Return to Article Details Classical results via Mann-Ishikawa iteration

REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Rev. Anal. Numér. Théor. Approx., vol. 36 (2007) no. 2, pp. 195-199
ictp.acad.ro/jnaat
ictp.acad.ro/jnaat

CLASSICAL RESULTS VIA MANN-ISHIKAWA ITERATION ^(‡){ }^{\ddagger}

ŞTEFAN M. ŞOLTUZ* † and DIANA OTROCOL*

Abstract

New proofs of existence and uniqueness results for the solution of the Cauchy problem with delay are obtained by use of Mann-Ishikawa iteration.

MSC 2000. 47H10.
Keywords. Delay differential equation, Mann iteration, Ishikawa iteration.

1. INTRODUCTION

Consider the following delay differential equation
(1) x ( t ) = f ( t , x ( t ) , x ( t τ ) ) , t [ t 0 , b ] (1) x ( t ) = f ( t , x ( t ) , x ( t τ ) ) , t t 0 , b {:(1)x^(')(t)=f(t","x(t)","x(t-tau))","t in[t_(0),b]:}\begin{equation*} x^{\prime}(t)=f(t, x(t), x(t-\tau)), t \in\left[t_{0}, b\right] \tag{1} \end{equation*}(1)x(t)=f(t,x(t),x(tτ)),t[t0,b]
with t 0 , b , τ R , τ > 0 , f C ( [ t 0 , b ] × R 2 , R ) t 0 , b , τ R , τ > 0 , f C t 0 , b × R 2 , R t_(0),b,tau inR,tau > 0,f in C([t_(0),b]xxR^(2),R)t_{0}, b, \tau \in \mathbb{R}, \tau>0, f \in C\left(\left[t_{0}, b\right] \times \mathbb{R}^{2}, \mathbb{R}\right)t0,b,τR,τ>0,fC([t0,b]×R2,R).
The existence of an approximative solution for equation (1) is given by theorem 1 from [1] (see also [2], [6], [5]). The proof of this theorem is based on the contraction principle. We shall prove it here by applying Mann iteration.
In the last decades, numerous papers were published on the iterative approximation of fixed points of contractive type operators in metric spaces, see for example [7], [8]. The Mann iteration [4] and the Ishikawa iteration [3] are certainly the most studied of these fixed point iteration procedures.
Let X X XXX be a real Banach space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a given operator, let u 0 , x 0 X u 0 , x 0 X u_(0),x_(0)in Xu_{0}, x_{0} \in Xu0,x0X.
The Mann iteration is defined by
(2) u n + 1 = ( 1 α n ) u n + α n T u n . (2) u n + 1 = 1 α n u n + α n T u n . {:(2)u_(n+1)=(1-alpha_(n))u_(n)+alpha_(n)Tu_(n).:}\begin{equation*} u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} T u_{n} . \tag{2} \end{equation*}(2)un+1=(1αn)un+αnTun.
The Ishikawa iteration is defined by
(3) { x n + 1 = ( 1 α n ) x n + α n T y n y n = ( 1 β n ) x n + β n T x n (3) x n + 1 = 1 α n x n + α n T y n y n = 1 β n x n + β n T x n {:(3){[x_(n+1)=(1-alpha_(n))x_(n)+alpha_(n)Ty_(n)],[y_(n)=(1-beta_(n))x_(n)+beta_(n)Tx_(n)]:}:}\left\{\begin{array}{l} x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n} \tag{3}\\ y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n} \end{array}\right.(3){xn+1=(1αn)xn+αnTynyn=(1βn)xn+βnTxn
where { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) α n ( 0 , 1 ) , β n [ 0 , 1 ) {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1)\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1){αn}(0,1),{βn}[0,1) and both sequences satisfy
lim n α n = lim n β n = 0 , n = 0 α n = lim n α n = lim n β n = 0 , n = 0 α n = lim_(n rarr oo)alpha_(n)=lim_(n rarr oo)beta_(n)=0,sum_(n=0)^(oo)alpha_(n)=oo\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0, \sum_{n=0}^{\infty} \alpha_{n}=\inftylimnαn=limnβn=0,n=0αn=

2. FIXED POINT THEOREMS

We consider the delay differential equation
(4) x ( t ) = f ( t , x ( t ) , x ( t τ ) ) , t [ t 0 , b ] (4) x ( t ) = f ( t , x ( t ) , x ( t τ ) ) , t t 0 , b {:(4)x^(')(t)=f(t","x(t)","x(t-tau))","t in[t_(0),b]:}\begin{equation*} x^{\prime}(t)=f(t, x(t), x(t-\tau)), t \in\left[t_{0}, b\right] \tag{4} \end{equation*}(4)x(t)=f(t,x(t),x(tτ)),t[t0,b]
with initial condition
(5) x ( t ) = φ ( t ) , t [ t 0 τ , t 0 ] . (5) x ( t ) = φ ( t ) , t t 0 τ , t 0 . {:(5)x(t)=varphi(t)","t in[t_(0)-tau,t_(0)].:}\begin{equation*} x(t)=\varphi(t), t \in\left[t_{0}-\tau, t_{0}\right] . \tag{5} \end{equation*}(5)x(t)=φ(t),t[t0τ,t0].
We suppose that the following conditions are fulfilled
( H 1 ) t 0 , b R , τ > 0 ; H 1 t 0 , b R , τ > 0 ; (H_(1))t_(0),b inR,tau > 0;\left(\mathrm{H}_{1}\right) t_{0}, b \in \mathbb{R}, \tau>0 ;(H1)t0,bR,τ>0;
( H 2 ) f C ( [ t 0 , b ] × R 2 , R ) H 2 f C t 0 , b × R 2 , R (H_(2))f in C([t_(0),b]xxR^(2),R)\left(\mathrm{H}_{2}\right) f \in C\left(\left[t_{0}, b\right] \times \mathbb{R}^{2}, \mathbb{R}\right)(H2)fC([t0,b]×R2,R);
( H 3 ) φ C ( [ t 0 τ , b ] , R ) ; H 3 φ C t 0 τ , b , R ; (H_(3))varphi in C([t_(0)-tau,b],R);\left(\mathrm{H}_{3}\right) \varphi \in C\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right) ;(H3)φC([t0τ,b],R);
( H 4 ) H 4 (H_(4))\left(\mathrm{H}_{4}\right)(H4) there exist L f > 0 L f > 0 L_(f) > 0L_{f}>0Lf>0 such that
| f ( t , u 1 , u 2 ) f ( t , v 1 , v 2 ) | L f ( | u 1 v 1 | + | u 2 v 2 | ) u i , v i R , i = 1 , 2 , t [ t 0 , b ] f t , u 1 , u 2 f t , v 1 , v 2 L f u 1 v 1 + u 2 v 2 u i , v i R , i = 1 , 2 , t t 0 , b {:[|f(t,u_(1),u_(2))-f(t,v_(1),v_(2))| <= L_(f)(|u_(1)-v_(1)|+|u_(2)-v_(2)|)],[AAu_(i)","v_(i)inR","i=1","2","t in[t_(0),b]]:}\begin{aligned} & \left|f\left(t, u_{1}, u_{2}\right)-f\left(t, v_{1}, v_{2}\right)\right| \leq L_{f}\left(\left|u_{1}-v_{1}\right|+\left|u_{2}-v_{2}\right|\right) \\ & \forall u_{i}, v_{i} \in \mathbb{R}, i=1,2, t \in\left[t_{0}, b\right] \end{aligned}|f(t,u1,u2)f(t,v1,v2)|Lf(|u1v1|+|u2v2|)ui,viR,i=1,2,t[t0,b]
( H 5 ) 2 L f ( b t 0 ) < 1 H 5 2 L f b t 0 < 1 (H_(5))2L_(f)(b-t_(0)) < 1\left(\mathrm{H}_{5}\right) 2 L_{f}\left(b-t_{0}\right)<1(H5)2Lf(bt0)<1.
By a solution of the problem (4)-(5) we mean the function x C ( [ t 0 τ , b ] , R ) C 1 ( [ t 0 , b ] , R ) x C t 0 τ , b ] , R ) C 1 t 0 , b , R x in C([t_(0)-:}tau,b],R)nnC^(1)([t_(0),b],R)x \in C\left(\left[t_{0}-\right.\right. \tau, b], \mathbb{R}) \cap C^{1}\left(\left[t_{0}, b\right], \mathbb{R}\right)xC([t0τ,b],R)C1([t0,b],R).
The problem (4)-(5) is equivalent with the integral equation
(6) x ( t ) = { φ ( t ) , t [ t 0 τ , t 0 ] φ ( t 0 ) + t 0 t f ( s , x ( s ) , x ( s τ ) ) d s , t [ t 0 , b ] (6) x ( t ) = φ ( t ) , t t 0 τ , t 0 φ t 0 + t 0 t f ( s , x ( s ) , x ( s τ ) ) d s , t t 0 , b {:(6)x(t)={[varphi(t)",",t in[t_(0)-tau,t_(0)]],[varphi(t_(0))+int_(t_(0))^(t)f(s","x(s)","x(s-tau))ds",",t in[t_(0),b]]:}:}x(t)= \begin{cases}\varphi(t), & t \in\left[t_{0}-\tau, t_{0}\right] \tag{6}\\ \varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s), x(s-\tau)) \mathrm{d} s, & t \in\left[t_{0}, b\right]\end{cases}(6)x(t)={φ(t),t[t0τ,t0]φ(t0)+t0tf(s,x(s),x(sτ))ds,t[t0,b]
The operator T : C ( [ t 0 τ , b ] , R ) C ( [ t 0 τ , b ] , R ) T : C t 0 τ , b , R C t 0 τ , b , R T:C([t_(0)-tau,b],R)rarr C([t_(0)-tau,b],R)T: C\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right) \rightarrow C\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right)T:C([t0τ,b],R)C([t0τ,b],R), is defined by
T ( x ) ( t ) = { φ ( t ) , t [ t 0 τ , t 0 ] φ ( t 0 ) + t 0 t f ( s , x ( s ) , x ( s τ ) ) d s , t [ t 0 , b ] T ( x ) ( t ) = φ ( t ) ,      t t 0 τ , t 0 φ t 0 + t 0 t f ( s , x ( s ) , x ( s τ ) ) d s ,      t t 0 , b T(x)(t)={[varphi(t)",",t in[t_(0)-tau,t_(0)]],[varphi(t_(0))+int_(t_(0))^(t)f(s","x(s)","x(s-tau))ds",",t in[t_(0),b]]:}T(x)(t)= \begin{cases}\varphi(t), & t \in\left[t_{0}-\tau, t_{0}\right] \\ \varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s), x(s-\tau)) \mathrm{d} s, & t \in\left[t_{0}, b\right]\end{cases}T(x)(t)={φ(t),t[t0τ,t0]φ(t0)+t0tf(s,x(s),x(sτ))ds,t[t0,b]
and the Banach space C [ t 0 , b ] C t 0 , b C[t_(0),b]C\left[t_{0}, b\right]C[t0,b] is embedded with Tchebyshev norm
d ( y , z ) = max t 0 t b | y ( t ) z ( t ) | d ( y , z ) = max t 0 t b | y ( t ) z ( t ) | d(y,z)=max_(t_(0) <= t <= b)|y(t)-z(t)|d(y, z)=\max _{t_{0} \leq t \leq b}|y(t)-z(t)|d(y,z)=maxt0tb|y(t)z(t)|
Applying contraction principle we have
Theorem 1. 1 We suppose conditions ( H 1 ) ( H 5 ) H 1 H 5 (H_(1))-(H_(5))\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)(H1)(H5) are satisfied. Then the problem (4)-(5) has a unique solution in C ( [ t 0 τ , b ] , R ) C 1 ( [ t 0 , b ] , R ) C t 0 τ , b , R C 1 t 0 , b , R C([t_(0)-tau,b],R)nnC^(1)([t_(0),b],R)C\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right) \cap C^{1}\left(\left[t_{0}, b\right], \mathbb{R}\right)C([t0τ,b],R)C1([t0,b],R). Moreover, if x x x^(**)x^{*}x is the unique solution of the problem (4)-(5), then
x = lim n T n ( x ) for any x C ( [ t 0 τ , b ] , R ) x = lim n T n ( x )  for any  x C t 0 τ , b , R x^(**)=lim_(n rarr oo)T^(n)(x)" for any "x in C([t_(0)-tau,b],R)x^{*}=\lim _{n \rightarrow \infty} T^{n}(x) \text { for any } x \in C\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right)x=limnTn(x) for any xC([t0τ,b],R)
The following lemma is well-known. For sake of completeness, we shall give a proof here.
Lemma 2. Let { a n } a n {a_(n)}\left\{a_{n}\right\}{an} be a nonnegative sequence satisfying
a n + 1 ( 1 α n ) a n a n + 1 1 α n a n a_(n+1) <= (1-alpha_(n))a_(n)a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}an+1(1αn)an
where { α n } ( 0 , 1 ) , n = 0 α n = α n ( 0 , 1 ) , n = 0 α n = {alpha_(n)}sub(0,1),sum_(n=0)^(oo)alpha_(n)=oo\left\{\alpha_{n}\right\} \subset(0,1), \sum_{n=0}^{\infty} \alpha_{n}=\infty{αn}(0,1),n=0αn=. Then lim n a n = 0 lim n a n = 0 lim_(n rarr oo)a_(n)=0\lim _{n \rightarrow \infty} a_{n}=0limnan=0.
Proof. Use 1 x e x , x ( 0 , 1 ) 1 x e x , x ( 0 , 1 ) 1-x <= e^(-x),AA x in(0,1)1-x \leq \mathrm{e}^{-x}, \forall x \in(0,1)1xex,x(0,1) to obtain k = 1 n ( 1 α k ) e k = 1 n α k k = 1 n 1 α k e k = 1 n α k prod_(k=1)^(n)(1-alpha_(k)) <= e^(-sum_(k=1)^(n)alpha_(k))\prod_{k=1}^{n}\left(1-\alpha_{k}\right) \leq \mathrm{e}^{-\sum_{k=1}^{n} \alpha_{k}}k=1n(1αk)ek=1nαk. Actually, one has
a n + 1 k = 1 n ( 1 α k ) a 1 a 1 e k = 1 n α k 0 a n + 1 k = 1 n 1 α k a 1 a 1 e k = 1 n α k 0 a_(n+1) <= prod_(k=1)^(n)(1-alpha_(k))a_(1) <= a_(1)e^(-sum_(k=1)^(n)alpha_(k))rarr0a_{n+1} \leq \prod_{k=1}^{n}\left(1-\alpha_{k}\right) a_{1} \leq a_{1} \mathrm{e}^{-\sum_{k=1}^{n} \alpha_{k}} \rightarrow 0an+1k=1n(1αk)a1a1ek=1nαk0

3. MAIN RESULT

Theorem 3. We suppose that conditions ( H 1 ) ( H 5 ) H 1 H 5 (H_(1))-(H_(5))\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)(H1)(H5) are satisfied. Then the problem (4)-(5) has a unique solution in C ( [ t 0 τ , b ] , R ) C 1 ( [ t 0 , b ] , R ) C t 0 τ , b , R C 1 t 0 , b , R C([t_(0)-tau,b],R)nnC^(1)([t_(0),b],R)C\left(\left[t_{0}-\tau, b\right], \mathbb{R}\right) \cap C^{1}\left(\left[t_{0}, b\right], \mathbb{R}\right)C([t0τ,b],R)C1([t0,b],R).
Proof. Consider Mann iteration
u n + 1 = ( 1 α n ) u n + α n T u n u n + 1 = 1 α n u n + α n T u n u_(n+1)=(1-alpha_(n))u_(n)+alpha_(n)Tu_(n)u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} T u_{n}un+1=(1αn)un+αnTun
for the operator
T u n = { φ ( t ) , t [ t 0 τ , t 0 ] φ ( t 0 ) + t 0 t f ( s , u n ( s ) , u n ( s τ ) ) d s , t [ t 0 , b ] T u n = φ ( t ) ,      t t 0 τ , t 0 φ t 0 + t 0 t f s , u n ( s ) , u n ( s τ ) d s ,      t t 0 , b Tu_(n)={[varphi(t)",",t in[t_(0)-tau,t_(0)]],[varphi(t_(0))+int_(t_(0))^(t)f(s,u_(n)(s),u_(n)(s-tau))ds",",t in[t_(0),b]]:}T u_{n}= \begin{cases}\varphi(t), & t \in\left[t_{0}-\tau, t_{0}\right] \\ \varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(s, u_{n}(s), u_{n}(s-\tau)\right) \mathrm{d} s, & t \in\left[t_{0}, b\right]\end{cases}Tun={φ(t),t[t0τ,t0]φ(t0)+t0tf(s,un(s),un(sτ))ds,t[t0,b]
Denote by x := T x x := T x x^(**):=Tx^(**)x^{*}:=T x^{*}x:=Tx the fixed point of T T TTT.
For t [ t 0 τ , t 0 ] t t 0 τ , t 0 t in[t_(0)-tau,t_(0)]t \in\left[t_{0}-\tau, t_{0}\right]t[t0τ,t0] we get
u n + 1 x ( 1 α n ) u n x u n + 1 x 1 α n u n x ||u_(n+1)-x^(**)|| <= (1-alpha_(n))||u_(n)-x^(**)||\left\|u_{n+1}-x^{*}\right\| \leq\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|un+1x(1αn)unx
Consider Lemma 2 to obtain
lim n u n x = 0 lim n u n x = 0 lim_(n rarr oo)||u_(n)-x^(**)||=0\lim _{n \rightarrow \infty}\left\|u_{n}-x^{*}\right\|=0limnunx=0
For t [ t 0 , b ] t t 0 , b t in[t_(0),b]t \in\left[t_{0}, b\right]t[t0,b] we have
u n + 1 x = ( 1 α n ) u n + α n ( φ ( t 0 ) + t 0 t f ( s , u n ( s ) , u n ( s τ ) ) d s ) ( 1 α n ) x + α n ( φ ( t 0 ) + t 0 t f ( s , x ( s ) , x ( s τ ) ) d s ) ( 1 α n ) u n x + α n L f ( b t 0 ) ( | u n ( s ) x ( s ) | + + | u n ( s τ ) x ( s τ ) | ) ( 1 α n + 2 α n L f ( b t 0 ) ) u n x ( 1 α n ( 1 2 L f ( b t 0 ) ) u n x u n + 1 x = 1 α n u n + α n φ t 0 + t 0 t f s , u n ( s ) , u n ( s τ ) d s 1 α n x + α n φ t 0 + t 0 t f s , x ( s ) , x ( s τ ) d s 1 α n u n x + α n L f b t 0 u n ( s ) x ( s ) + + u n ( s τ ) x ( s τ ) 1 α n + 2 α n L f b t 0 u n x 1 α n 1 2 L f b t 0 u n x {:[||u_(n+1)-x^(**)||=||(1-alpha_(n))u_(n)+alpha_(n)(varphi(t_(0))+int_(t_(0))^(t)f(s,u_(n)(s),u_(n)(s-tau))ds)-],[-(1-alpha_(n))x^(**)+alpha_(n)(varphi(t_(0))+int_(t_(0))^(t)f(s,x^(**)(s),x^(**)(s-tau))ds)||],[ <= (1-alpha_(n))||u_(n)-x^(**)||+alpha_(n)L_(f)(b-t_(0))(|u_(n)(s)-x^(**)(s)|+:}],[{:+|u_(n)(s-tau)-x^(**)(s-tau)|)],[ <= (1-alpha_(n)+2alpha_(n)L_(f)(b-t_(0)))||u_(n)-x^(**)||],[ <= (1-alpha_(n)(1-2L_(f)(b-t_(0)))||u_(n)-x^(**)||:}]:}\begin{aligned} \left\|u_{n+1}-x^{*}\right\|= & \|\left(1-\alpha_{n}\right) u_{n}+\alpha_{n}\left(\varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(s, u_{n}(s), u_{n}(s-\tau)\right) \mathrm{d} s\right)- \\ & -\left(1-\alpha_{n}\right) x^{*}+\alpha_{n}\left(\varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(s, x^{*}(s), x^{*}(s-\tau)\right) \mathrm{d} s\right) \| \\ \leq & \left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|+\alpha_{n} L_{f}\left(b-t_{0}\right)\left(\left|u_{n}(s)-x^{*}(s)\right|+\right. \\ & \left.+\left|u_{n}(s-\tau)-x^{*}(s-\tau)\right|\right) \\ \leq & \left(1-\alpha_{n}+2 \alpha_{n} L_{f}\left(b-t_{0}\right)\right)\left\|u_{n}-x^{*}\right\| \\ \leq & \left(1-\alpha_{n}\left(1-2 L_{f}\left(b-t_{0}\right)\right)\left\|u_{n}-x^{*}\right\|\right. \end{aligned}un+1x=(1αn)un+αn(φ(t0)+t0tf(s,un(s),un(sτ))ds)(1αn)x+αn(φ(t0)+t0tf(s,x(s),x(sτ))ds)(1αn)unx+αnLf(bt0)(|un(s)x(s)|++|un(sτ)x(sτ)|)(1αn+2αnLf(bt0))unx(1αn(12Lf(bt0))unx
Assumption ( H 5 H 5 H_(5)H_{5}H5 ) leads us to
1 α n ( 1 2 L f ( b t 0 ) < 1 1 α n 1 2 L f b t 0 < 1 1-alpha_(n)(1-2L_(f)(b-t_(0)) < 1:}1-\alpha_{n}\left(1-2 L_{f}\left(b-t_{0}\right)<1\right.1αn(12Lf(bt0)<1
We take α n := α n ( 1 2 L f ( b t 0 ) ) , a n := u n x α n := α n 1 2 L f b t 0 , a n := u n x alpha_(n):=alpha_(n)(1-2L_(f)(b-t_(0))),a_(n):=||u_(n)-x^(**)||\alpha_{n}:=\alpha_{n}\left(1-2 L_{f}\left(b-t_{0}\right)\right), a_{n}:=\left\|u_{n}-x^{*}\right\|αn:=αn(12Lf(bt0)),an:=unx and use Lemma 2 to obtain lim n u n x = 0 lim n u n x = 0 lim_(n rarr oo)||u_(n)-x^(**)||=0\lim _{n \rightarrow \infty}\left\|u_{n}-x^{*}\right\|=0limnunx=0.
Theorem 4. [7] Let X X XXX be a normed space, D D DDD a nonempty, convex, closed subset of X X XXX and T : D D T : D D T:D rarr DT: D \rightarrow DT:DD a contraction. If u 0 , x 0 D u 0 , x 0 D u_(0),x_(0)in Du_{0}, x_{0} \in Du0,x0D, then the following are equivalent:
(i) the Mann iteration (2) converges to x x x^(**)x^{*}x;
(ii) the Ishikawa iteration (3) converges to x x x^(**)x^{*}x.
Remark 5. Because Mann iteration and Ishikawa iteration are equivalent, it is possible to consider Ishikawa iteration in order to prove Theorem 3.
Set τ = 0 τ = 0 tau=0\tau=0τ=0, in (4), to obtain the classical existence and uniqueness result, i.e. Theorem 6, for the Cauchy problem. This problem, see [1], 6], is proved by use of contraction principle.
Consider the following equation:
(7) x ( t ) = f ( t , x ( t ) ) , t [ t 0 , b ] , (7) x ( t ) = f ( t , x ( t ) ) , t t 0 , b , {:(7)x^(')(t)=f(t","x(t))","t in[t_(0),b]",":}\begin{equation*} x^{\prime}(t)=f(t, x(t)), t \in\left[t_{0}, b\right], \tag{7} \end{equation*}(7)x(t)=f(t,x(t)),t[t0,b],
with initial condition
(8) x ( t 0 ) = φ 0 . (8) x t 0 = φ 0 . {:(8)x(t_(0))=varphi_(0).:}\begin{equation*} x\left(t_{0}\right)=\varphi_{0} . \tag{8} \end{equation*}(8)x(t0)=φ0.
We suppose that the following conditions are fulfilled
( H 1 ) t 0 , φ 0 , b R H 1 t 0 , φ 0 , b R (H_(1)^('))t_(0),varphi_(0),b inR\left(\mathrm{H}_{1}^{\prime}\right) t_{0}, \varphi_{0}, b \in \mathbb{R}(H1)t0,φ0,bR;
( H 2 ) f C ( [ t 0 , b ] × R , R ) H 2 f C t 0 , b × R , R (H_(2)^('))f in C([t_(0),b]xxR,R)\left(\mathrm{H}_{2}^{\prime}\right) f \in C\left(\left[t_{0}, b\right] \times \mathbb{R}, \mathbb{R}\right)(H2)fC([t0,b]×R,R);
( H 3 ) H 3 (H_(3)^('))\left(\mathrm{H}_{3}^{\prime}\right)(H3) there exist L f > 0 L f > 0 L_(f) > 0L_{f}>0Lf>0 such that
| f ( t , u 1 ) f ( t , v 1 ) | L f ( | u 1 v 1 | ) , u 1 , v 1 R , t [ t 0 , b ] ; f t , u 1 f t , v 1 L f u 1 v 1 , u 1 , v 1 R , t t 0 , b ; |f(t,u_(1))-f(t,v_(1))| <= L_(f)(|u_(1)-v_(1)|),AAu_(1),v_(1)inR,t in[t_(0),b];\left|f\left(t, u_{1}\right)-f\left(t, v_{1}\right)\right| \leq L_{f}\left(\left|u_{1}-v_{1}\right|\right), \forall u_{1}, v_{1} \in \mathbb{R}, t \in\left[t_{0}, b\right] ;|f(t,u1)f(t,v1)|Lf(|u1v1|),u1,v1R,t[t0,b];
( H 4 ) L f ( b t 0 ) < 1 H 4 L f b t 0 < 1 (H_(4)^('))L_(f)(b-t_(0)) < 1\left(\mathrm{H}_{4}^{\prime}\right) L_{f}\left(b-t_{0}\right)<1(H4)Lf(bt0)<1.
Note that we have supplied here a new proof for the following result using Mann-Ishikawa iteration.
Theorem 6. We suppose conditions ( H 1 ) ( H 4 ) H 1 H 4 (H_(1)^('))-(H_(4)^('))\left(\mathrm{H}_{1}^{\prime}\right)-\left(\mathrm{H}_{4}^{\prime}\right)(H1)(H4) are satisfied. Then the problem (7)-(8) has a unique solution in C ( [ t 0 , b ] , R ) C t 0 , b , R C([t_(0),b],R)C\left(\left[t_{0}, b\right], \mathbb{R}\right)C([t0,b],R). Moreover, if x x x^(**)x^{*}x is the unique solution of the problem (7)-(8), then
x = lim n T n ( x ) for any x C ( [ t 0 , b ] , R ) . x = lim n T n ( x )  for any  x C t 0 , b , R . x^(**)=lim_(n rarr oo)T^(n)(x)" for any "x in C([t_(0),b],R).x^{*}=\lim _{n \rightarrow \infty} T^{n}(x) \text { for any } x \in C\left(\left[t_{0}, b\right], \mathbb{R}\right) .x=limnTn(x) for any xC([t0,b],R).

REFERENCES

[1] Coman, Gh., Pavel, G., Rus, I. and Rus, I. A., Introduction in the theory of operatorial equation, Ed. Dacia, Cluj-Napoca, 1976 (in Romanian).
[2] Hartman, P., Ordinary differential equations, John Wiley & Sons, Inc., New York, London, Sydney, 1964.
[3] Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, pp. 147-150, 1974.
[4] Mann, W. R., Mean value in iteration, Proc. Amer. Math. Soc., 4, pp. 506-510, 1953.
[5] Otrocol, D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48 (71), 1, pp. 61-68, 2006.
[6] Rus, I. A., Principles and applications of the fixed point theory, Ed. Dacia, Cluj Napoca, 1979 (in Romanian).
[7] Şoltuz, Ş. M., The equivalence of Picard, Mann and Ishikawa iteration dealing with quasi-contractive operators, Math. Comm. 10, pp. 81-88, 2005.
[8] Şoltuz, Ş. M., An equivalence between the convergence of Ishikawa, Mann and Picard iterations, Math. Comm. 8, pp. 15-22, 2003.
Received by the editors: November 20, 2006.

  1. *"Tiberiu Popoviciu" Institute of Numerical Analysis, P.O. Box. 68-1, Cluj-Napoca, Romania, e-mail: {smsoltuz,dotrocol}@ictp.acad.ro.
    ^(†){ }^{\dagger} Departamento de Matematicas, Universidad de los Andes, Carrera 1, No. 18A-10, Bogota, Columbia, e-mail: smsoltuz@gmail.com.
    ^(‡){ }^{\ddagger} The work of the second author was supported by MEdC under Grant 2-CEx06-11-96/ 19.09.2006.