 2 , , y ε i , N 1 d epsi=(-varphiepsi_(i,1),-varphiepsi_(i,2),dots,-varphiepsi_(i,N-1),-yepsi_(i,1),-yepsi_(i,2),dots,-yepsi_(i,N-1))d \varepsilon=\left(-\varphi \varepsilon_{i, 1},-\varphi \varepsilon_{i, 2}, \ldots,-\varphi \varepsilon_{i, N-1},-y \varepsilon_{i, 1},-y \varepsilon_{i, 2}, \ldots,-y \varepsilon_{i, N-1}\right)dε=(φεi,1,φεi,2,,φεi,N1,yεi,1,yεi,2,,yεi,N1).
For fixed i ( i 0 ) i ( i 0 ) i(i >= 0)i(i \geq 0)i(i0), the computation of the approximate solution by fractional step method can be illustrated as in Figure 2
Fig. 2
and, the numerical algorithm to calculate it, can be obtained by the following sequence
z i + 1 , j ( 0 ) = φ ε i , j , j = 1 , N 1 , for k = 1 step 1 by 1 until itmax do z i + 1 , j ( 0 ) = φ ε i , j , j = 1 , N 1 ¯ ,  for  k = 1  step  1  by  1  until itmax do  {:[z_(i+1,j)^((0))=varphiepsi_(i,j)","j= bar(1,N-1)","],[ darr],[" for "k=1" step "1" by "1" until itmax do "]:}\begin{aligned} & z_{i+1, j}^{(0)}=\varphi \varepsilon_{i, j}, j=\overline{1, N-1}, \\ & \downarrow \\ & \text { for } k=1 \text { step } 1 \text { by } 1 \text { until itmax do } \end{aligned}zi+1,j(0)=φεi,j,j=1,N1, for k=1 step 1 by 1 until itmax do 
z i + 1 , j ( k + 1 ) = z i + 1 , i ( k ) G ( z i + 1 , j ( k ) ) / G ( z i + 1 , j ( k ) ) , j = 1 , N 1 , z i + 1 , j ( k + 1 ) = z i + 1 , i ( k ) G z i + 1 , j ( k ) / G z i + 1 , j ( k ) , j = 1 , N 1 ¯ , z_(i+1,j)^((k+1))=z_(i+1,i)^((k))-G(z_(i+1,j)^((k)))//G(z_(i+1,j)^((k))),j= bar(1,N-1),z_{i+1, j}^{(k+1)}=z_{i+1, i}^{(k)}-G\left(z_{i+1, j}^{(k)}\right) / G\left(z_{i+1, j}^{(k)}\right), j=\overline{1, N-1},zi+1,j(k+1)=zi+1,i(k)G(zi+1,j(k))/G(zi+1,j(k)),j=1,N1,
if [ j = 1 N 1 ( z i + 1 , j ( k + 1 ) z i + 1 , j ( k ) ) 2 ] 1 2 eps and k < itmax ( true ) z i + 1 , j = z i + 1 , j ( k + 1 ) , j = 1 , N 1 , goto sol,  if  j = 1 N 1 z i + 1 , j ( k + 1 ) z i + 1 , j ( k ) 2 1 2  eps and  k <  itmax  (  true  ) z i + 1 , j = z i + 1 , j ( k + 1 ) , j = 1 , N 1 ¯ ,  goto sol,  " if "{:[[sum_(j=1)^(N-1)(z_(i+1,j)^((k+1))-z_(i+1,j)^((k)))^(2)]^((1)/(2)) <= " eps and "k < " itmax "-],[darr(" true ")],[z_(i+1,j)=z_(i+1,j)^((k+1))","j= bar(1,N-1)","" goto sol, "]:}\text { if } \begin{gathered} {\left[\sum_{j=1}^{N-1}\left(z_{i+1, j}^{(k+1)}-z_{i+1, j}^{(k)}\right)^{2}\right]^{\frac{1}{2}} \leq \text { eps and } k<\text { itmax }-} \\ \downarrow(\text { true }) \\ z_{i+1, j}=z_{i+1, j}^{(k+1)}, j=\overline{1, N-1}, \text { goto sol, } \end{gathered} if [j=1N1(zi+1,j(k+1)zi+1,j(k))2]12 eps and k< itmax ( true )zi+1,j=zi+1,j(k+1),j=1,N1, goto sol, 
next k k kkk
sol:
φ ε i , j = z i + 1 , j , j = 1 , N 1 , φ ε i , j = z i + 1 , j , j = 1 , N 1 ¯ , varphiepsi_(i,j)=z_(i+1,j),j= bar(1,N-1),\varphi \varepsilon_{i, j}=z_{i+1, j}, j=\overline{1, N-1},φεi,j=zi+1,j,j=1,N1,
Solve the linear system (3.7)
( y ε i + 1 , j φ ε i + 1 , j ) , j = 1 , N 1 , ( y ε i + 1 , j φ ε i + 1 , j ) , j = 1 , N 1 ¯ , ((yepsi_(i+1,j))/(varphiepsi_(i+1,j))),quad j= bar(1,N-1),\binom{y \varepsilon_{i+1, j}}{\varphi \varepsilon_{i+1, j}}, \quad j=\overline{1, N-1},(yεi+1,jφεi+1,j),j=1,N1,
where itmax is the number of iterations, prescribed, eps is the accuracy desired and z i + 1 , j ( k ) z i + 1 , j ( k ) z_(i+1,j)^((k))z_{i+1, j}^{(k)}zi+1,j(k) (respectively z i + 1 , j z i + 1 , j z_(i+1,j)z_{i+1, j}zi+1,j ) denote the approximated solution for z ε ( k ) ( ( i + 1 ) ε ) z ε ( k ) ( ( i + 1 ) ε ) z_(epsi)^((k))((i+1)epsi)z_{\varepsilon}^{(k)}((i+1) \varepsilon)zε(k)((i+1)ε) (respectively z ε ( ( i + 1 ) ε ) ) , x j , j = 1 , N 1 z ε ( ( i + 1 ) ε ) , x j , j = 1 , N 1 {:z_(epsi)((i+1)epsi)),AAx_(j),j=1,N-1\left.z_{\varepsilon}((i+1) \varepsilon)\right), \forall x_{j}, j=1, N-1zε((i+1)ε)),xj,j=1,N1.
For the numerical tests we consider:
T = 15 . , c = 100 , ξ = 5 , a = ξ 1 4 , l = 3 . , k = 9 , τ = 10 2 ξ 2 . T = 15 . , c = 100 , ξ = 5 , a = ξ 1 4 , l = 3 . , k = 9 , τ = 10 2 ξ 2 . T=15.,quad c=100,quad xi=5,quad a=xi^((1)/(4)),quad l=3.,quad k=9,quad tau=10^(-2)*xi^(2).T=15 ., \quad c=100, \quad \xi=5, \quad a=\xi^{\frac{1}{4}}, \quad l=3 ., \quad k=9, \quad \tau=10^{-2} \cdot \xi^{2} .T=15.,c=100,ξ=5,a=ξ14,l=3.,k=9,τ=102ξ2.
( k l 2 < 16 ξ 2 / τ k l 2 < 16 ξ 2 / τ (kl^(2) < 16xi^(2)//tau:}\left(k l^{2}<16 \xi^{2} / \tau\right.(kl2<16ξ2/τ and l > 2 a ) l > 2 a {:l > 2a)\left.l>2 a\right)l>2a).
The initial value φ 0 ( x ) φ 0 ( x ) varphi_(0)(x)\varphi_{0}(x)φ0(x) is chosen such that (see Figure 3 for i = 0 i = 0 i=0i=0i=0 )
Fig. 3
φ 0 ( x 0 ) = 0 , φ 0 ( x N ) = 0 , φ 0 ( x j ) = 0.55 + ( j 1 ) / 10 , j = 1 , [ N / 2 ] , φ 0 ( x j ) = 1.1 , j = [ N / 2 ] + 1 , N 1 φ 0 x 0 = 0 , φ 0 x N = 0 , φ 0 x j = 0.55 + ( j 1 ) / 10 , j = 1 , [ N / 2 ] ¯ , φ 0 x j = 1.1 , j = [ N / 2 ] + 1 , N 1 ¯ {:[varphi_(0)(x_(0))=0","quadvarphi_(0)(x_(N))=0","],[varphi_(0)(x_(j))=-0.55+(j-1)//10","quad j= bar(1,[N//2])","],[varphi_(0)(x_(j))=1.1","quad j= bar([N//2]+1,N-1)]:}\begin{gathered} \varphi_{0}\left(x_{0}\right)=0, \quad \varphi_{0}\left(x_{N}\right)=0, \\ \varphi_{0}\left(x_{j}\right)=-0.55+(j-1) / 10, \quad j=\overline{1,[N / 2]}, \\ \varphi_{0}\left(x_{j}\right)=1.1, \quad j=\overline{[N / 2]+1, N-1} \end{gathered}φ0(x0)=0,φ0(xN)=0,φ0(xj)=0.55+(j1)/10,j=1,[N/2],φ0(xj)=1.1,j=[N/2]+1,N1
and the initial value u 0 ( x ) u 0 ( x ) u_(0)(x)u_{0}(x)u0(x) is the solution of stationary equation φ t = Δ φ = 0 φ t = Δ φ = 0 varphi_(t)=Delta varphi=0\varphi_{t}=\Delta \varphi=0φt=Δφ=0, i.e the solution of the following equation (see Figure 4 for i = 0 i = 0 i=0i=0i=0 )
Fig. 4
(see also [10] or [12]).
We observe that max j | φ 0 ( x j ) | = 1.1 max j φ 0 x j = 1.1 max_(j)|varphi_(0)(x_(j))|=1.1\max _{j}\left|\varphi_{0}\left(x_{j}\right)\right|=1.1maxj|φ0(xj)|=1.1 and thereby if we choose r = max j | φ 0 ( x j ) | + 2 r = max j φ 0 x j + 2 r=max_(j)|varphi_(0)(x_(j))|+2r=\max _{j}\left|\varphi_{0}\left(x_{j}\right)\right|+2r=maxj|φ0(xj)|+2
then g r ( φ 0 ( x j ) ) = φ 0 ( x j ) 3 , j = 0 , N g r φ 0 x j = φ 0 x j 3 , j = 0 , N ¯ g_(r)(varphi_(0)(x_(j)))=varphi_(0)(x_(j))^(3),j= bar(0,N)g_{r}\left(\varphi_{0}\left(x_{j}\right)\right)=\varphi_{0}\left(x_{j}\right)^{3}, j=\overline{0, N}gr(φ0(xj))=φ0(xj)3,j=0,N, and then B r ( y 0 ( x j ) φ 0 ( x j ) ) = B ( y 0 ( x j ) φ 0 ( x j ) ) B r ( y 0 x j φ 0 x j ) = B ( y 0 x j φ 0 x j ) B_(r)((y_(0)(x_(j)))/(varphi_(0)(x_(j))))=B((y_(0)(x_(j)))/(varphi_(0)(x_(j))))B_{r}\binom{y_{0}\left(x_{j}\right)}{\varphi_{0}\left(x_{j}\right)}=B\binom{y_{0}\left(x_{j}\right)}{\varphi_{0}\left(x_{j}\right)}Br(y0(xj)φ0(xj))=B(y0(xj)φ0(xj)).
In Table 1 there are given some numerical tests executed on a PC 386SX computer with math coprocessor.
Table 1
The CPU-time spent by fractional step method The CPU-time spent by iterative Newton method (3.5) M N
1 83 hund 1" 10 hund 17 17
2 5" 11 hund 7" 42 hund 17 37
3 8" 89 hund 11"26 hund 27 37
4 11" 37 hund 15" 92 hund 37 37
5 14" 94 hund 20 05 20 05 20^('')0520^{\prime \prime} 052005 hund 47 37
The CPU-time spent by fractional step method The CPU-time spent by iterative Newton method (3.5) M N 1 83 hund 1" 10 hund 17 17 2 5" 11 hund 7" 42 hund 17 37 3 8" 89 hund 11"26 hund 27 37 4 11" 37 hund 15" 92 hund 37 37 5 14" 94 hund 20^('')05 hund 47 37| | The CPU-time spent by fractional step method | The CPU-time spent by iterative Newton method (3.5) | M | N | | :--- | :--- | :--- | :--- | :--- | | 1 | 83 hund | 1" 10 hund | 17 | 17 | | 2 | 5" 11 hund | 7" 42 hund | 17 | 37 | | 3 | 8" 89 hund | 11"26 hund | 27 | 37 | | 4 | 11" 37 hund | 15" 92 hund | 37 | 37 | | 5 | 14" 94 hund | $20^{\prime \prime} 05$ hund | 47 | 37 |
For M = N = 17 M = N = 17 M=N=17M=N=17M=N=17, Figures 3 and 4 show the approximate solution ( y ε i , j φ ε i , j ) ( y ε i , j φ ε i , j ) ((yepsi_(i,j))/(varphiepsi_(i,j)))\binom{y \varepsilon_{i, j}}{\varphi \varepsilon_{i, j}}(yεi,jφεi,j) while For M = N = 17 M = N = 17 M=N=17M=N=17M=N=17, Figures 3 and 4 show the approxim ( y i , j φ i , j ) ( y i , j φ i , j ) ((y_(i,j))/(varphi_(i,j)))\binom{y_{i, j}}{\varphi_{i, j}}(yi,jφi,j).
Fig. 5
Fig. 5
Remark 3.1. i) Because max i , j | φ ε i , j | < r max i , j φ ε i , j < r max_(i,j)|varphiepsi_(i,j)| < r\max _{i, j}\left|\varphi \varepsilon_{i, j}\right|<rmaxi,j|φεi,j|<r, then ( J ε i , j φ ε i , j ) i = 1 , M j = 1 , N ( J ε i , j φ ε i , j ) i = 1 , M j = 1 , N ((Jepsi_(i,j))/(varphiepsi_(i,j)))_({:[i=1","M],[j=1","N]:})\binom{J \varepsilon_{i, j}}{\varphi \varepsilon_{i, j}}_{\substack{i=1, M \\ j=1, N}}(Jεi,jφεi,j)i=1,Mj=1,N is the approximate solution for the operator B B BBB.
ii) Let us point out that that the choosing of the value r r rrr is limited only by the arithmetic of the computer (the epsilon-machine).

REFERENCES

  1. Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623-727.
  2. Barbu, V., Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, 1993.
  3. Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Edit. Academiei, Nordhoff, Leyden, 1976.
  4. Barbu, V., Probleme la limită pentru ecuatii cu derivate partiale, Editura Academiei Romane, Bucureşti, 1993.
  5. Barbu, V. and Iannelli, M., Approximating some non-linear equations by a Fractional step Scheme, Differential and Integral Equations 1 (1993), 15-26.
  6. Bates, P. W. and Zheng Songmu, Inertial manifolds and inertial sets for the phase-field equations, in vol. Dynamical Systems, Plenum, (1992), 375-398.
  7. Brézis, H., Analyse Fonctionnelle. Théorie et Applications. Masson, Paris, 1983.
  8. Brézis, H., Problèmes unilatéraux, J. Math. Pures. Appl. 51 (1972), 1-168.
  9. Caginalp, G. An analysis of a phase field model of a free boundary. Arch. Rat. Mech. Anal., 92 (1986), 205-245.
  10. Caginalp, G. and Nishiura, Y., The existence of travelling waves for phases field equations and convergence to sharp interface models in the singular limit, Quaterly Appl. Math. XLIX 1(1991), 147-162.
  11. Elliott, C. M. and Zheng, S., Global existence and stability of solutions to the phase field equations, in: Free Boundary Problems, K-H. Hoffinan and J. Sprekels, eds., Int. Ser. of Numerical Math. Vol.95, Birkhäuser Verlag, Basel (1990).
  12. Fife, C. P., Models for phase separation and their mathematics, nonlinear par. diff eqns. and appl., M. Mimura & T. Nishida, eds., (to appear).
  13. Morosanu, G., Nonlinear Evolution Equations and Applications, Reidel, Dordrecht, 1988.
  14. Moroşanu, G., et al. Controlul optimal al suprafetei de solidificare in procesele de turnare continuă a ofelului, Contract nr. 590/115, Etapa II/1993, Capitolul I.
  15. Pavel, N. H., Differential Equations, Flow Invariance and Applications, Research Notes in Mathematics, 113, Pitnan Advanced Publishing Program (1984).
  16. Vrabie, I., Compactness Methods for Nonlinear Evolutions. Longman Scientific and Technical, London 1987.
Received 15.09.1995
Department of Mathematics University of Iasi 6000 Iasi Romania
Fig. 6