A note on Hölder's type inequalities and concave functions

Authors

  • J. Pečarić University of Zagreb, Croatia
  • S. Abramovich University of Haifa, Israel
Abstract views: 154

Abstract

Not available.

Downloads

Download data is not yet available.

References

S. Abramovich, A Note on Generaliyation Höleder's Inequalities via Convex and Concave Functions, Journal of Mathematical analysis and Applicaitons 152 (1990), 296-303,https://doi.org/10.1016/0022-247x(90)90104-n

D.C. Barnes, Supplements of Hölder's Inequality, Can. J. Math., XXXVI, 3(91984), pp. 421-435, https://doi.org/10.4153/cjm-1984-025-5

N.N. Chan and K.H. Li, Majorization for A-Optimal Designs. J. Math. Anal. Appl. 142 (1989), pp.101-107, https://doi.org/10.1016/0022-247x(89)90168-6

A.w. Marshal, I., Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, 1979.

Y.D. Zhuang, The Beckenbach Inequality and its Inverse, J. Math. Anal. Appl. 175 (1993), pp.118-125, https://doi.org/10.1006/jmaa.1993.1157

G.H. Toader, Integral and Discrete Inequalities, Revue d'Analyse Numérique et de Théorie de l'Approximation, 21, 2 (992), pp.83-88.

Downloads

Published

1999-02-01

How to Cite

Pečarić, J., & Abramovich, S. (1999). A note on Hölder’s type inequalities and concave functions. Rev. Anal. Numér. Théor. Approx., 28(1), 63–72. Retrieved from https://www.ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no1-art5

Issue

Section

Articles