Return to Article Details An iterative method for approximating fixed points of Presić nonexpansive mappings

AN ITERATIVE METHOD FOR APPROXIMATING FIXED POINTS OF PRESIĆ NONEXPANSIVE MAPPINGS

VASILE BERINDE* and MĂDĂLINA PĂCURAR ^(†){ }^{\dagger}

Abstract

The main result of the paper unifies two important fixed point theorems published in the same year, 1965, the first one discovered independently by Browder [F.E. Browder, Nonexpansive nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 54 (1965), 1041-1044], Göhde [D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30 (1965), 251-258] and Kirk [W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006], while the second one is due to Presić [S.B. Presić, Sur une classe d' inéquations aux différences finite et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19) (1965), 75-78]. In this way we show how amazingly two apparently different beautiful results in mathematics can meet after almost half a century!

MSC 2000. 47H10, 54H25.
Keywords. Banach space, Presić type contraction condition, fixed point, k k kkk-step iteration procedure, nonexpansive type operator.

1. INTRODUCTION

One of the most interesting generalizations of Banach's contraction mapping principle has been obtained in 1965 by S. Presić [19]:
Theorem 1 (S. Presić [19], 1965). Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a complete metric space, k k kkk a positive integer, α 1 , α 2 , , α k R + , i = 1 k α i = α < 1 α 1 , α 2 , , α k R + , i = 1 k α i = α < 1 alpha_(1),alpha_(2),dots,alpha_(k)inR_(+),sum_(i=1)^(k)alpha_(i)=alpha < 1\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}_{+}, \sum_{i=1}^{k} \alpha_{i}=\alpha<1α1,α2,,αkR+,i=1kαi=α<1 and f : X k X a f : X k X a f:X^(k)rarr Xaf: X^{k} \rightarrow X af:XkXa mapping satisfying
(1.1) d ( f ( x 0 , , x k 1 ) , f ( x 1 , , x k ) ) α 1 d ( x 0 , x 1 ) + + α k d ( x k 1 , x k ) , (1.1) d f x 0 , , x k 1 , f x 1 , , x k α 1 d x 0 , x 1 + + α k d x k 1 , x k , {:(1.1)d(f(x_(0),dots,x_(k-1)),f(x_(1),dots,x_(k))) <= alpha_(1)d(x_(0),x_(1))+cdots+alpha_(k)d(x_(k-1),x_(k))",":}\begin{equation*} d\left(f\left(x_{0}, \ldots, x_{k-1}\right), f\left(x_{1}, \ldots, x_{k}\right)\right) \leq \alpha_{1} d\left(x_{0}, x_{1}\right)+\cdots+\alpha_{k} d\left(x_{k-1}, x_{k}\right), \tag{1.1} \end{equation*}(1.1)d(f(x0,,xk1),f(x1,,xk))α1d(x0,x1)++αkd(xk1,xk),
for all x 0 , , x k X x 0 , , x k X x_(0),dots,x_(k)in Xx_{0}, \ldots, x_{k} \in Xx0,,xkX.
Then:
  1. f f fff has a unique fixed point x x x^(**)x^{*}x, that is, there exists a unique x X x X x^(**)in Xx^{*} \in XxX such that f ( x , , x ) = x f x , , x = x f(x^(**),dots,x^(**))=x^(**)f\left(x^{*}, \ldots, x^{*}\right)=x^{*}f(x,,x)=x;
  2. the sequence { x n } n 0 x n n 0 {x_(n)}_(n >= 0)\left\{x_{n}\right\}_{n \geq 0}{xn}n0 defined by
(1.2) x n + 1 = f ( x n k + 1 , , x n ) , n = k 1 , k , k + 1 , (1.2) x n + 1 = f x n k + 1 , , x n , n = k 1 , k , k + 1 , {:(1.2)x_(n+1)=f(x_(n-k+1),dots,x_(n))","quad n=k-1","k","k+1","dots:}\begin{equation*} x_{n+1}=f\left(x_{n-k+1}, \ldots, x_{n}\right), \quad n=k-1, k, k+1, \ldots \tag{1.2} \end{equation*}(1.2)xn+1=f(xnk+1,,xn),n=k1,k,k+1,
converges to x x x^(**)x^{*}x, for any x 0 , , x k 1 X x 0 , , x k 1 X x_(0),dots,x_(k-1)in Xx_{0}, \ldots, x_{k-1} \in Xx0,,xk1X.
It is easy to see that, in the particular case k = 1 k = 1 k=1k=1k=1, from Theorem 1 we get exactly the well-known contraction mapping principle of Banach, while the k k kkk-step iterative method (1.2) reduces to the one step method of successive approximations for the self-mapping f : X X f : X X f:X rarr Xf: X \rightarrow Xf:XX, i.e., to
(1.3) x n + 1 = f ( x n ) , n = 0 , 1 , 2 , 3 , , (1.3) x n + 1 = f x n , n = 0 , 1 , 2 , 3 , , {:(1.3)x_(n+1)=f(x_(n))","quad n=0","1","2","3","dots",":}\begin{equation*} x_{n+1}=f\left(x_{n}\right), \quad n=0,1,2,3, \ldots, \tag{1.3} \end{equation*}(1.3)xn+1=f(xn),n=0,1,2,3,,
also known as Picard iteration.
For this reason, in this paper, a mapping satisfying the contraction condition (1.1) in Theorem 1 will be called a Presić contraction.
Theorem 1 and other similar results, like the ones in [5], 14, 15, [21], have important applications in the iterative solution of nonlinear equations, see [17] and [18, as well as in the study of global asymptotic stability of the equilibrium for nonlinear difference equations, see the very recent paper 3 .
An important generalization of Theorem 1 was proved in I.A. Rus [21], see also [22], for operators f f fff fulfilling the more general condition
(1.4) d ( f ( x 0 , , x k 1 ) , f ( x 1 , , x k ) ) φ ( d ( x 0 , x 1 ) , , d ( x k 1 , x k ) ) (1.4) d f x 0 , , x k 1 , f x 1 , , x k φ d x 0 , x 1 , , d x k 1 , x k {:(1.4)d(f(x_(0),dots,x_(k-1)),f(x_(1),dots,x_(k))) <= varphi(d(x_(0),x_(1)),dots,d(x_(k-1),x_(k))):}\begin{equation*} d\left(f\left(x_{0}, \ldots, x_{k-1}\right), f\left(x_{1}, \ldots, x_{k}\right)\right) \leq \varphi\left(d\left(x_{0}, x_{1}\right), \ldots, d\left(x_{k-1}, x_{k}\right)\right) \tag{1.4} \end{equation*}(1.4)d(f(x0,,xk1),f(x1,,xk))φ(d(x0,x1),,d(xk1,xk))
for any x 0 , , x k X x 0 , , x k X x_(0),dots,x_(k)in Xx_{0}, \ldots, x_{k} \in Xx0,,xkX, where φ : R + k R + φ : R + k R + varphi:R_(+)^(k)rarrR_(+)\varphi: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}_{+}φ:R+kR+satisfies certain conditions.
Another important generalization of Presić's result was recently obtained by L. Cirić and S. Presić in [5], where, instead of 1.1 and its generalization (1.4), the following contraction condition is considered:
(1.5) d ( f ( x 0 , , x k 1 ) , f ( x 1 , , x k ) ) λ max { d ( x 0 , x 1 ) , , d ( x k 1 , x k ) } (1.5) d f x 0 , , x k 1 , f x 1 , , x k λ max d x 0 , x 1 , , d x k 1 , x k {:(1.5)d(f(x_(0),dots,x_(k-1)),f(x_(1),dots,x_(k))) <= lambda max{d(x_(0),x_(1)),dots,d(x_(k-1),x_(k))}:}\begin{equation*} d\left(f\left(x_{0}, \ldots, x_{k-1}\right), f\left(x_{1}, \ldots, x_{k}\right)\right) \leq \lambda \max \left\{d\left(x_{0}, x_{1}\right), \ldots, d\left(x_{k-1}, x_{k}\right)\right\} \tag{1.5} \end{equation*}(1.5)d(f(x0,,xk1),f(x1,,xk))λmax{d(x0,x1),,d(xk1,xk)}
for any x 0 , , x k X x 0 , , x k X x_(0),dots,x_(k)in Xx_{0}, \ldots, x_{k} \in Xx0,,xkX, where λ ( 0 , 1 ) λ ( 0 , 1 ) lambda in(0,1)\lambda \in(0,1)λ(0,1).
Other general Presić type fixed point results have been very recently obtained by the second author in [13]-[16].
The main result in [14] is the following fixed point theorem.
Theorem 2. Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a complete metric space, k k kkk a positive integer, a R a R a inRa \in \mathbb{R}aR a constant such that 0 a k ( k + 1 ) < 1 0 a k ( k + 1 ) < 1 0 <= ak(k+1) < 10 \leq a k(k+1)<10ak(k+1)<1 and f : X k X f : X k X f:X^(k)rarr Xf: X^{k} \rightarrow Xf:XkX an operator satisfying the following condition:
(1.6) d ( f ( x 0 , , x k 1 ) , f ( x 1 , , x k ) ) a i = 0 k d ( x i , f ( x i , , x i ) ) (1.6) d f x 0 , , x k 1 , f x 1 , , x k a i = 0 k d x i , f x i , , x i {:(1.6)d(f(x_(0),dots,x_(k-1)),f(x_(1),dots,x_(k))) <= asum_(i=0)^(k)d(x_(i),f(x_(i),dots,x_(i))):}\begin{equation*} d\left(f\left(x_{0}, \ldots, x_{k-1}\right), f\left(x_{1}, \ldots, x_{k}\right)\right) \leq a \sum_{i=0}^{k} d\left(x_{i}, f\left(x_{i}, \ldots, x_{i}\right)\right) \tag{1.6} \end{equation*}(1.6)d(f(x0,,xk1),f(x1,,xk))ai=0kd(xi,f(xi,,xi))
for any x 0 , x 1 , , x k X x 0 , x 1 , , x k X x_(0),x_(1),dots,x_(k)in Xx_{0}, x_{1}, \ldots, x_{k} \in Xx0,x1,,xkX. Then
  1. f f fff has a unique fixed point x x x^(**)x^{*}x, that is, there exists a unique x X x X x^(**)in Xx^{*} \in XxX such that f ( x , , x ) = x f x , , x = x f(x^(**),dots,x^(**))=x^(**)f\left(x^{*}, \ldots, x^{*}\right)=x^{*}f(x,,x)=x;
  2. the sequence { y n } n 0 y n n 0 {y_(n)}_(n >= 0)\left\{y_{n}\right\}_{n \geq 0}{yn}n0 defined by y n + 1 = f ( y n , y n , , y n ) , n 0 y n + 1 = f y n , y n , , y n , n 0 y_(n+1)=f(y_(n),y_(n),dots,y_(n)),n >= 0y_{n+1}=f\left(y_{n}, y_{n}, \ldots, y_{n}\right), n \geq 0yn+1=f(yn,yn,,yn),n0, converges to x x x^(**)x^{*}x;
  3. the sequence { x n } n 0 x n n 0 {x_(n)}_(n >= 0)\left\{x_{n}\right\}_{n \geq 0}{xn}n0 with x 0 , , x k 1 X x 0 , , x k 1 X x_(0),dots,x_(k-1)in Xx_{0}, \ldots, x_{k-1} \in Xx0,,xk1X and x n = f ( x n k , x n k + 1 x n = f x n k , x n k + 1 x_(n)=f(x_(n-k),x_(n-k+1):}x_{n}=f\left(x_{n-k}, x_{n-k+1}\right.xn=f(xnk,xnk+1, , x n 1 ) , n k , x n 1 , n k {: dots,x_(n-1)),n >= k\left.\ldots, x_{n-1}\right), n \geq k,xn1),nk, also converges to x x x^(**)x^{*}x, with a rate estimated by:
d ( x n + 1 , x ) M θ n , n 0 d x n + 1 , x M θ n , n 0 d(x_(n+1),x^(**)) <= Mtheta^(n),n >= 0d\left(x_{n+1}, x^{*}\right) \leq M \theta^{n}, n \geq 0d(xn+1,x)Mθn,n0
for a positive constant M M MMM and a certain θ ( 0 , 1 ) θ ( 0 , 1 ) theta in(0,1)\theta \in(0,1)θ(0,1).
Notice that the proofs of the main results in [13]-19] for mappings f f fff : X k X X k X X^(k)rarr XX^{k} \rightarrow XXkX are essentially based on some known (common) fixed point theorems for usual Banach contractions and, respectively, Kannan type contractions of the form F : X X F : X X F:X rarr XF: X \rightarrow XF:XX.
Some important results related to Presić contractions and their applications to multi-step iterative methods have been obtained in [17] and [18].
As nonexpansive mappings are obvious generalizations of usual contraction mappings f : X X f : X X f:X rarr Xf: X \rightarrow Xf:XX, it is the main aim of this paper to obtain Presić fixed point theorems for nonexpansive type mappings of the form f : X k X f : X k X f:X^(k)rarr Xf: X^{k} \rightarrow Xf:XkX.
To this end we shall present in the next section a brief introduction to fixed point theory for nonexpansive mappings.

2. BASIC FIXED POINT THEORY FOR NONEXPANSIVE MAPPINGS

Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a metric space. A mapping T : X X T : X X T:X rarr XT: X \rightarrow XT:XX is said to be an α α alpha\alphaα-contraction if there exists α [ 0 , 1 ) α [ 0 , 1 ) alpha in[0,1)\alpha \in[0,1)α[0,1) such that
(2.1) d ( T x , T y ) α d ( x , y ) , x , y X . (2.1) d ( T x , T y ) α d ( x , y ) , x , y X . {:(2.1)d(Tx","Ty) <= alpha d(x","y)","AA x","y in X.:}\begin{equation*} d(T x, T y) \leq \alpha d(x, y), \forall x, y \in X . \tag{2.1} \end{equation*}(2.1)d(Tx,Ty)αd(x,y),x,yX.
In the case α = 1 α = 1 alpha=1\alpha=1α=1 in (2.1), T T TTT is said to be nonexpansive.
Nonexpansive mappings, although are generalizations of contractions, do not inherit more from contraction mappings. More precisely, if K K KKK is a nonempty closed subset of a Banach space E E EEE and T : K K T : K K T:K rarr KT: K \rightarrow KT:KK is nonexpansive, it is known, see [1], that T T TTT may not have a fixed point (unlike the case when T T TTT is α α alpha\alphaα-contraction), see the examples in 7 .
Even in the cases when T T TTT has a fixed point, the Picard iteration associated to T T TTT may fail to converge to the fixed point.
For the above and many other reasons, a much more richer geometrical structure of the ambient space is needed in order to ensure the existence of a fixed point and / or the convergence of an iterative method (generally more elaborated than Picard iteration) to a fixed point of a nonexpansive mapping T T TTT.
Definition 3. A normed linear space is called uniformly convex if, for any ϵ ( 0 , 2 ] ϵ ( 0 , 2 ] epsilon in(0,2]\epsilon \in(0,2]ϵ(0,2], there exists δ = δ ( ϵ ) > 0 δ = δ ( ϵ ) > 0 delta=delta(epsilon) > 0\delta=\delta(\epsilon)>0δ=δ(ϵ)>0 such that if x , y E x , y E x,y in Ex, y \in Ex,yE with x = y = 1 x = y = 1 ||x||=||y||=1\|x\|=\|y\|=1x=y=1 and x y ϵ x y ϵ ||x-y|| >= epsilon\|x-y\| \geq \epsilonxyϵ, then
1 2 ( x + y ) 1 δ 1 2 ( x + y ) 1 δ ||(1)/(2)(x+y)|| <= 1-delta\left\|\frac{1}{2}(x+y)\right\| \leq 1-\delta12(x+y)1δ
Definition 4. A normed linear space is called strictly convex if, for all x , y E , x y , x = y = 1 x , y E , x y , x = y = 1 x,y in E,x!=y,||x||=||y||=1x, y \in E, x \neq y,\|x\|=\|y\|=1x,yE,xy,x=y=1, we have
λ x + ( 1 λ ) y < 1 , λ ( 0 , 1 ) λ x + ( 1 λ ) y < 1 , λ ( 0 , 1 ) ||lambda x+(1-lambda)y|| < 1,AA lambda in(0,1)\|\lambda x+(1-\lambda) y\|<1, \forall \lambda \in(0,1)λx+(1λ)y<1,λ(0,1)
If we denote by S r ( a ) S r ( a ) S_(r)(a)S_{r}(a)Sr(a) the sphere centered at a a aaa in E E EEE with radius r r rrr, that is,
S r ( a ) = { x E : x a = r } S r ( a ) = { x E : x a = r } S_(r)(a)={x in E:||x-a||=r}S_{r}(a)=\{x \in E:\|x-a\|=r\}Sr(a)={xE:xa=r}
then E E EEE is uniformly convex, see [7] if, for any two distinct points x , y x , y x,yx, yx,y on the unit sphere centered at origin, the midpoint of the line segment joining x x xxx and y y yyy is never on the sphere but is close to sphere only if x x xxx and y y yyy are closed enough to each other.
Similarly, E E EEE is strictly convex if, for any two distinct points x , y x , y x,yx, yx,y on the unit sphere centered at origin, any point of the line segment joining x x xxx and y y yyy is never on the sphere, except for its endpoints.
Remark 5. Similar to the considerations above, it follows that any uniformly convex space is strictly convex. The converse is generally not true, see for example [7].
We can now formulate one of the most influential fixed point theorems for nonexpansive mappings, which was discovered independently by F.E. Browder, D. Göhde and W.A. Kirk in 1965, cf. [2, [8], [10].
Theorem 6. Let K K KKK be a nonempty closed convex and bounded subset of a uniformly Banach space E E EEE and let T : K K T : K K T:K rarr KT: K \rightarrow KT:KK be a nonexpansive mapping. Then T T TTT has a fixed point.
Remark 7. Under the assumptions of Theorem 6, no information on the approximation of the fixed points of T T TTT is available. Actually, Picard iteration does not resolve this situation, in general. Due to this fact, for the class of nonexpansive mappings other fixed point iteration procedures have been considered, see 1 and 4 . The two most usual ones are defined in the following.
Let K K KKK be a convex subset of a normed linear space E E EEE and let T : K K T : K K T:K rarr KT: K \rightarrow KT:KK be a mapping. For x 0 K x 0 K x_(0)in Kx_{0} \in Kx0K and λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1] the sequence { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} defined by
(2.2) x n + 1 = ( 1 λ ) x n + λ T x n , n = 0 , 1 , 2 , (2.2) x n + 1 = ( 1 λ ) x n + λ T x n , n = 0 , 1 , 2 , {:(2.2)x_(n+1)=(1-lambda)x_(n)+lambda Tx_(n)","n=0","1","2","cdots:}\begin{equation*} x_{n+1}=(1-\lambda) x_{n}+\lambda T x_{n}, n=0,1,2, \cdots \tag{2.2} \end{equation*}(2.2)xn+1=(1λ)xn+λTxn,n=0,1,2,
is usually called Krasnoselskij iteration, or Krasnoselskij-Mann iteration. Clearly, (2.2) reduces to the Picard iteration (1.3) for λ = 1 λ = 1 lambda=1\lambda=1λ=1.
For x 0 K x 0 K x_(0)in Kx_{0} \in Kx0K the sequence { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} defined by
(2.3) x n + 1 = ( 1 λ n ) x n + λ n T x n , n = 0 , 1 , 2 , (2.3) x n + 1 = 1 λ n x n + λ n T x n , n = 0 , 1 , 2 , {:(2.3)x_(n+1)=(1-lambda_(n))x_(n)+lambda_(n)Tx_(n)","n=0","1","2","cdots:}\begin{equation*} x_{n+1}=\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} T x_{n}, n=0,1,2, \cdots \tag{2.3} \end{equation*}(2.3)xn+1=(1λn)xn+λnTxn,n=0,1,2,
where { λ n } [ 0 , 1 ] λ n [ 0 , 1 ] {lambda_(n)}sub[0,1]\left\{\lambda_{n}\right\} \subset[0,1]{λn}[0,1] is a sequence of real numbers satisfying some appropriate conditions, is called Mann iteration.
It was shown by Krasnoselskij [11], in the case λ = 1 / 2 λ = 1 / 2 lambda=1//2\lambda=1 / 2λ=1/2, and then by Schaefer [24], for λ ( 0 , 1 ) λ ( 0 , 1 ) lambda in(0,1)\lambda \in(0,1)λ(0,1) arbitrary, that if E E EEE is a uniformly convex Banach space and
K K KKK is a convex and compact subset of E E EEE (and so having the set of fixed points nonempty, by Theorem (6), then the Krasnoselskij iteration converges to a fixed point of T T TTT.
Moreover, Edelstein [6] proved that strict convexity of E E EEE suffices for the same conclusion, see also [4].
The question of whether strict convexity can be removed or not has been practically answered in the affirmative by Ishikawa [9], who proved the following result.
Theorem 8. Let K K KKK be a subset of a Banach space E E EEE and let T : K K T : K K T:K rarr KT: K \rightarrow KT:KK be a nonexpansive mapping. For arbitrary x 0 K x 0 K x_(0)in Kx_{0} \in Kx0K, consider the Mann iteration process { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} given by (2.3) under the following assumptions
(a) x n K x n K x_(n)in Kx_{n} \in KxnK for all positive integers;
(b) 0 λ n b < 1 0 λ n b < 1 0 <= lambda_(n) <= b < 10 \leq \lambda_{n} \leq b<10λnb<1 for all positive integers;
(c) n = 0 λ n = n = 0 λ n = sum_(n=0)^(oo)lambda_(n)=oo\sum_{n=0}^{\infty} \lambda_{n}=\inftyn=0λn=.
If { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} is bounded, then x n T x n 0 x n T x n 0 x_(n)-Tx_(n)rarr0x_{n}-T x_{n} \rightarrow 0xnTxn0 as n n n rarr oon \rightarrow \inftyn.
The following corollaries of Theorem 8 will be particularly important for our considerations in the paper.
Corollary 9. [4, Th. 6.17] Let K K KKK be a convex and compact subset of a Banach space E E EEE and let T : K K T : K K T:K rarr KT: K \rightarrow KT:KK be a nonexpansive mapping. If the Mann iteration process { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} given by (2.3) satisfies assumptions (a)-(c) in Theorem 8 then { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} converges strongly to a fixed point of T T TTT.
Corollary 10. (4), Corollary 6.19) Let K K KKK be a closed bounded convex subset of a real normed space E E EEE, and let T : K K T : K K T:K rarr KT: K \rightarrow KT:KK be a nonexpansive mapping. If I T I T I-TI-TIT maps closed bounded subsets of E E EEE into closed subsets of E E EEE and { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} is the Mann iteration defined by (2.3), with { λ n } λ n {lambda_(n)}\left\{\lambda_{n}\right\}{λn} satisfying assumptions (b)-(c) in Theorem 8, then { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} converges strongly to a fixed point of T T TTT in K K KKK.

3. APPROXIMATING FIXED POINTS OF PRESIĆ NONEXPANSIVE OPERATORS

Definition 11. Let ( X , d ) ( X , d ) (X,d)(X, d)(X,d) be a metric space, k k kkk a positive integer and α 1 , α 2 , , α k R + α 1 , α 2 , , α k R + alpha_(1),alpha_(2),dots,alpha_(k)inR_(+)\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}_{+}α1,α2,,αkR+such that i = 1 k α i = α 1 i = 1 k α i = α 1 sum_(i=1)^(k)alpha_(i)=alpha <= 1\sum_{i=1}^{k} \alpha_{i}=\alpha \leq 1i=1kαi=α1. A mapping f : X k X f : X k X f:X^(k)rarr Xf: X^{k} \rightarrow Xf:XkX satisfying
(3.1) d ( f ( x 0 , , x k 1 ) , f ( x 1 , , x k ) ) i = 1 k α i d ( x i 1 , x i ) (3.1) d f x 0 , , x k 1 , f x 1 , , x k i = 1 k α i d x i 1 , x i {:(3.1)d(f(x_(0),dots,x_(k-1)),f(x_(1),dots,x_(k))) <= sum_(i=1)^(k)alpha_(i)d(x_(i-1),x_(i)):}\begin{equation*} d\left(f\left(x_{0}, \ldots, x_{k-1}\right), f\left(x_{1}, \ldots, x_{k}\right)\right) \leq \sum_{i=1}^{k} \alpha_{i} d\left(x_{i-1}, x_{i}\right) \tag{3.1} \end{equation*}(3.1)d(f(x0,,xk1),f(x1,,xk))i=1kαid(xi1,xi)
for all x 0 , , x k X x 0 , , x k X x_(0),dots,x_(k)in Xx_{0}, \ldots, x_{k} \in Xx0,,xkX, is called a Presić nonexpansive operator.
Since in Definition 11 the constant α α alpha\alphaα is allowed to be less or equal to 1 , we can see that the class of Presić nonexpansive operators strictly includes the
class of Presíc contractions appearing in Theorem 1. Also note that in the case of a normed linear space X X XXX, condition will be
(3.2) f ( x 0 , , x k 1 ) f ( x 1 , , x k ) i = 1 k α i x i 1 x i (3.2) f x 0 , , x k 1 f x 1 , , x k i = 1 k α i x i 1 x i {:(3.2)||f(x_(0),dots,x_(k-1))-f(x_(1),dots,x_(k))|| <= sum_(i=1)^(k)alpha_(i)||x_(i-1)-x_(i)||:}\begin{equation*} \left\|f\left(x_{0}, \ldots, x_{k-1}\right)-f\left(x_{1}, \ldots, x_{k}\right)\right\| \leq \sum_{i=1}^{k} \alpha_{i}\left\|x_{i-1}-x_{i}\right\| \tag{3.2} \end{equation*}(3.2)f(x0,,xk1)f(x1,,xk)i=1kαixi1xi
which, in the case k = 1 k = 1 k=1k=1k=1, reduces to the Banach's contractive condition (2.1), if α < 1 α < 1 alpha < 1\alpha<1α<1, and to the nonexpansiveness condition if α = 1 α = 1 alpha=1\alpha=1α=1.
The next theorem is our main result in this paper.
Theorem 12. Let C C CCC be a nonempty closed convex and bounded subset of a uniformly Banach space E , k E , k E,kE, kE,k a positive integer, and let f : C k C f : C k C f:C^(k)rarr Cf: C^{k} \rightarrow Cf:CkC be a Presić nonexpansive mapping. Then f f fff has a fixed point x x x^(**)x^{*}x in C C CCC, that is, there exists x C x C x^(**)in Cx^{*} \in CxC such that f ( x , , x ) = x f x , , x = x f(x^(**),dots,x^(**))=x^(**)f\left(x^{*}, \ldots, x^{*}\right)=x^{*}f(x,,x)=x.
Proof. Let F : C C F : C C F:C rarr CF: C \rightarrow CF:CC, be defined by F ( x ) = f ( x , x , , x ) , x C F ( x ) = f ( x , x , , x ) , x C F(x)=f(x,x,dots,x),x in CF(x)=f(x, x, \ldots, x), x \in CF(x)=f(x,x,,x),xC. For any x , y C x , y C x,y in Cx, y \in Cx,yC one has:
F ( x ) F ( y ) = f ( x , x , , x ) f ( y , y , , y ) f ( x , , x ) f ( x , , x , y ) + + f ( x , , x , y ) f ( x , , x , y , y ) + + + f ( x , y , , y ) f ( y , , y ) F ( x ) F ( y ) = f ( x , x , , x ) f ( y , y , , y ) f ( x , , x ) f ( x , , x , y ) + + f ( x , , x , y ) f ( x , , x , y , y ) + + + f ( x , y , , y ) f ( y , , y ) {:[||F(x)-F(y)||=||f(x","x","dots","x)-f(y","y","dots","y)||],[ <= ||f(x","dots","x)-f(x","dots","x","y)||+],[+||f(x","dots","x","y)-f(x","dots","x","y","y)||+],[+dots+||f(x","y","dots","y)-f(y","dots","y)||]:}\begin{aligned} \|F(x)-F(y)\|= & \|f(x, x, \ldots, x)-f(y, y, \ldots, y)\| \\ \leq & \|f(x, \ldots, x)-f(x, \ldots, x, y)\|+ \\ & +\|f(x, \ldots, x, y)-f(x, \ldots, x, y, y)\|+ \\ & +\ldots+\|f(x, y, \ldots, y)-f(y, \ldots, y)\| \end{aligned}F(x)F(y)=f(x,x,,x)f(y,y,,y)f(x,,x)f(x,,x,y)++f(x,,x,y)f(x,,x,y,y)+++f(x,y,,y)f(y,,y)
By (3.2) it follows that
f ( x , x , , x ) f ( x , , x , y ) α k x y f ( x , , x , y ) f ( x , , x , y , y ) α k 1 x y f ( x , y , , y ) f ( y , , y ) α 1 x y f ( x , x , , x ) f ( x , , x , y ) α k x y f ( x , , x , y ) f ( x , , x , y , y ) α k 1 x y f ( x , y , , y ) f ( y , , y ) α 1 x y {:[||f(x","x","dots","x)-f(x","dots","x","y)|| <= alpha_(k)*||x-y||],[||f(x","dots","x","y)-f(x","dots","x","y","y)|| <= alpha_(k-1)*||x-y||],[dots],[||f(x","y","dots","y)-f(y","dots","y)|| <= alpha_(1)*||x-y||]:}\begin{aligned} \|f(x, x, \ldots, x)-f(x, \ldots, x, y)\| & \leq \alpha_{k} \cdot\|x-y\| \\ \|f(x, \ldots, x, y)-f(x, \ldots, x, y, y)\| & \leq \alpha_{k-1} \cdot\|x-y\| \\ \ldots & \\ \|f(x, y, \ldots, y)-f(y, \ldots, y)\| & \leq \alpha_{1} \cdot\|x-y\| \end{aligned}f(x,x,,x)f(x,,x,y)αkxyf(x,,x,y)f(x,,x,y,y)αk1xyf(x,y,,y)f(y,,y)α1xy
and hence
F ( x ) F ( y ) α k x y + α k 1 x y + + α 1 x y F ( x ) F ( y ) α k x y + α k 1 x y + + α 1 x y ||F(x)-F(y)|| <= alpha_(k)*||x-y||+alpha_(k-1)*||x-y||+cdots+alpha_(1)*||x-y||\|F(x)-F(y)\| \leq \alpha_{k} \cdot\|x-y\|+\alpha_{k-1} \cdot\|x-y\|+\cdots+\alpha_{1} \cdot\|x-y\|F(x)F(y)αkxy+αk1xy++α1xy
Using the fact that i = 1 k α i = α 1 i = 1 k α i = α 1 sum_(i=1)^(k)alpha_(i)=alpha <= 1\sum_{i=1}^{k} \alpha_{i}=\alpha \leq 1i=1kαi=α1, we get
F ( x ) F ( y ) α x y x y , F ( x ) F ( y ) α x y x y , ||F(x)-F(y)|| <= alpha*||x-y|| <= ||x-y||,\|F(x)-F(y)\| \leq \alpha \cdot\|x-y\| \leq\|x-y\|,F(x)F(y)αxyxy,
which shows that F F FFF is nonexpansive. Now we apply the Browder-Göhde-Kirk fixed point theorem (Theorem 6) to F F FFF to get the conclusion of the theorem.
Remark 13. Note that Theorem 12 is a generalization of Theorem 1 and that, in the particular case k = 1 k = 1 k=1k=1k=1, Theorem 12 reduces to Theorem 6. As in the case of Theorem 6, a Presić nonexpansive mapping f f fff has generally more than one fixed point. The next example gives a Presić nonexpansive mapping f f fff whose set of fixed points is an interval and also shows that Theorem 12 is an effective generalization of Theorem 1 .
Example 14. Let [ 0,1 ] be the unit interval with the usual Euclidian norm and let f : [ 0 , 1 ] × [ 0 , 1 ] [ 0 , 1 ] f : [ 0 , 1 ] × [ 0 , 1 ] [ 0 , 1 ] f:[0,1]xx[0,1]rarr[0,1]f:[0,1] \times[0,1] \rightarrow[0,1]f:[0,1]×[0,1][0,1] be given by f ( x , y ) = x + y 2 f ( x , y ) = x + y 2 f(x,y)=(x+y)/(2)f(x, y)=\frac{x+y}{2}f(x,y)=x+y2, for all x , y [ 0 , 1 ] x , y [ 0 , 1 ] x,y in[0,1]x, y \in[0,1]x,y[0,1].
Then: a) f f fff is Presić nonexpansive b) f f fff is not a Presić contraction.
Proof. a) In this case ( k = 2 k = 2 k=2k=2k=2 ), the Presić nonexpansive condition (3.2) reads as follows: there exist α 1 , α 2 R + α 1 , α 2 R + alpha_(1),alpha_(2)inR_(+)\alpha_{1}, \alpha_{2} \in \mathbb{R}_{+}α1,α2R+with α 1 + α 2 = α 1 α 1 + α 2 = α 1 alpha_(1)+alpha_(2)=alpha <= 1\alpha_{1}+\alpha_{2}=\alpha \leq 1α1+α2=α1 such that for all x 0 , x 1 , x 2 [ 0 , 1 ] x 0 , x 1 , x 2 [ 0 , 1 ] x_(0),x_(1),x_(2)in[0,1]x_{0}, x_{1}, x_{2} \in[0,1]x0,x1,x2[0,1] :
(3.3) | f ( x 0 , x 1 ) f ( x 1 , x 2 ) | α 1 | x 0 x 1 | + α 2 | x 1 x 2 | (3.3) f x 0 , x 1 f x 1 , x 2 α 1 x 0 x 1 + α 2 x 1 x 2 {:(3.3)|f(x_(0),x_(1))-f(x_(1),x_(2))| <= alpha_(1)|x_(0)-x_(1)|+alpha_(2)|x_(1)-x_(2)|:}\begin{equation*} \left|f\left(x_{0}, x_{1}\right)-f\left(x_{1}, x_{2}\right)\right| \leq \alpha_{1}\left|x_{0}-x_{1}\right|+\alpha_{2}\left|x_{1}-x_{2}\right| \tag{3.3} \end{equation*}(3.3)|f(x0,x1)f(x1,x2)|α1|x0x1|+α2|x1x2|
By the definition of f f fff, (3.3) becomes
| x 0 x 2 2 | α 1 | x 0 x 1 | + α 2 | x 1 x 2 | x 0 x 2 2 α 1 x 0 x 1 + α 2 x 1 x 2 |(x_(0)-x_(2))/(2)| <= alpha_(1)|x_(0)-x_(1)|+alpha_(2)|x_(1)-x_(2)|\left|\frac{x_{0}-x_{2}}{2}\right| \leq \alpha_{1}\left|x_{0}-x_{1}\right|+\alpha_{2}\left|x_{1}-x_{2}\right||x0x22|α1|x0x1|+α2|x1x2|
which obviously holds for α 1 = α 2 = 1 2 α 1 = α 2 = 1 2 alpha_(1)=alpha_(2)=(1)/(2)\alpha_{1}=\alpha_{2}=\frac{1}{2}α1=α2=12, in view of the triangle inequality.
b) The Presić contraction condition (1.1) will be in this case: there exist α 1 , α 2 R + α 1 , α 2 R + alpha_(1),alpha_(2)inR_(+)\alpha_{1}, \alpha_{2} \in \mathbb{R}_{+}α1,α2R+with α 1 + α 2 < 1 α 1 + α 2 < 1 alpha_(1)+alpha_(2) < 1\alpha_{1}+\alpha_{2}<1α1+α2<1 such that for all x 0 , x 1 , x 2 [ 0 , 1 ] x 0 , x 1 , x 2 [ 0 , 1 ] x_(0),x_(1),x_(2)in[0,1]x_{0}, x_{1}, x_{2} \in[0,1]x0,x1,x2[0,1] :
(3.4) | f ( x 0 , x 1 ) f ( x 1 , x 2 ) | α 1 | x 0 x 1 | + α 2 | x 1 x 2 | (3.4) f x 0 , x 1 f x 1 , x 2 α 1 x 0 x 1 + α 2 x 1 x 2 {:(3.4)|f(x_(0),x_(1))-f(x_(1),x_(2))| <= alpha_(1)|x_(0)-x_(1)|+alpha_(2)|x_(1)-x_(2)|:}\begin{equation*} \left|f\left(x_{0}, x_{1}\right)-f\left(x_{1}, x_{2}\right)\right| \leq \alpha_{1}\left|x_{0}-x_{1}\right|+\alpha_{2}\left|x_{1}-x_{2}\right| \tag{3.4} \end{equation*}(3.4)|f(x0,x1)f(x1,x2)|α1|x0x1|+α2|x1x2|
We shall prove now that we can find a triple x 0 , x 1 , x 2 [ 0 , 1 ] x 0 , x 1 , x 2 [ 0 , 1 ] x_(0),x_(1),x_(2)in[0,1]x_{0}, x_{1}, x_{2} \in[0,1]x0,x1,x2[0,1] for which 3.4 cannot be true under the strict inequality α 1 + α 2 < 1 α 1 + α 2 < 1 alpha_(1)+alpha_(2) < 1\alpha_{1}+\alpha_{2}<1α1+α2<1.
Indeed, let x 0 = 1 , x 2 = 0 x 0 = 1 , x 2 = 0 x_(0)=1,x_(2)=0x_{0}=1, x_{2}=0x0=1,x2=0 and x 1 = x [ 0 , 1 ] x 1 = x [ 0 , 1 ] x_(1)=x in[0,1]x_{1}=x \in[0,1]x1=x[0,1], when condition (3.4) becomes
(3.5) 1 2 α 1 ( α 2 α 1 ) x (3.5) 1 2 α 1 α 2 α 1 x {:(3.5)(1)/(2)-alpha_(1) <= (alpha_(2)-alpha_(1))x:}\begin{equation*} \frac{1}{2}-\alpha_{1} \leq\left(\alpha_{2}-\alpha_{1}\right) x \tag{3.5} \end{equation*}(3.5)12α1(α2α1)x
We have to discuss tree cases.
Case 1. α 2 α 1 > 0 α 2 α 1 > 0 alpha_(2)-alpha_(1) > 0\alpha_{2}-\alpha_{1}>0α2α1>0. Then by (3.5),
(3.6) x 1 2 α 1 α 2 α 1 (3.6) x 1 2 α 1 α 2 α 1 {:(3.6)x >= ((1)/(2)-alpha_(1))/(alpha_(2)-alpha_(1)):}\begin{equation*} x \geq \frac{\frac{1}{2}-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \tag{3.6} \end{equation*}(3.6)x12α1α2α1
As x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], the inequality (3.6) holds for all x x xxx only if
1 2 α 1 α 2 α 1 0 1 2 α 1 α 2 α 1 0 ((1)/(2)-alpha_(1))/(alpha_(2)-alpha_(1)) <= 0\frac{\frac{1}{2}-\alpha_{1}}{\alpha_{2}-\alpha_{1}} \leq 012α1α2α10
which implies that α 1 1 2 α 1 1 2 alpha_(1) >= (1)/(2)\alpha_{1} \geq \frac{1}{2}α112. Since α 2 > α 1 α 2 > α 1 alpha_(2) > alpha_(1)\alpha_{2}>\alpha_{1}α2>α1, we conclude that α 1 + α 2 > 1 α 1 + α 2 > 1 alpha_(1)+alpha_(2) > 1\alpha_{1}+\alpha_{2}>1α1+α2>1, which contradicts the contraction condition α 1 + α 2 < 1 α 1 + α 2 < 1 alpha_(1)+alpha_(2) < 1\alpha_{1}+\alpha_{2}<1α1+α2<1.
Case 2. α 2 α 1 = 0 α 2 α 1 = 0 alpha_(2)-alpha_(1)=0\alpha_{2}-\alpha_{1}=0α2α1=0. Then by 3.5 we get α 1 1 2 α 1 1 2 alpha_(1) >= (1)/(2)\alpha_{1} \geq \frac{1}{2}α112 which shows that α 1 + α 2 = 2 α 1 1 α 1 + α 2 = 2 α 1 1 alpha_(1)+alpha_(2)=2alpha_(1) >= 1\alpha_{1}+\alpha_{2}=2 \alpha_{1} \geq 1α1+α2=2α11, which again contradicts α 1 + α 2 < 1 α 1 + α 2 < 1 alpha_(1)+alpha_(2) < 1\alpha_{1}+\alpha_{2}<1α1+α2<1.
Case 3. α 2 α 1 < 0 α 2 α 1 < 0 alpha_(2)-alpha_(1) < 0\alpha_{2}-\alpha_{1}<0α2α1<0. Then by 3.5 we obtain
(3.7) x 1 2 α 1 α 2 α 1 = α 1 1 2 α 1 α 2 (3.7) x 1 2 α 1 α 2 α 1 = α 1 1 2 α 1 α 2 {:(3.7)x <= ((1)/(2)-alpha_(1))/(alpha_(2)-alpha_(1))=(alpha_(1)-(1)/(2))/(alpha_(1)-alpha_(2)):}\begin{equation*} x \leq \frac{\frac{1}{2}-\alpha_{1}}{\alpha_{2}-\alpha_{1}}=\frac{\alpha_{1}-\frac{1}{2}}{\alpha_{1}-\alpha_{2}} \tag{3.7} \end{equation*}(3.7)x12α1α2α1=α112α1α2
Having in view the fact that x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in[0,1]x[0,1], the inequality (3.7) holds for all x x xxx only if
α 1 1 2 α 1 α 2 1 α 1 1 2 α 1 α 2 1 (alpha_(1)-(1)/(2))/(alpha_(1)-alpha_(2)) >= 1\frac{\alpha_{1}-\frac{1}{2}}{\alpha_{1}-\alpha_{2}} \geq 1α112α1α21
which implies α 2 1 2 α 2 1 2 alpha_(2) >= (1)/(2)\alpha_{2} \geq \frac{1}{2}α212. Since α 1 > α 2 α 1 > α 2 alpha_(1) > alpha_(2)\alpha_{1}>\alpha_{2}α1>α2, we obtain that α 1 + α 2 > 1 α 1 + α 2 > 1 alpha_(1)+alpha_(2) > 1\alpha_{1}+\alpha_{2}>1α1+α2>1, a contradiction. Therefore f f fff is not a Presić contraction.
An indirect proof of part b) easily follows by Theorem 1 and the fact that Fix ( f ) = [ 0 , 1 ] Fix ( f ) = [ 0 , 1 ] Fix(f)=[0,1]\operatorname{Fix}(f)=[0,1]Fix(f)=[0,1].
Theorem 12 ensures merely the existence of a fixed point of f f fff. We can further obtain a method for approximating the fixed point of Presić nonexpansive mappings f f fff, as in the next two theorems.
Theorem 15. Let C C CCC be a convex and compact subset of a Banach space E E EEE, k k kkk a positive integer, and let f : C k C f : C k C f:C^(k)rarr Cf: C^{k} \rightarrow Cf:CkC be a Presić nonexpansive mapping. If the sequence { λ n } λ n {lambda_(n)}\left\{\lambda_{n}\right\}{λn} satisfies assumptions (b)-(c) in Theorem 8, then the Mann type iteration process { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} defined by x 0 C x 0 C x_(0)in Cx_{0} \in Cx0C and
(3.8) x n + 1 = ( 1 λ n ) x n + λ n f ( x n , x n , , x n ) , n = 0 , 1 , 2 , (3.8) x n + 1 = 1 λ n x n + λ n f x n , x n , , x n , n = 0 , 1 , 2 , {:(3.8)x_(n+1)=(1-lambda_(n))x_(n)+lambda_(n)f(x_(n),x_(n),dots,x_(n))","n=0","1","2","dots:}\begin{equation*} x_{n+1}=\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} f\left(x_{n}, x_{n}, \ldots, x_{n}\right), n=0,1,2, \ldots \tag{3.8} \end{equation*}(3.8)xn+1=(1λn)xn+λnf(xn,xn,,xn),n=0,1,2,
converges strongly to a fixed point of f f fff, that is, to a point x C x C x^(**)in Cx^{*} \in CxC for which f ( x , , x ) = x f x , , x = x f(x^(**),dots,x^(**))=x^(**)f\left(x^{*}, \ldots, x^{*}\right)=x^{*}f(x,,x)=x.
Proof. We use the same arguments as in the proof of Theorem 12 to show that the mapping F : C C F : C C F:C rarr CF: C \rightarrow CF:CC given by F ( x ) = f ( x , x , , x ) , x C F ( x ) = f ( x , x , , x ) , x C F(x)=f(x,x,dots,x),x in CF(x)=f(x, x, \ldots, x), x \in CF(x)=f(x,x,,x),xC is nonexpansive. Then apply Corollary 9 to get the conclusion.
Theorem 16. Let E E EEE be a real normed space, C C CCC a closed bounded convex subset of E , k E , k E,kE, kE,k a positive integer, and let f : C k C f : C k C f:C^(k)rarr Cf: C^{k} \rightarrow Cf:CkC be a Presić nonexpansive mapping. If T T TTT given by T ( x ) = x f ( x , x , , x ) T ( x ) = x f ( x , x , , x ) T(x)=x-f(x,x,dots,x)T(x)=x-f(x, x, \ldots, x)T(x)=xf(x,x,,x) maps closed bounded subsets of E E EEE into closed subsets of E E EEE and { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} is the Mann iteration defined by (3.8), with { λ n } λ n {lambda_(n)}\left\{\lambda_{n}\right\}{λn} satisfying assumptions (b)-(c) in Theorem 8, then { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} converges strongly to a fixed point of f f fff in C C CCC.
Proof. We use similar arguments to those in the proof of Theorem 12 to show that the mapping F : C C F : C C F:C rarr CF: C \rightarrow CF:CC given by F ( x ) = f ( x , x , , x ) , x C F ( x ) = f ( x , x , , x ) , x C F(x)=f(x,x,dots,x),x in CF(x)=f(x, x, \ldots, x), x \in CF(x)=f(x,x,,x),xC is nonexpansive. Then apply Corollary 10 to get the conclusion.

4. CONCLUSIONS AND AN OPEN PROBLEM

Note that in the proof of Theorem 12 we basically used Theorem 6. Due to this fact Theorem 12 is, strictly speacking, not a generalization of Theorem 6, but we can give a direct proof of the former which actually follows the main steps of the latter.
It was shown, see Theorem 1 and 2 as well as the related results in [5], [13]-[16], that if f f fff is Presić contraction or a Presić-Kannan contraction and so on, then a k k kkk-step iterative method { x n } n 0 x n n 0 {x_(n)}_(n >= 0)\left\{x_{n}\right\}_{n \geq 0}{xn}n0 defined by x 0 , , x k 1 X x 0 , , x k 1 X x_(0),dots,x_(k-1)in Xx_{0}, \ldots, x_{k-1} \in Xx0,,xk1X and
x n = f ( x n k , x n k + 1 , , x n 1 ) , n k x n = f x n k , x n k + 1 , , x n 1 , n k x_(n)=f(x_(n-k),x_(n-k+1),dots,x_(n-1)),n >= kx_{n}=f\left(x_{n-k}, x_{n-k+1}, \ldots, x_{n-1}\right), n \geq kxn=f(xnk,xnk+1,,xn1),nk
can be used to approximate the unique solution x x x^(**)x^{*}x of the equation x = f ( x , , x ) x = f ( x , , x ) x=f(x,dots,x)x= f(x, \ldots, x)x=f(x,,x).
On the other hand, the Mann type iteration process { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} given by (3.8), that is
x n + 1 = ( 1 λ n ) x n + λ n f ( x n , x n , , x n ) , n = 0 , 1 , 2 , x n + 1 = 1 λ n x n + λ n f x n , x n , , x n , n = 0 , 1 , 2 , x_(n+1)=(1-lambda_(n))x_(n)+lambda_(n)f(x_(n),x_(n),dots,x_(n)),n=0,1,2,dotsx_{n+1}=\left(1-\lambda_{n}\right) x_{n}+\lambda_{n} f\left(x_{n}, x_{n}, \ldots, x_{n}\right), n=0,1,2, \ldotsxn+1=(1λn)xn+λnf(xn,xn,,xn),n=0,1,2,
used in Theorems 15 and 16 to approximate a solution x x x^(**)x^{*}x of the equation x = f ( x , , x ) x = f ( x , , x ) x=f(x,dots,x)x=f(x, \ldots, x)x=f(x,,x) for Presić nonexpansive mappings f f fff, is a one step iterative method.
The following question then naturally arises: is it still possible to approximate the fixed points in Theorems 12, 15 and 16, by means of a k k kkk-step iterative method of the form
x n = ( 1 λ n ) x p + λ n f ( x n k , x n k + 1 , , x n 1 ) , n k , x n = 1 λ n x p + λ n f x n k , x n k + 1 , , x n 1 , n k x_(n)=(1-lambda_(n))x_(p)+lambda_(n)f(x_(n-k),x_(n-k+1),dots,x_(n-1)),n >= k", "x_{n}=\left(1-\lambda_{n}\right) x_{p}+\lambda_{n} f\left(x_{n-k}, x_{n-k+1}, \ldots, x_{n-1}\right), n \geq k \text {, }xn=(1λn)xp+λnf(xnk,xnk+1,,xn1),nk
where n 1 p n k n 1 p n k n-1 <= p <= n-kn-1 \leq p \leq n-kn1pnk ?

REFERENCES

[1] Berinde, V., Iterative Approximation of Fixed Points, 2nd Ed., Springer Verlag, Berlin Heidelberg New York, 2007.
[2] Browder, F.E., Nonexpansive nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 54, pp. 1041-1044, 1965.
[3] Chen, Yong-Zhuo, A Presic' type contractive condition and its applications, Nonlinear Anal., 2009 (in press).
[4] Chidume, C.O., Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer Verlag, Berlin Heidelberg New York, 2009.
[5] Cirić, L.B. and Presić, S.B., On Presić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenianae, 76, No. 2, pp. 143-147, 2007.
[6] Edelstein, M., A remark on a theorem of M. A. Krasnoselski, Amer. Math. Monthly, 73, pp. 509-510, 1966.
[7] Goebel, K. and Kirk, W.A., Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990.
[8] Göhde, D., Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30, pp. 251-258, 1965.
[9] Ishikawa, S., Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59, No. 1, pp. 65-71, 1976.
[10] Kırk, W.A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72, pp. 1004-1006, 1965.
[11] Krasnoselskij, M.A., Two remarks on the method of successive approximations (Russian), Uspehi Mat. Nauk., 10, No. 1 (63), pp. 123-127, 1955.
[12] Păcurar, M., An approximate fixed point proof of the Browder-Gohde-Kirk fixed point theorem, Creative Math. Inf., 17, pp. 43-47, 2008.
[13] __, Iterative Methods for Fixed Point Approximation, PhD Thesis, "Babeş-Bolyai" University, Cluj-Napoca, 2009.
[14] __, A multi-step iterative method for approximating fixed points of Presić-Kannan operators, Acta Math. Univ. Comen. 79, No. 1, pp. 77-88, 2010.
[15] __ , Approximating common fixed points of Presić-Kannan type operators by a multistep iterative method, An. Şt. Univ. Ovidius Constanţa 17, No. 1, pp. 153-168, 2009.
[16] __, A multi-step iterative method for approximating common fixed points of PresićRus type operators on metric spaces, Studia Univ. Babeş-Bolyai Math., 55, No.1, pp. 149-162, 2010.
[17] Păvăloiu, I., Rezolvarea ecuatiilor prin interpolare, Editura Dacia, Cluj-Napoca, 1981.
[18] _and Pop, N., Interpolare şi aplicaţii, Risoprint, Cluj-Napoca, 2005.
[19] Presić, S.B., Sur une classe d' inéquations aux différences finites et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19), pp. 75-78, 1965.
[20] Rus, I.A., Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
[21] _ An iterative method for the solution of the equation x = f ( x , , x ) x = f ( x , , x ) x=f(x,dots,x)x=f(x, \ldots, x)x=f(x,,x), Rev. Anal. Numer. Theor. Approx., 10, No.1, pp. 95-100, 1981. ㅁ
[ 22 ] [ 22 ] [22][22][22] , An abstract point of view in the nonlinear difference equations, Conf. on An., Functional Equations, App. and Convexity, Cluj-Napoca, October 15-16, pp. 272-276, 1999.
[23]
, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[24] Schaefer, H., Uber die Methode sukzessiver Approximationen, Jahresber. Deutsch. Math. Verein., 59, pp. 131-140, 1957.

  1. *Department of Mathematics and Computer Science, Faculty of Sciences, Northern University of Baia Mare, Victoriei 76, 430122 Baia Mare, ROMANIA, e-mail: vberinde@ubm.ro; vasile_berinde@yahoo.com.
    ^(†){ }^{\dagger} Department of Statistics, Forecast and Mathematics, Faculty of Economics and Bussiness Administration, "Babeş-Bolyai" University of Cluj-Napoca, 58-60 T. Mihali St., 400591 Cluj-Napoca, ROMANIA, e-mail: madalina.pacurar@econ.ubbcluj.ro; madalina_pacurar@yahoo.com.